Academic literature on the topic 'Deep mine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep mine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep mine"
Pool, R. "Deep space mine [lunar mining]." Engineering & Technology 8, no. 12 (December 1, 2013): 63–67. http://dx.doi.org/10.1049/et.2013.1206.
Full textGreberg, Jenny, and Abubakary Salama. "Analysis of the Current Challenges for Deep Underground Mines: Labour Productivity Improvement." Tanzania Journal of Engineering and Technology 39, no. 1 (June 30, 2020): 32–46. http://dx.doi.org/10.52339/tjet.v39i1.517.
Full textBeaulieu, Stace E., T. E. Graedel, and Mark D. Hannington. "Should we mine the deep seafloor?" Earth's Future 5, no. 7 (July 2017): 655–58. http://dx.doi.org/10.1002/2017ef000605.
Full textLi, Yong, Yun Yi Zhang, Ren Jie Gao, and Shuai Tao Xie. "In Situ Stress Measurement and Inversion in Deep Roadway." Advanced Materials Research 734-737 (August 2013): 759–63. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.759.
Full textGuo, Jiang, Xin Cheng, Junji Lu, Yan Zhao, and Xuebin Xie. "Research on Factors Affecting Mine Wall Stability in Isolated Pillar Mining in Deep Mines." Minerals 12, no. 5 (May 13, 2022): 623. http://dx.doi.org/10.3390/min12050623.
Full textVoosen, Paul. "Deep in a mine, earthquake gold awaits." Science 356, no. 6341 (June 1, 2017): 891–92. http://dx.doi.org/10.1126/science.356.6341.891.
Full textDavies, Gareth. "Red sea mine tailings must go deep." Marine Pollution Bulletin 16, no. 9 (September 1985): 344–45. http://dx.doi.org/10.1016/0025-326x(85)90079-7.
Full textWIEDEMANN, H. "Report: Deep mine disposal of hazardous waste." Waste Management & Research 9, no. 1 (February 1991): 65–66. http://dx.doi.org/10.1016/0734-242x(91)90088-o.
Full textBrumfiel, Geoff. "'Mile-deep club' of researchers sets sights on disused gold mine." Nature 419, no. 6905 (September 2002): 325–26. http://dx.doi.org/10.1038/419325a.
Full textCao, Anye, Yaoqi Liu, Xu Yang, Sen Li, and Yapeng Liu. "FDNet: Knowledge and Data Fusion-Driven Deep Neural Network for Coal Burst Prediction." Sensors 22, no. 8 (April 18, 2022): 3088. http://dx.doi.org/10.3390/s22083088.
Full textDissertations / Theses on the topic "Deep mine"
Webber, R. C. W. "Determining the physical and economic impact of environmental design criteria for ultra-deep mines." Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-07242006-105847/.
Full textGreth, August V. "Evaluating Mine Cooling Systems and Mine Ventilation Strategies to be Applied in Deep and Hot US Mines." Thesis, University of Nevada, Reno, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10817148.
Full textMetal production in the United States contributes significantly to the national and global economies due to resource demands. As mineral reserves are becoming scarce, demand has driven mining companies to operate at increasing depths underground. Along with this, production has continued to increase year after year, as lower grade ores are excavated economically. However, the increased mining depths and increased production have resulted in enlarged heat loads in the underground mine environment. Increased heat loads can result in temperatures, which are too high for mine workers to safely work. This may cause heat related illness, injuries or even death. Mine operators must pursue heat reduction strategies in order to maintain safe temperatures to protect mine workers.
There are a number of heat mitigation methods and strategies which mine operators can implement. The most common means is through the use of ventilation to provide cool air volumes to reduce the heat load and dilute the contaminants generated in the production workings below their threshold limit values (TLV). This can be done by increasing the fresh air volumes through surface accesses such as shafts, raises, adits, ramps, or other mine entrances. When ventilation alone cannot provide acceptable climatic conditions in the production workings and throughout the mine, artificial cooling methods need to be used. These methods can be very effective, however, they require large capital investments, continuous maintenance, and additional operating costs. This includes central cooling, spot cooling, and micro-climate cooling systems. Though reducing the heat load is effective, another strategy is to reduce the source of the heat generation. One such source is the heat generated by diesel engine equipment fleet. This can be decreased by switching to a battery/electric engine equipment fleet. All of these strategies can be compared based off their heat reduction, temperatures, and operating costs. This study does exactly this by using an underground metal mine’s ventilation system to compare various scenarios, and identify the most effective cooling method or system that can be used in deep and hot US mines.
Warren, Justin Cable. "A Study of Mine-Related Seismicity in a Deep Longwall Coal Mine." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/76766.
Full textMaster of Science
Snee, Christopher Peter Michael. "The design and performance of a deep mine inset at North Selby mine." Thesis, University of Newcastle Upon Tyne, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254317.
Full textZander, Joanna. "The human factors of integrating technology into the mine countermeasures diving environment /." Burnaby B.C. : Simon Fraser University, 2006. http://ir.lib.sfu.ca/handle/1892/2654.
Full textTheses (School of Kinesiology) / Simon Fraser University. Includes bibliographical references. Also issued in digital format and available on the World Wide Web.
McCoy, Kurt J. "Estimation of vertical infiltration into deep Pittsburgh coal mines of WV-PA a fluid mass balance approach /." Morgantown, W. Va. : [West Virginia University Libraries], 2002. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=2745.
Full textTitle from document title page. Document formatted into pages; contains x, 150 p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 87-90).
Kerr, Jeffrey Bryan. "Applications of Double-Difference Tomography for a Deep Hard Rock Mine." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/35850.
Full textMaster of Science
Webb, Colin. "A continuous flow elevator to lift ore vertically for deep mine haulage using a cable disc elevator." Thesis, Federation University Australia, 2020. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/175285.
Full textDoctor of Philosophy
Wei, Wei. "Numerical modelling study of rock support system for deep mine haulage drift." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95194.
Full textDans les opérations de minage en vrac, le minerai est transporté des points de soutirages aux chûtes à minerai grâce aux galeries de halage. Ces galeries de halage sont utilisés par le personnel quotidiennement. Donc, la stabilité des galeries de halage est primordiale pour garantir une production constante et sécuritaire. Il serait avantageux de savoir a priori comment la galerie de halage sera affectée par l'activité minière avoisinante. Ce mémoire décrit les résultats d'une étude qui examine la stabilité et la performance du soutènement d'une galerie de halage de la mine Garson, Sudbury Ontarion, Canada, propriété de Vale. Les critères de Mohr-Coulomb et de Hoek-Brown sont les plus utilisés pour décrire le comportement du massif rocheux soumis à des contraintes. Les logiciels Phase 2 et FLAC ont été retenus pour compléter l'analyse numérique de ce travail, car les critères de Mohr-Coulomb et de Hoek-Brown y sont intégrés. Pour étudier les facteurs influençant la stabilité de la galerie de halage, un code avec éléments finis (Phase2) utilisant le critère de Hoek-Brown a été choisi. Pour évaluer la performance du soutènement, un code avec différences finis (FLAC) utilisant le critère de Morh-Coulomb a été choisi. Beaucoup de données ont été obtenues de la mine Garson afin de comprendre entièrement la zone étudiée. Des paramètres tel les caractéristiques du massif rocheux, les plans miniers, le régime de contrainte, etc. sont requis pour construire le modèle numérique. Donc, une base de données géomécanique intitulée Data Integrator for Mine Analysis and Design (Dimand)' répertoriant les caractéristiques critiques de l'activité minière a été développée. Les résultats de l'analyse numérique montrent un état de relaxation dans le toit de la galerie créé par l'extraction des chantiers dans les deux cas de faible et de fort rapport de la contrainte horizontale sur la contrainte
Mate, Joseph E. "Mining task analysis: Mechanical and metabolic considerations in a deep Canadian mechanized mine." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27886.
Full textBooks on the topic "Deep mine"
Hause, D. R. Deep mine abandonment sealing and underground treatment to preclude acid mine drainage. S.l: s.n, 1986.
Find full textThimons, Edward D. Recent developments in spray cooling of deep mines. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1986.
Find full textSimmons, F. W. Physical properties of deep tilled usrface mine soils. S.l: s.n, 1992.
Find full textOlsen, Gregg. The deep dark: Tragedy and redemption in America's richest silver mine. New York: Crown Publishers, 2005.
Find full textColinet, Jay. Dust control considerations for deep-cut mining when utilizing exhaust ventilation and a scrubber. [Washington, D.C.]: U.S. Dept. of the Interior, Bureau of Mines, 1996.
Find full textHooks, C. L. Deep tillage effects on mine soils and row crop yields. S.l: s.n, 1987.
Find full textBook chapters on the topic "Deep mine"
James, Tom, and Simon Roper. "Humans Versus Machine: Who Will Mine Space?" In Deep Space Commodities, 53–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90303-3_4.
Full textWiltshire, John C. "Sustainable Development and Its Application to Mine Tailings of Deep Sea Minerals." In Deep-Sea Mining, 423–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52557-0_14.
Full textKumar, A. R., K. M. Henderson, and S. Schafrik. "Scale modeling, PIV, and LES of blowing type airflow in a deep cut continuous coal mining section." In Mine Ventilation, 65–74. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003188476-7.
Full textChen, Weitao, Xianju Li, and Lizhe Wang. "Introduction to Deep Learning." In Remote Sensing Intelligent Interpretation for Mine Geological Environment, 33–89. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3739-2_3.
Full textNikolay, Belyakov. "Modeling Development of Deep Horizons of Open Pits." In Mine Planning and Equipment Selection, 43–51. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02678-7_5.
Full textOparin, V., A. Tapsiev, and A. Freidin. "Classification of Mining Methods for Deep Orebodies." In Advances in Applied Strategic Mine Planning, 559–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69320-0_32.
Full textParaszczak, Jacek, Kostas Fytas, and Marcel Laflamme. "Feasibility of Using Electric Trucks in Deep Metal Mines." In Mine Planning and Equipment Selection, 1265–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02678-7_122.
Full textChen, Weitao, Xianju Li, and Lizhe Wang. "Mine Remote Sensing Scene Classification Using Deep Learning." In Remote Sensing Intelligent Interpretation for Mine Geological Environment, 165–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3739-2_7.
Full textBukeikhanova, S., S. Kulniyaz, and S. Lysenko. "Principles of Cyclic-Flow Technology in the Development of Deep Pits." In Mine Planning and Equipment Selection, 65–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02678-7_7.
Full textSheng, Y., P. Peter, and A. R. Milnes. "Instrumentation and monitoring behaviour of uranium tailings deposited in a deep pit." In Tailings and Mine Waste 2000, 91–100. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003078579-12.
Full textConference papers on the topic "Deep mine"
Salamanca, Juan, John Jairo Niño-Merchán, and D. Castañeda. "Microgeneration of electricity using mine drainage – a proposal for deep mines." In Seventh International Conference on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2014. http://dx.doi.org/10.36487/acg_rep/1410_40_salamanca.
Full textVatcher, Jessica, Stephen McKinnon, and Jonny Sjöberg. "Mine-scale numerical modelling, seismicity and stresses at Kiirunavaara Mine, Sweden." In Seventh International Conference on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2014. http://dx.doi.org/10.36487/acg_rep/1410_24_vatcher.
Full textWhiting, Rowland. "Stress Issues at Pajingo Mine." In Fourth International Seminar on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2007. http://dx.doi.org/10.36487/acg_repo/711_10.
Full textKgarume, Thabang, Steve Spottiswoode, and Raymond Durrheim. "Deterministic properties of mine tremor aftershocks." In Fifth International Seminar on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2010. http://dx.doi.org/10.36487/acg_repo/1074_16.
Full textMalovichko, Dmitriy. "Discrimination of blasts in mine seismology." In Sixth International Seminar on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2012. http://dx.doi.org/10.36487/acg_rep/1201_11_malovichko.
Full textHills, Peter. "Managing seismicity at the Tasmania Mine." In Sixth International Seminar on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2012. http://dx.doi.org/10.36487/acg_rep/1201_09_hills.
Full textKnobben, Christopher. "Seismic hazard at the Rosebery mine." In Eighth International Conference on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2017. http://dx.doi.org/10.36487/acg_rep/1704_01_knobben.
Full textDineva, Savka, and Mirjana Boskovic. "Evolution of seismicity at Kiruna Mine." In Eighth International Conference on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2017. http://dx.doi.org/10.36487/acg_rep/1704_07_dineva.
Full textPytel, Witold, and Jan Butra. "Mine workings design in regional pillar mining conditions — a case study from a Polish copper mine." In Fifth International Seminar on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2010. http://dx.doi.org/10.36487/acg_repo/1074_06.
Full textArbi, Hendra, Korine Doumis, and Nathan Dalton. "Strengths and weaknesses of using elastic numerical modelling in mine design at the Callie underground mine." In Eighth International Conference on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2017. http://dx.doi.org/10.36487/acg_rep/1704_59_arbi.
Full textReports on the topic "Deep mine"
Oldenburg, C. M., P. F. Dobson, Y. Wu, P. J. Cook, T. J. Kneafsey, S. Nakagawa, C. Ulrich, et al. Intermediate-Scale Hydraulic Fracturing in a Deep Mine - kISMET Project Summary 2016. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1338937.
Full textKean, B. F., and D. T. W. Evans. Geology of the Little Deer Mine. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132257.
Full textKapriev, Georgi. COVID-19: Crisis, Social Panic, Religious and Academic Life in Bulgaria. Analogia 17 (2023), March 2023. http://dx.doi.org/10.55405/17-5-kapriev.
Full textBuesseler, Ken O., Di Jin, Melina Kourantidou, David S. Levin, Kilaparti Ramakrishna, and Philip Renaud. The ocean twilight zone’s role in climate change. Woods Hole Oceanographic Institution, February 2022. http://dx.doi.org/10.1575/1912/28074.
Full textMohammadian, Abolfazl, Amir Bahador Parsa, Homa Taghipour, Amir Davatgari, and Motahare Mohammadi. Best Practice Operation of Reversible Express Lanes for the Kennedy Expressway. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-033.
Full textBeck, Aaron. RiverOceanPlastic: Land-ocean transfer of plastic debris in the North Atlantic, Cruise No. AL534/2, 05 March – 26 March 2020, Malaga (Spain) – Kiel (Germany). GEOMAR Helmholtz Centre for Ocean Research Kiel, 2020. http://dx.doi.org/10.3289/cr_al534-2.
Full textTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, January 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Full textGilkeson, G. G., A. C. Dudley, J. G. EuDaly, M. M. Peden-Adams, and D. E. Keil. Effects of Concurrent Exposure to N,N-Diethyl-m-Toluamide (DEET), Pyridostigmine Bromide (PYR), and Exercise Stress on Biomarkers of Immune Function in B6C3F1 Mice. Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada402119.
Full textTynan, Mark C., Glenn P. Russell, and Frank V. Perry. Global Survey of Selected Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges(Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D):A Guide. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1484716.
Full textGilkeson, G. G., A. C. Dudley, J. G. EuDaly, M. M. Peden-Adams, and D. E. Keil. Concurrent Exposure to N, N-Diethyl-m-Toluamide (DEET), Pyridostigmine Bromide (PYR), and JP-8 Jet Fuel Effects on Biomarkers of Immune Function in B6C3F1 Mice. Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada402120.
Full text