Journal articles on the topic 'Deep Raman Spectroscopy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Deep Raman Spectroscopy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Luo, Ruihao, Juergen Popp, and Thomas Bocklitz. "Deep Learning for Raman Spectroscopy: A Review." Analytica 3, no. 3 (2022): 287–301. http://dx.doi.org/10.3390/analytica3030020.
Full textZhou, Qian, Zhiyong Zou, and Lin Han. "Deep Learning-Based Spectrum Reconstruction Method for Raman Spectroscopy." Coatings 12, no. 8 (2022): 1229. http://dx.doi.org/10.3390/coatings12081229.
Full textMosca, Sara, Priyanka Dey, Marzieh Salimi, et al. "Spatially Offset Raman Spectroscopy—How Deep?" Analytical Chemistry 93, no. 17 (2021): 6755–62. http://dx.doi.org/10.1021/acs.analchem.1c00490.
Full textArnold, Bradley R., Christopher E. Cooper, Michael R. Matrona, Darren K. Emge, and Jeffrey B. Oleske. "Stand-off deep-UV Raman spectroscopy." Canadian Journal of Chemistry 96, no. 7 (2018): 614–20. http://dx.doi.org/10.1139/cjc-2017-0678.
Full textMatousek, P. "Raman Signal Enhancement in Deep Spectroscopy of Turbid Media." Applied Spectroscopy 61, no. 8 (2007): 845–54. http://dx.doi.org/10.1366/000370207781540178.
Full textMacleod, Neil A., and Pavel Matousek. "Deep Noninvasive Raman Spectroscopy of Turbid Media." Applied Spectroscopy 62, no. 11 (2008): 291A—304A. http://dx.doi.org/10.1366/000370208786401527.
Full textLiu, Yuping, Junchi Wu, Yuqing Wang, and Sicen Dong. "Direct recognition of Raman spectra without baseline correction based on deep learning." AIP Advances 12, no. 8 (2022): 085212. http://dx.doi.org/10.1063/5.0100937.
Full textDomes, Robert, Christian Domes, Christian R. Albert, Gerhard Bringmann, Jürgen Popp, and Torsten Frosch. "Vibrational spectroscopic characterization of arylisoquinolines by means of Raman spectroscopy and density functional theory calculations." Physical Chemistry Chemical Physics 19, no. 44 (2017): 29918–26. http://dx.doi.org/10.1039/c7cp05415g.
Full textCao, Zheng, Xiang Pan, Hongyun Yu, et al. "A Deep Learning Approach for Detecting Colorectal Cancer via Raman Spectra." BME Frontiers 2022 (May 2, 2022): 1–10. http://dx.doi.org/10.34133/2022/9872028.
Full textZhang, Yilong, Tianke Wang, Kang Du, Peng Chen, Haixia Wang, and Haohao Sun. "General Network Framework for Mixture Raman Spectrum Identification Based on Deep Learning." Applied Sciences 14, no. 22 (2024): 10245. http://dx.doi.org/10.3390/app142210245.
Full textEliasson, C., M. Claybourn, and P. Matousek. "Deep Subsurface Raman Spectroscopy of Turbid Media by a Defocused Collection System." Applied Spectroscopy 61, no. 10 (2007): 1123–27. http://dx.doi.org/10.1366/000370207782217770.
Full textNakashima, Shinichi, and Takeshi Mitani. "Characterization of SiC Crystals by Using Deep UV Excitation Raman Spectroscopy." Materials Science Forum 527-529 (October 2006): 333–38. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.333.
Full textOrlando, Andrea, Filippo Franceschini, Cristian Muscas, et al. "A Comprehensive Review on Raman Spectroscopy Applications." Chemosensors 9, no. 9 (2021): 262. http://dx.doi.org/10.3390/chemosensors9090262.
Full textGhita, Adrian, Pavel Matousek, and Nicholas Stone. "Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy." Analyst 141, no. 20 (2016): 5738–46. http://dx.doi.org/10.1039/c6an00490c.
Full textHufziger, Kyle T., Sergei V. Bykov, and Sanford A. Asher. "Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection." Applied Spectroscopy 71, no. 2 (2016): 173–85. http://dx.doi.org/10.1177/0003702816680002.
Full textHe, Jiongheng, Rigui Zhou, Pengju Ren, Yaochong Li, and Shengjun Xiong. "RepDwNet: Lightweight Deep Learning Model for Special Biological Blood Raman Spectra Analysis." Chemosensors 12, no. 2 (2024): 29. http://dx.doi.org/10.3390/chemosensors12020029.
Full textWalther, Anders Runge, Morten Østergaard Andersen, Christine Kamstrup Dam, Frederikke Karlsson, and Martin Aage Barsøe Hedegaard. "Simple Defocused Fiber Optic Volume Probe for Subsurface Raman Spectroscopy in Turbid Media." Applied Spectroscopy 74, no. 1 (2019): 88–96. http://dx.doi.org/10.1177/0003702819873933.
Full textKozu, Tomomi, Makoto Yamaguchi, Masayuki Fujitsuka, Olga Milikofu, and Ken Nishida. "Residual Stress Analysis of Indentation on 4H-SiC by Deep-Ultraviolet Excited Raman Spectroscopy." Materials Science Forum 821-823 (June 2015): 233–36. http://dx.doi.org/10.4028/www.scientific.net/msf.821-823.233.
Full textVardaki, Martha Z., Konstantinos Seretis, Georgios Gaitanis, Ioannis D. Bassukas, and Nikolaos Kourkoumelis. "Assessment of Skin Deep Layer Biochemical Profile Using Spatially Offset Raman Spectroscopy." Applied Sciences 11, no. 20 (2021): 9498. http://dx.doi.org/10.3390/app11209498.
Full textMelnik N. N., Tregulov V. V., Litvinov V. G., et al. "Current Transfer in a Semiconductor Structure with a Porous Silicon Film formed by Metal-Stimulated Etching." Semiconductors 56, no. 4 (2022): 283. http://dx.doi.org/10.21883/sc.2022.04.53235.9782.
Full textLi, Lianfu, Zengfeng Du, Xin Zhang, et al. "In Situ Raman Spectral Characteristics of Carbon Dioxide in a Deep-Sea Simulator of Extreme Environments Reaching 300 ℃ and 30 MPa." Applied Spectroscopy 72, no. 1 (2017): 48–59. http://dx.doi.org/10.1177/0003702817722820.
Full textGardner, Benjamin, Pavel Matousek, and Nick Stone. "Direct monitoring of light mediated hyperthermia induced within mammalian tissues using surface enhanced spatially offset Raman spectroscopy (T-SESORS)." Analyst 144, no. 11 (2019): 3552–55. http://dx.doi.org/10.1039/c8an02466a.
Full textKouri, Maria Anthi, Maria Karnachoriti, Ellas Spyratou, et al. "Shedding Light on Colorectal Cancer: An In Vivo Raman Spectroscopy Approach Combined with Deep Learning Analysis." International Journal of Molecular Sciences 24, no. 23 (2023): 16582. http://dx.doi.org/10.3390/ijms242316582.
Full textBlake, Nathan, Riana Gaifulina, Lewis D. Griffin, Ian M. Bell, and Geraint M. H. Thomas. "Machine Learning of Raman Spectroscopy Data for Classifying Cancers: A Review of the Recent Literature." Diagnostics 12, no. 6 (2022): 1491. http://dx.doi.org/10.3390/diagnostics12061491.
Full textBalakrishnan, Gurusamy, Ying Hu, Steen Brøndsted Nielsen, and Thomas G. Spiro. "Tunable kHz Deep Ultraviolet (193–210 nm) Laser for Raman Applications." Applied Spectroscopy 59, no. 6 (2005): 776–81. http://dx.doi.org/10.1366/0003702054280702.
Full textYan, Ping, Qian Liu, Hui Zhang, Luchun Qiu, Hao Bin Wu, and Xin-Yao Yu. "Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction." Journal of Materials Chemistry A 9, no. 28 (2021): 15586–94. http://dx.doi.org/10.1039/d1ta03362j.
Full textHara, Ellie. "Detecting organics with Deep UV Raman and fluorescence spectroscopy." Nature Reviews Earth & Environment 3, no. 3 (2022): 164. http://dx.doi.org/10.1038/s43017-022-00275-y.
Full textZHang, Xin, William J. Kirkwood, Peter M. Walz, Edward T. Peltzer, and Peter G. Brewer. "A Review of Advances in Deep-Ocean Raman Spectroscopy." Applied Spectroscopy 66, no. 3 (2012): 237–49. http://dx.doi.org/10.1366/11-06539.
Full textMatousek, Pavel, and Nicholas Stone. "Emerging concepts in deep Raman spectroscopy of biological tissue." Analyst 134, no. 6 (2009): 1058. http://dx.doi.org/10.1039/b821100k.
Full textLi, J. H., W. T. Li, and G. H. Zhang. "Detection of nasopharyngeal carcinoma using deep NIR Raman spectroscopy." Laser Physics 24, no. 12 (2014): 125601. http://dx.doi.org/10.1088/1054-660x/24/12/125601.
Full textPasteris, Jill Dill, Brigitte Wopenka, John J. Freeman, et al. "Raman Spectroscopy in the Deep Ocean: Successes and Challenges." Applied Spectroscopy 58, no. 7 (2004): 195A—208A. http://dx.doi.org/10.1366/0003702041389319.
Full textHuang, Cheng-Yen, Gurusamy Balakrishnan, and Thomas G. Spiro. "Protein secondary structure from deep-UV resonance Raman spectroscopy." Journal of Raman Spectroscopy 37, no. 1-3 (2006): 277–82. http://dx.doi.org/10.1002/jrs.1440.
Full textKuramochi, Hikaru, Tomotsumi Fujisawa, Satoshi Takeuchi, and Tahei Tahara. "Broadband stimulated Raman spectroscopy in the deep ultraviolet region." Chemical Physics Letters 683 (September 2017): 543–46. http://dx.doi.org/10.1016/j.cplett.2017.02.015.
Full textTroyanova-Wood, M. A., G. I. Petrov, and V. V. Yakovlev. "Simple and inexpensive instrument for deep-UV Raman spectroscopy." Journal of Raman Spectroscopy 44, no. 12 (2013): 1789–91. http://dx.doi.org/10.1002/jrs.4394.
Full textTaguchi, Atsushi, Norihiko Hayazawa, Kentaro Furusawa, Hidekazu Ishitobi, and Satoshi Kawata. "Deep-UV tip-enhanced Raman scattering." Journal of Raman Spectroscopy 40, no. 9 (2009): 1324–30. http://dx.doi.org/10.1002/jrs.2287.
Full textAriunbold, Gombojav O., Bryan Semon, Supriya Nagpal, and Prakash Adhikari. "Coherent Anti-Stokes–Stokes Raman Cross-Correlation Spectroscopy: Asymmetric Frequency Shifts in Hydrogen-Bonded Pyridine-Water Complexes." Applied Spectroscopy 73, no. 9 (2019): 1099–106. http://dx.doi.org/10.1177/0003702819857771.
Full textHsieh, Yu-Li, Wen-Shao Chen, Liann-Be Chang, et al. "Deep Etched Gallium Nitride Waveguide for Raman Spectroscopic Applications." Crystals 9, no. 3 (2019): 176. http://dx.doi.org/10.3390/cryst9030176.
Full textElderderi, Suha, Laura Wils, Charlotte Leman-Loubière, et al. "In Situ Water Quantification in Natural Deep Eutectic Solvents Using Portable Raman Spectroscopy." Molecules 26, no. 18 (2021): 5488. http://dx.doi.org/10.3390/molecules26185488.
Full textBodnar, Robert J., and Maria Luce Frezzotti. "Microscale Chemistry: Raman Analysis of Fluid and Melt Inclusions." Elements 16, no. 2 (2020): 93–98. http://dx.doi.org/10.2138/gselements.16.2.93.
Full textXue, Yingchao, and Hui Jiang. "Monitoring of Chlorpyrifos Residues in Corn Oil Based on Raman Spectral Deep-Learning Model." Foods 12, no. 12 (2023): 2402. http://dx.doi.org/10.3390/foods12122402.
Full textLiu, Yiheng, Changqing Liu, Yanqing Xin, Ping Liu, Ayang Xiao, and Zongcheng Ling. "A Signal-Based Auto-Focusing Method Available for Raman Spectroscopy Acquisitions in Deep Space Exploration." Remote Sensing 16, no. 5 (2024): 820. http://dx.doi.org/10.3390/rs16050820.
Full textKajendirarajah, Usant, María Olivia Avilés, and François Lagugné-Labarthet. "Deciphering tip-enhanced Raman imaging of carbon nanotubes with deep learning neural networks." Physical Chemistry Chemical Physics 22, no. 32 (2020): 17857–66. http://dx.doi.org/10.1039/d0cp02950e.
Full textRahman, Md Hasan-Ur, Rabbi Sikder, Manoj Tripathi, et al. "Machine Learning-Assisted Raman Spectroscopy and SERS for Bacterial Pathogen Detection: Clinical, Food Safety, and Environmental Applications." Chemosensors 12, no. 7 (2024): 140. http://dx.doi.org/10.3390/chemosensors12070140.
Full textFan, Xiaqiong, Wen Ming, Huitao Zeng, Zhimin Zhang, and Hongmei Lu. "Deep learning-based component identification for the Raman spectra of mixtures." Analyst 144, no. 5 (2019): 1789–98. http://dx.doi.org/10.1039/c8an02212g.
Full textTuschel, David D., Aleksandr V. Mikhonin, Brian E. Lemoff, and Sanford A. Asher. "Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection." Applied Spectroscopy 64, no. 4 (2010): 425–32. http://dx.doi.org/10.1366/000370210791114194.
Full textLun, Zhichen, Xiaohong Wu, Jiajun Dong, and Bin Wu. "Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers." Foods 14, no. 13 (2025): 2350. https://doi.org/10.3390/foods14132350.
Full textVardaki, Martha Z., Benjamin Gardner, Nicholas Stone, and Pavel Matousek. "Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties." Analyst 140, no. 15 (2015): 5112–19. http://dx.doi.org/10.1039/c5an01118c.
Full textJalil, Muhammad Arif Bin. "A Review on the Helium Silver Laser." International Journal for Research in Applied Science and Engineering Technology 12, no. 12 (2024): 1344–48. https://doi.org/10.22214/ijraset.2024.65904.
Full textLiao, Chien-Sheng, Pu Wang, Ping Wang, et al. "Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons." Science Advances 1, no. 9 (2015): e1500738. http://dx.doi.org/10.1126/sciadv.1500738.
Full textMatousek, Pavel, and Nicholas Stone. "Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring." Chemical Society Reviews 45, no. 7 (2016): 1794–802. http://dx.doi.org/10.1039/c5cs00466g.
Full text