To see the other types of publications on this topic, follow the link: Deep level transient spectroscopy.

Journal articles on the topic 'Deep level transient spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Deep level transient spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Okumura, Tsugunori. "DLTS: Deep Level Transient Spectroscopy." HYBRIDS 7, no. 5 (1991): 29–36. http://dx.doi.org/10.5104/jiep1985.7.5_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garcia-Perez, F., F. J. Sanchez, and F. Sandoval. "Deep Level Transient Spectroscopy System." IFAC Proceedings Volumes 22, no. 18 (1989): 285–90. http://dx.doi.org/10.1016/s1474-6670(17)52855-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fourches, N. "Deep level transient spectroscopy based on conductance transients." Applied Physics Letters 58, no. 4 (1991): 364–66. http://dx.doi.org/10.1063/1.104635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kamyczek, Paulina, Ewa Placzek-Popko, Eunika Zielony, and Zbigniew Zytkiewicz. "Deep levels in GaN studied by deep level transient spectroscopy and Laplace transform deep-level spectroscopy." Materials Science-Poland 31, no. 4 (2013): 572–76. http://dx.doi.org/10.2478/s13536-013-0138-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Henry, P. M., J. M. Meese, J. W. Farmer, and C. D. Lamp. "Frequency‐scanned deep‐level transient spectroscopy." Journal of Applied Physics 57, no. 2 (1985): 628–30. http://dx.doi.org/10.1063/1.334753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Laird, J. S., R. A. Bardos, C. Jagadish, D. N. Jamieson, and G. J. F. Legge. "Scanning ion deep level transient spectroscopy." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 158, no. 1-4 (1999): 464–69. http://dx.doi.org/10.1016/s0168-583x(99)00329-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Manion, S. J., G. Costrini, M. A. Emanuel, J. J. Coleman, and K. Hess. "Hot electron deep level transient spectroscopy." Superlattices and Microstructures 1, no. 6 (1985): 481–83. http://dx.doi.org/10.1016/s0749-6036(85)80018-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Su, Z., and J. W. Farmer. "Single scan deep‐level transient spectroscopy." Journal of Applied Physics 68, no. 8 (1990): 4068–70. http://dx.doi.org/10.1063/1.346244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Breitenstein, O., and J. Heydenreich. "Scanning deep level transient spectroscopy (SDLTS)." Scanning 7, no. 6 (1985): 273–89. http://dx.doi.org/10.1002/sca.4950070602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scheffler, L., Vl Kolkovsky, and J. Weber. "Isolated Ti in Si: Deep level transient spectroscopy, minority carrier transient spectroscopy, and high-resolution Laplace deep level transient spectroscopy studies." Journal of Applied Physics 117, no. 4 (2015): 045713. http://dx.doi.org/10.1063/1.4906855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Calleja, Enrique, and Ignacio Izpura. "Deep Level Transient Spectroscopy of DX Centers." Defect and Diffusion Forum 108 (February 1994): 75–96. http://dx.doi.org/10.4028/www.scientific.net/ddf.108.75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Giakoumakis, G. E., E. K. Evangelou, and N. G. Alexandropoulos. "Deep Level Transient Spectroscopy techniques and systems." Acta Physica Hungarica 74, no. 1-2 (1994): 129–38. http://dx.doi.org/10.1007/bf03055244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wada, K., K. Ikuta, J. Osaka, and N. Inoue. "Analysis of scanning deep level transient spectroscopy." Applied Physics Letters 51, no. 20 (1987): 1617–19. http://dx.doi.org/10.1063/1.98573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Szatkowski, J., E. Płaczek-Popko, J. Fiałkowski, et al. "Cd0.8Mn0.2Te:(In/Al) – deep level transient spectroscopy." Physica B: Condensed Matter 292, no. 1-2 (2000): 114–16. http://dx.doi.org/10.1016/s0921-4526(00)00484-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Szatkowski, J., E. Płaczek-Popko, A. Hajdusianek, S. Kuźmiński, B. Bieg, and P. Becla. "Deep Level Transient Spectroscopy Studies of CdMnTe." Acta Physica Polonica A 87, no. 2 (1995): 387–90. http://dx.doi.org/10.12693/aphyspola.87.387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hjalmarson, Harold P., G. A. Samara, and John W. Farmer. "An improved deep level transient spectroscopy method." Journal of Applied Physics 63, no. 5 (1988): 1801–4. http://dx.doi.org/10.1063/1.339874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Atiq, M., Nazir A. Naz, and Akbar Ali. "Deep Level Transient Spectroscopy of AlGaInP LEDs." Journal of Modern Physics 05, no. 18 (2014): 2075–79. http://dx.doi.org/10.4236/jmp.2014.518203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pandian, V., and V. Kumar. "Single‐gate deep level transient spectroscopy technique." Journal of Applied Physics 67, no. 1 (1990): 560–63. http://dx.doi.org/10.1063/1.345192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dyba, P., E. Placzek-Popko, E. Zielony, et al. "Deep Levels in GaN p-n Junctions Studied by Deep Level Transient Spectroscopy and Laplace Transform Deep-Level Spectroscopy." Acta Physica Polonica A 119, no. 5 (2011): 669–71. http://dx.doi.org/10.12693/aphyspola.119.669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Boughaba, S., and D. Mathiot. "Deep level transient spectroscopy characterization of tungsten‐related deep levels in silicon." Journal of Applied Physics 69, no. 1 (1991): 278–83. http://dx.doi.org/10.1063/1.347708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Witte, H., A. Krtschil, M. Lisker, et al. "Fermi Level Pinning at GaN-interfaces: Correlation of electrical admittance and transient spectroscopy." MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000): 936–42. http://dx.doi.org/10.1557/s1092578300005299.

Full text
Abstract:
In GaN layers grown by molecular beam epitaxy as well as metal organic vapor phase epitaxy significant differences were found in the appearance of deep defects detected by thermal admittance spectroscopy as compared for deep level transient spectroscopy measurements. While, thermal admittance spectroscopy measurements which were made under zero bias conditions only show thermal emissions at activation energies between 130 and 170 meV, further deep levels existing in these GaN layers were evidenced by transient spectrocopy. This discrepancy is explained by a pinning effect of the Fermi level at
APA, Harvard, Vancouver, ISO, and other styles
22

Bollmann, Joachim, and Andre Venter. "Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition." Physica B: Condensed Matter 535 (April 2018): 237–41. http://dx.doi.org/10.1016/j.physb.2017.07.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhou, Jie, Lin Jun Wang, Xiao Xiang Sun, et al. "Deep Level Transient Spectroscopy System Designed by LabVIEW." Advanced Materials Research 765-767 (September 2013): 2324–28. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.2324.

Full text
Abstract:
Deep level transient spectroscopy (DLTS) and photo induced current transient spectroscopy (PICTS) are commonly used methods for the identification semiconductor impurities and defects. In this paper, a measurement system of DLTS and PICTS has been developed by LabVIEW. A series of different instruments construct this systems hardware (signal generator; current amplifier; capacitance meter; oscilloscope,etc.) while software is also easy to program by LabVIEW. This system demonstrates high generality for both DLTS and PICTS, and data acquired can be stored or read in computer. By contrast, it is
APA, Harvard, Vancouver, ISO, and other styles
24

Anand, S., N. Carlsson, M‐E Pistol, L. Samuelson, and W. Seifert. "Deep level transient spectroscopy of InP quantum dots." Applied Physics Letters 67, no. 20 (1995): 3016–18. http://dx.doi.org/10.1063/1.114937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nanu, Marian, Florence Boulch, Joop Schoonman, and Albert Goossens. "Deep-level transient spectroscopy of TiO2∕CuInS2 heterojunctions." Applied Physics Letters 87, no. 24 (2005): 242103. http://dx.doi.org/10.1063/1.2140611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Peaker, A. R., V. P. Markevich, I. D. Hawkins, B. Hamilton, K. Bonde Nielsen, and K. Gościński. "Laplace deep level transient spectroscopy: Embodiment and evolution." Physica B: Condensed Matter 407, no. 15 (2012): 3026–30. http://dx.doi.org/10.1016/j.physb.2011.08.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Stievenard, D., and D. Vuillaume. "Profiling of defects using deep level transient spectroscopy." Journal of Applied Physics 60, no. 3 (1986): 973–79. http://dx.doi.org/10.1063/1.337340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Abbate, A., K. J. Han, I. V. Ostrovskii, and P. Das. "Acousto-electric deep-level transient spectroscopy in semiconductors." Solid-State Electronics 36, no. 5 (1993): 697–703. http://dx.doi.org/10.1016/0038-1101(93)90237-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Laird, J. S., C. Jagadish, D. N. Jamieson, and G. J. F. Legge. "Scanning ion deep level transient spectroscopy: I. Theory." Journal of Physics D: Applied Physics 39, no. 7 (2006): 1342–51. http://dx.doi.org/10.1088/0022-3727/39/7/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ball, C. A. B., and A. B. Conibear. "Simulated lock‐in amplifier deep level transient spectroscopy." Review of Scientific Instruments 62, no. 11 (1991): 2831–32. http://dx.doi.org/10.1063/1.1142169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Marshall, A., and H. G. Maguire. "Deep level transient spectroscopy: instrumentation induced anomalous characteristics." IEEE Transactions on Instrumentation and Measurement 37, no. 4 (1988): 596–99. http://dx.doi.org/10.1109/19.9821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Morimoto, Jun, Michihiro Fudamoto, Kenichiro Tahira, Tatsuo Kida, Seiji Kato, and Toru Miyakawa. "Spectral Analysis of Deep Level Transient Spectroscopy (SADLTS)." Japanese Journal of Applied Physics 26, Part 1, No. 10 (1987): 1634–40. http://dx.doi.org/10.1143/jjap.26.1634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Usami, A., K. Kaneko, A. Ito, T. Wada, and S. I. Ishigami. "Deep-level transient spectroscopy study of bonded wafers." Semiconductor Science and Technology 9, no. 7 (1994): 1366–69. http://dx.doi.org/10.1088/0268-1242/9/7/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Fan, Jiwei, and Robert Freer. "Deep level transient spectroscopy of SnO2-based varistors." Applied Physics Letters 90, no. 9 (2007): 093511. http://dx.doi.org/10.1063/1.2710752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Pal, D., S. Pal, and D. N. Bose. "Deep level transient spectroscopy of anisotropic semiconductor GaTe." Bulletin of Materials Science 17, no. 4 (1994): 347–54. http://dx.doi.org/10.1007/bf02745221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Engström, O., and M. Kaniewska. "Deep Level Transient Spectroscopy in Quantum Dot Characterization." Nanoscale Research Letters 3, no. 5 (2008): 179–85. http://dx.doi.org/10.1007/s11671-008-9133-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Evangelou, E. K., A. D. Horevas, G. E. Giakoumakis, and N. G. Alexandropoulos. "A microcomputer based deep level transient spectroscopy system." Solid State Communications 80, no. 4 (1991): 247–49. http://dx.doi.org/10.1016/0038-1098(91)90017-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hanak, Thomas R., Assem M. Bakry, Donald j. Dunlavy, Fouad Abou-Elfotouh, Richard K. Ahrenkiel, and Michael L. Timmons. "Deep-level transient spectroscopy of AlGaAs and CuInSe2." Solar Cells 27, no. 1-4 (1989): 347–56. http://dx.doi.org/10.1016/0379-6787(89)90043-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bury, P., I. Jamnicky, and J. Ďurček. "Acoustic Deep-Level Transient Spectroscopy of MIS Structures." Physica Status Solidi (a) 126, no. 1 (1991): 151–61. http://dx.doi.org/10.1002/pssa.2211260117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kolev, P. V., M. J. Deen, and N. Alberding. "Averaging and recording of digital deep-level transient spectroscopy transient signals." Review of Scientific Instruments 69, no. 6 (1998): 2464–74. http://dx.doi.org/10.1063/1.1148975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Shaban, E. H. "Non-exponential capacitance transient in deep level transient spectroscopy (DLTS) measurements." Solid-State Electronics 39, no. 2 (1996): 321–22. http://dx.doi.org/10.1016/0038-1101(95)00153-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Buchwald, Walter R., Robert E. Peale, Perry C. Grant, Julie V. Logan, Preston T. Webster, and Christian P. Morath. "The Sliding-Aperture Transform and Its Applicability to Deep-Level Transient Spectroscopy." Applied Sciences 12, no. 11 (2022): 5317. http://dx.doi.org/10.3390/app12115317.

Full text
Abstract:
A mathematical method is presented for the extraction of defect parameters from the multiexponential decays generated during deep-level transient spectroscopy experiments. Such transient phenomenon results from the ionization of charge trapped in defects located in the depletion width of a semiconductor diode. From digitized transients acquired at fixed temperatures, this method produces a rate–domain spectral signature associated with all defects in the semiconductor. For signal-to-noise ratio of 1000, defect levels with carrier emission rates differing by as little as 1.5 times may be distin
APA, Harvard, Vancouver, ISO, and other styles
43

Ballandovich, V. S. "Deep-level transient spectroscopy of radiation-induced levels in 6H-SiC." Semiconductors 33, no. 11 (1999): 1188–92. http://dx.doi.org/10.1134/1.1187846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hanak, Thomas R., Richard K. Ahrenkiel, Donald J. Dunlavy, Assem M. Bakry, and Michael L. Timmons. "A new method to analyze multiexponential transients for deep‐level transient spectroscopy." Journal of Applied Physics 67, no. 9 (1990): 4126–32. http://dx.doi.org/10.1063/1.344973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Pearce, N. O., B. Hamilton, A. R. Peaker, and R. A. Craven. "Application of deep level transient spectroscopy to metal‐oxide‐semiconductor relaxation transients." Journal of Applied Physics 62, no. 2 (1987): 576–81. http://dx.doi.org/10.1063/1.339785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Berg, L., L. Schnorr, L. Merces, J. Bettini, C. C. Bof Bufon, and T. Heinzel. "Transient photocapacitance spectroscopy on Au/TiO2 Schottky diodes with rolled-up nanomembrane electrodes." Journal of Applied Physics 133, no. 6 (2023): 065704. http://dx.doi.org/10.1063/5.0132445.

Full text
Abstract:
Rolled-up nanomembrane electrodes are used to prepare optically transparent [Formula: see text] Schottky diodes suitable for deep level transient photocapacitance spectroscopy. It is demonstrated that both the binding energy and the capture cross section of the oxygen vacancy can be extracted from the photocapacitance transients using a rate equation model. The values are consistent with those obtained from conventional deep level transient spectroscopy, taken from the same sample. Furthermore, information about the capture process can be extracted.
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Rong, Kai Yang, Guoyi Qing, et al. "Profiling the Deep Levels inSiGe/Si Microstructure by Small-Pulse Deep Level Transient Spectroscopy." Materials Science Forum 196-201 (November 1995): 485–90. http://dx.doi.org/10.4028/www.scientific.net/msf.196-201.485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Halder, N. C., and T. Goodman. "Deep levels in low temperature GaAs probed by field effect deep level transient spectroscopy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, no. 1 (1999): 60. http://dx.doi.org/10.1116/1.590517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yoshino, J., Y. Okamoto, J. Morimoto, and T. Miyakawa. "Distribution of deep levels in Si:Au by spectral analysis of deep-level transient spectroscopy." Applied Physics A: Materials Science & Processing 66, no. 3 (1998): 323–25. http://dx.doi.org/10.1007/s003390050673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kato, Masashi, Kosuke Kito, and Masaya Ichimura. "Characterization of Deep Levels in High-Resistive 6H-SiC by Current Deep Level Transient Spectroscopy." Materials Science Forum 615-617 (March 2009): 381–84. http://dx.doi.org/10.4028/www.scientific.net/msf.615-617.381.

Full text
Abstract:
We measured the temperature dependence of the electrical resistivity for two high-purity undoped 6H-SiC bulk wafers with resistivities of 1.5103 cm and 8.3108 cm at room temperature. We also characterized the deep levels affecting the semi-insulating property by current deep level transient spectroscopy (I-DLTS) and photo induced current level transient spectroscopy (PICTS) measurements. The activation energies of the resistivity were 0.11 eV and 0.59 eV for the samples with lower and higher resistivities, respectively. In I-DLTS and PICTS spectra, the sample with lower resistivity shows
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!