Academic literature on the topic 'Deep saline aquifers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep saline aquifers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep saline aquifers"
Zahid, Anwar, Farhana Islam, M. Rashidul Hassan, Kamrul Islam, and Nur Ahmed. "Analysis of Aquifer Pumping Test Data to Determine Deep Groundwater Security in Southeastern Bangladesh." Journal of Natural Resources and Development 8 (December 1, 2018): 125–43. http://dx.doi.org/10.5027/jnrd.v8i0.12.
Full textDangi, Shankar Lal, Shruti Malik, Pijus Makauskas, Vilte Karliute, Ravi Sharma, and Mayur Pal. "Assessment of CO2 leakage using mechanistic modelling approach for CO2 injection in deep saline aquifer of Lithuanian basin in presence of fault and fractures." Baltic Carbon Forum 2 (October 13, 2023): 15–16. http://dx.doi.org/10.21595/bcf.2023.23619.
Full textKhanal, Aaditya, and Md Fahim Shahriar. "Physics-Based Proxy Modeling of CO2 Sequestration in Deep Saline Aquifers." Energies 15, no. 12 (June 14, 2022): 4350. http://dx.doi.org/10.3390/en15124350.
Full textYang, Xiao Yi, Yan Feng Liu, and Jian Jun Wang. "CO2 Storage Capacity Assessment of Deep Saline Aquifer in Central Depression of Songliao Basin." Advanced Materials Research 734-737 (August 2013): 1905–9. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.1905.
Full textWang, Kai, Weifeng Lv, Zemin Ji, Ninghong Jia, Shumin Ni, Wen Jiang, Jinhong Cao, and Moxi Zhang. "A Study on the Dissolution Behavior of Typical Minerals in Continental Deposited Reservoirs during CO2 Geological Storage." Energies 16, no. 22 (November 13, 2023): 7560. http://dx.doi.org/10.3390/en16227560.
Full textKatayama, Taiki, Reo Ikawa, Masaru Koshigai, and Susumu Sakata. "Microbial methane formation in deep aquifers associated with the sediment burial history at a coastal site." Biogeosciences 20, no. 24 (December 21, 2023): 5199–210. http://dx.doi.org/10.5194/bg-20-5199-2023.
Full textCao, Shuang Cindy, Jong Won Jung, and Jong Wan Hu. "CO2-Brine Displacement in Geological CO2 Sequestration: Microfluidic Flow Model Study." Applied Mechanics and Materials 752-753 (April 2015): 1210–13. http://dx.doi.org/10.4028/www.scientific.net/amm.752-753.1210.
Full textKurtzman, D., S. Baram, and O. Dahan. "Soil–aquifer phenomena affecting groundwater under vertisols: a review." Hydrology and Earth System Sciences 20, no. 1 (January 15, 2016): 1–12. http://dx.doi.org/10.5194/hess-20-1-2016.
Full textKurtzman, D., S. Baram, and O. Dahan. "Soil–aquifer phenomena affecting groundwater under vertisols: a review." Hydrology and Earth System Sciences Discussions 12, no. 9 (September 21, 2015): 9571–98. http://dx.doi.org/10.5194/hessd-12-9571-2015.
Full textRayward-Smith, W. J., and Andrew W. Woods. "Some implications of cold CO2injection into deep saline aquifers." Geophysical Research Letters 38, no. 6 (March 2011): n/a. http://dx.doi.org/10.1029/2010gl046412.
Full textDissertations / Theses on the topic "Deep saline aquifers"
Khudaida, Kamal. "Modelling CO2 sequestration in deep saline aquifers." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/21104.
Full textIzgec, Omer. "Experimental And Numarical Investigation Of Carbon Dioxide Sequestration In Deep Saline Aquifers." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606213/index.pdf.
Full textrock contact and the amount of area contacted by CO2 seems to have a more pronounced effect compared to rate effect. The experiments were modeled using a multi-phase, non-isothermal commercial simulator where solution and deposition of calcite were considered by the means of chemical reactions. The calibrated model was then used to analyze field scale injections and to model the potential CO2 sequestration capacity of a hypothetical carbonate aquifer formation. It was observed that solubility and hydrodynamic storage of CO2 is larger compared to mineral trapping.
Vilarrasa, Riaño Víctor. "Thermo-hydro-mechanical impacts of carbon dioxide (CO2) injection in deep saline aquifers." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/96669.
Full textEls processos termo-hidro-mecànics relacionats amb l’emmagatzematge geològic de carboni han de ser entesos i quantificats per tal de demostrar a l’opinió pública de que la injecció de diòxid de carboni (CO2) és segura. Aquesta Tesi té com a objectiu millorar aquest coneixement mitjançant el desenvolupament de mètodes per a: (1) avaluar l'evolució tant de la geometria del plomall de CO2 com de la pressió dels fluids; (2) definir un assaig de camp que permeti caracteritzar la pressió d'injecció màxima sostenible i els paràmetres hidromecànics de les roques segell i magatzem; i (3) proposar un nou concepte d'injecció que és energèticament eficient i que millora l'estabilitat de la roca segell en la majoria d’escenaris geològics a causa d'efectes termo-mecànics. Primer, investiguem numèricament i analítica els efectes de la variabilitat de la densitat i viscositat del CO2 en la posició de la interfície entre la fase rica en CO2 i la salmorra de la formació. Introduïm una correcció per tal de tenir en compte aquesta variabilitat en les solucions analítiques actuals. Trobem que l'error produït en la posició de la interfície en menysprear la compressibilitat del CO2 és relativament petit quan dominen les forces viscoses. Malgrat això, l’error pot ser significatiu quan dominen les forces de gravetat, la qual cosa té lloc per a temps i/o distàncies llargues d'injecció. Segon, desenvolupem una solució semianalítica per a l'evolució de la geometria del plomall de CO2 i la pressió de fluid, tenint en compte tant la compressibilitat del CO2 com els efectes de flotació dins del pou. Formulem el problema en termes d'un potencial de CO2 que facilita la solució en capes horitzontals, en les quals hem discretitzat l'aqüífer. El CO2 avança inicialment per la porció superior de l'aqüífer. Però a mesura que augmenta la pressió de CO2, el plomall de CO2 no només creix lateralment, sinó que també ho fa cap avall, encara que no té perquè arribar a ocupar tot el gruix de l'aqüífer. Tant la interfície CO2-salmorra com la pressió de fluid mostren una bona comparació amb les simulacions numèriques. En tercer lloc, estudiem possibles mecanismes de trencament, que podrien arribar a produir fugues de CO2, en un sistema aqüífer-segell amb simetria radial, utilitzant un model viscoplàstic. Les simulacions il·lustren que, depenent de les condicions de contorn, el moment més desfavorable té lloc a l'inici de la injecció. Tot i això, si els contorns són poc permeables, la pressió de fluid continua augmentant en tot l'aqüífer, la qual cosa podria arribar a comprometre l'estabilitat de la roca segell a llarg termini. Per a avaluar aquests problemes, proposem un assaig de caracterització hidromecànica a escala de camp per a estimar les propietats hidromecàniques de les roques segell i magatzem. Obtenim corbes per a la sobrepressió i el desplaçament vertical en funció del terme de la deformació volumètrica obtingut de l'anàlisi adimensional de les equacions hidromecàniques. Ajustant les mesures de camp a aquestes corbes es poden estimar els valors del mòdul de Young i el coeficient de Poisson de l'aqüífer i del segell. Els resultats indiquen que la microsismicitat induïda té més probabilitats d'ocórrer en l'aqüífer que en el segell. L'inici de la microsismicitat en el segell marca la pressió d'injecció màxima sostenible per tal d’assegurar un emmagatzematge permanent de CO2 segur. Finalment, analitzem l'evolució termodinàmica del CO2 i la resposta termo-hidromecànica de les roques segell i magatzem a la injecció de CO2 líquid (fred). Trobem que injectar CO2 en estat líquid és energèticament més eficient perquè al ser més dens que el CO2 supercrític, requereix una pressió menor al cap de pou per a una pressió donada a l’aqüífer. De fet, aquesta pressió també és menor a l’aqüífer perquè es desplaça un volum menor de fluid. La disminució de temperatura a l'entorn del pou indueix una reducció de tensions a causa de la contracció tèrmica del medi. Això pot produir lliscament de fractures existents en aqüífers formats per roques rígides sota contrastos de temperatura grans, la qual cosa podria incrementar la injectivitat de la roca magatzem. D’altra banda, l'estabilitat mecànica de la roca segell millora quan la tensió principal màxima és la vertical.
Coupled thermo-hydro-mechanical (THM) effects related to geologic carbon storage should be understood and quantified in order to convince the public that carbon dioxide (CO2) injection is safe. This Thesis aims to improve such understanding by developing methods to: evaluate the CO2 plume geometry and fluid pressure evolution; define a field test to characterize the maximum sustainable injection pressure and the hydromechanical (HM) properties of the aquifer and the caprock; and propose an energy efficient injection concept that improves the caprock mechanical stability in most geological settings due to thermo-mechanical effects. First, we investigate numerically and analytically the effect of CO2 density and viscosity variability on the position of the interface between the CO2-rich phase and the formation brine. We introduce a correction to account for this variability in current analytical solutions. We find that the error in the interface position caused by neglecting CO2 compressibility is relatively small when viscous forces dominate. However, it can become significant when gravity forces dominate, which is likely to occur at late times and/or far from the injection well. Second, we develop a semianalytical solution for the CO2 plume geometry and fluid pressure evolution, accounting for CO2 compressibility and buoyancy effects in the injection well. We formulate the problem in terms of a CO2 potential that facilitates solution in horizontal layers, in which we discretize the aquifer. We find that when a prescribed CO2 mass flow rate is injected, CO2 advances initially through the top portion of the aquifer. As CO2 pressure builds up, CO2 advances not only laterally, but also vertically downwards. However, the CO2 plume does not necessarily occupy the whole thickness of the aquifer. Both CO2 plume position and fluid pressure compare well with numerical simulations. Third, we study potential failure mechanisms, which could lead to CO2 leakage, in an axysimmetric horizontal aquifercaprock system, using a viscoplastic approach. Simulations illustrate that, depending on boundary conditions, the least favorable situation may occur at the beginning of injection. However, in the presence of low-permeability boundaries, fluid pressure continues to rise in the whole aquifer, which may compromise the caprock integrity in the long-term. Next, we propose a HM characterization test to estimate the HM properties of the aquifer and caprock at the field scale. We obtain curves for overpressure and vertical displacement as a function of the volumetric strain term obtained from a dimensional analysis of the HM equations. We can then estimate the values of the Young¿s modulus and the Poisson ratio of the aquifer and the caprock by introducing field measurements in these plots. Results indicate that induced microseismicity is more likely to occur in the aquifer than in the caprock. The onset of microseismicity in the caprock can be used to define the maximum sustainable injection pressure to ensure a safe permanent CO2 storage. Finally, we analyze the thermodynamic evolution of CO2 and the THM response of the formation and the caprock to liquid (cold) CO2 injection. We find that injecting CO2 in liquid state is energetically more efficient than in supercritical state because liquid CO2 is denser than supercritical CO2. Thus, the pressure required at the wellhead is much lower for liquid than for gas or supercritical injection. In fact, the overpressure required at the aquifer is also smaller because a smaller fluid volume is displaced. The temperature decrease close to the injection well induces a stress reduction due to thermal contraction of the media. This can lead to shear slip of pre-existing fractures in the aquifer for large temperature contrasts in stiff rocks, which could enhance injectivity. In contrast, the mechanical stability of the caprock is improved in stress regimes where the maximum principal stress is the vertical.
Tian, Liang. "CO2 storage in deep saline aquifers : Models for geological heterogeneity and large domains." Doctoral thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-279382.
Full textDA, COL FEDERICO. "Modelling Techniques to Monitor the Injection of Carbon Dioxide in Deep Saline Aquifers." Doctoral thesis, Università degli Studi di Trieste, 2017. http://hdl.handle.net/11368/2908149.
Full textOzgur, Emre. "Assessment Of Diffusive And Convective Mechanisms During Carbon Dioxide Sequestration Into Deep Saline Aquifers." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12608014/index.pdf.
Full texthowever, in convection dominant process dissolution of CO2 in aquifer decreased with porosity increase. The increase in permeability accelerated the dissolution of CO2 in aquifer significantly, which was due to increasing velocity. The dissolution process in the aquifer realized faster for the aquifers with lower dispersivity. The results of convective dominant mechanism in aquifers with 1md and 10 md permeability values were so close to that of diffusion dominated system. For the aquifer having permeability higher than 10 md, the convection mechanism began to dominate gradually and it became fully convection dominated system for 50 md and higher permeability values. These results were also verified with calculated Rayleigh number and mixing zone lengths. The mixing zone length increased with increase in porosity and time in diffusion dominated system. However, the mixing zone length decreased with increase in porosity and it increased with increase in dispersivity and permeability higher than 10 md in convection dominated system.
Anbar, Sultan. "Development Of A Predictive Model For Carbon Dioxide Sequestration In Deep Saline Carbonate Aquifers." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610692/index.pdf.
Full textNdjaka, Ange. "THERMOPHYSICAL PROCESSES AND REACTIVE TRANSPORT MECHANISMS INDUCED BY CO2 INJECTION IN DEEP SALINE AQUIFERS." Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3003.
Full textCO2 storage in deep saline aquifers has been recognised as one of the most promising ways to mitigate atmospheric CO2 emissions and thus respond to the challenges of climate change. However, the injection of CO2 into the porous medium considerabely disturbs its thermodynamic equilibrium. The near-well injection zone is particularly impacted with a strong geochemical reactivity associated with intense heat exchanges. This has a major impact on injectivity of the reservoir and the integrity of the storage. In addition to these effects, there is the added complexity of the presence of two immiscible phases: brine (wetting fluid) and CO2 (non-wetting fluid). These effects lead to highly coupled Thermo-Hydro-Mechanical-Chemical (THMC) processes, whose interpretations have not yet been completed nor formally implemented into the numerical models.This thesis work, combining experimental measurements and numerical modelling, focuses on the study of the coupling between the thermal gradients and the diffusive reactive transport processes taking place in the deep saline aquifers, particularly in the near-well injection zone. We studied the exchanges between a cold anhydrous CO2 phase flowing in high permeability zones, and a hot salty aqueous phase trapped in the porosity of the rock. The strategy of the study starts with a simple approach in a free medium without CO2 flow, in order to study the reactivity of saline solutions of different chemical compositions, and to evaluate the impact of a thermal gradient on this reaction network.We have developed an experimental cell that allow to superimpose 2 to 3 layers of solution of different concentration and chemical composition. The analysis of the light scattered by the non-equilibrium fluctuations of concentration and temperature allows to obtain the diffusion coefficients of salts in water. Our results are in good agreement with literature values. Regarding the study of diffusive reactive transport, the analysis of the contrast of the images allowed us to highlight the fact that the precipitation of minerals, obtained by superimposing two aqueous layers of reactive, is accompanied by a convective instability that fades with time. Numerical modelling of the experimental results with PHREEQC using a heterogeneous multicomponent diffusion approach has allowed us to account for these convective instabilities. Different temperature gradients were applied to the reactive system, while keeping a mean temperature of 25 °C. The experimental observations and numerical interpretations swhow that the temperature gradient has no significant influence on the behaviour of the system. Subsequently, we numerically studied the desiccation process (evaporation of water) at the interface between a brine trapped in the rock porosity and the CO2 flowing in a draining pore structure, simulating the conditions of the Dogger aquifer of the Paris basin. A model coupling the evaporation of water in the CO2 stream and the heterogeneous multicomponent diffusion of salts predicts the appearance of a mineral assemblage at the evaporation front, mainly composed by halite and anhydrite. Modelling this phenomenon at the reservoir scale would requires taking into account the evaporation rate as a function of the CO2 injection rate and the change in porosity at the interface.This thesis work has made it possible to highlight several physicochemical, thermophysical and diffusive transport phenomena at phase interfaces. This opens up new perspectives for improving numerical approaches and large-scale modelling, in particular of near-well injection of CO2 and geological storage reservoirs, and supports future industrial developments and technologies for the ecological transition
Jacob, Ruth E. "PROCESSES RELATED TO HYDRODYNAMIC AND MINERAL TRAPPING FOR THE PURPOSE OF CARBON STORAGE IN DEEP SALINE AQUIFERS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1450735566.
Full textSzulczewski, Michael Lawrence. "Storage capacity and injection rate estimates for CO₂ sequestration in deep saline aquifers in the conterminous United States." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/53087.
Full textIncludes bibliographical references (p. 141-148).
A promising method to mitigate global warming is injecting CO₂ into deep saline aquifers. In order to ensure the safety of this method, it is necessary to understand how much CO₂ can be injected into an aquifer and at what rate. Since offsetting nationwide emissions requires storing very large quantities of CO₂, these properties must be understood at the large scale of geologic basins. In this work, we develop simple models of storage capacity and injection rate at the basin scale. We develop a storage capacity model that calculates how much CO₂ an aquifer can store based on how the plume of injected CO₂ migrates. We also develop an injection rate model that calculates the maximum rate at which CO₂ can be injected into an aquifer based on the pressure rise in the aquifer. We use these models to estimate storage capacities and maximum injection rates for a variety of reservoirs throughout the United States, and compare the results to predicted emissions from coal-burning power plants over the next twenty-five years and fifty years. Our results suggest that the United States has enough storage capacity to sequester all of the CO₂ emitted from coal-burning plants over the next 25 years. Furthermore, our results indicate that CO₂ can be sequestered at the same rate it is emitted for this time period without fracturing the aquifers. For emissions over the next 50 years, however, the results are less clear: while the United States will likely have enough capacity, maintaining sufficiently high injection rates could be problematic.
by Michael Lawrence Szulczewski.
S.M.
Books on the topic "Deep saline aquifers"
Wirojanagud, Prakob. Numerical modeling of regional ground-water flow in the Deep-Basin Brine aquifer of the Palo Duro Basin, Texas Panhandle. Austin, Tex: Bureau of the Economic Geology, University of Texas at Austin, 1986.
Find full textWarnecki, Marcin. Analysis of additional gas production possibility from deep saline aquifers in the process of CO2 sequestration. Instytut Nafty i Gazu - Państwowy Instytut Badawczy, 2016. http://dx.doi.org/10.18668/pn2016.211.
Full textPotential hazards to water resources along a test-flight path, 1952: Possible disposal of liquid waste in a deep saline aquifer, 1954; [and] Hydrologic aspects of a proposed burial ground, 1965. Reston, Va: U.S. Geological Survey, 1991.
Find full textBook chapters on the topic "Deep saline aquifers"
Shukla Potdar, Richa, and V. Vishal. "Trapping Mechanism of CO2 Storage in Deep Saline Aquifers: Brief Review." In Geologic Carbon Sequestration, 47–58. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27019-7_3.
Full textDinesh, P., M. R. Behera, P. G. Ranjith, and N. Muthu. "Application of an Efficient Numerical Model for CO2 Sequestration in Deep Saline Aquifers." In Lecture Notes in Civil Engineering, 685–708. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3119-0_45.
Full textRosenzweig, Ravid, Ran Calvo, and Uri Shavit. "The Use of Saline Aquifers as a Target for Deep Geologic CO2 Storage in Israel." In Springer Hydrogeology, 473–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51148-7_23.
Full textKinzelbach, Wolfgang, Haijing Wang, Yu Li, Lu Wang, and Ning Li. "Way Forward." In Springer Water, 137–54. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5843-3_5.
Full textXie, Ze-hao, Lie-hui Zhang, Yu-long Zhao, Cheng Cao, Long-xin Li, and De-ping Zhang. "CO2 Storage in Deep Saline Aquifer Injection Types, Well Placement and Well Control Co-optimization." In Springer Series in Geomechanics and Geoengineering, 434–46. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0268-8_34.
Full textSinha, Ranjan, and Ashok Kumar. "Characterization of a Deep Saline Aquifer Using Oil Exploration Data in an Arid Region of Rajasthan, India." In Ground Water Development - Issues and Sustainable Solutions, 69–83. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1771-2_4.
Full textLuther, Emmanuel E., Seyed M. Shariatipour, Michael C. Dallaston, and Ran Holtzman. "Solute Driven Transient Convection in Layered Porous Media." In Springer Proceedings in Energy, 3–9. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_1.
Full textPilla, Giorgio, Patrizio Torrese, and Marica Bersan. "The Uprising of Deep Saline Paleo-Waters into the Oltrepò Pavese Aquifer (Northern Italy): Application of Hydro-Chemical and Shallow Geophysical Surveys." In Engineering Geology for Society and Territory - Volume 3, 393–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09054-2_82.
Full textJi, Xiaoyan, and Chen Zhu. "CO2 Storage in Deep Saline Aquifers." In Novel Materials for Carbon Dioxide Mitigation Technology, 299–332. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-444-63259-3.00010-0.
Full textKumar, Ajitabh, Myeong H. Noh, Gary A. Pope, Kamy Sepehrnoori, Steven L. Bryant, and Larry W. Lake. "Simulating CO2 Storage in Deep Saline Aquifers." In Carbon Dioxide Capture for Storage in Deep Geologic Formations, 877–96. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044570-0/50140-9.
Full textConference papers on the topic "Deep saline aquifers"
Alzayer, Hassan, Tareq Zahrani, and Ahmed Shubbar. "Modeling CO2 Sequestration in Deep Saline Aquifers – Best Practices." In International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22423-ea.
Full textEleoni, M., J. Dredge, Y. De Boer, K. Mansour, A. Ismail, R. ElSayed, I. Merghany, et al. "Unlocking Carbon Capture & Sequestration in Ultra Deep Saline Aquifers in the Western Desert of Egypt." In GOTECH. SPE, 2024. http://dx.doi.org/10.2118/219207-ms.
Full textKatterbauer, Klemens, Abdallah Al Shehri, Abdulaziz Qasim, and Ali Yousef. "Estimating Dynamical Mineral Dissolution for Co2 Injection Into Saline Aquifers Utilizing Deep Learning in the Ahuroa Saline Aquifer." In SPE Offshore Europe Conference & Exhibition. SPE, 2023. http://dx.doi.org/10.2118/215556-ms.
Full textKumar, A., M. Noh, G. A. Pope, K. Sepehrnoori, S. Bryant, and L. W. Lake. "Reservoir Simulation of CO2 Storage in Deep Saline Aquifers." In SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum Engineers, 2004. http://dx.doi.org/10.2118/89343-ms.
Full textAli Khan, Jawad, and Andreas Michael. "Mechanistic Modeling of Wellbore Integrity During CO2 Injection in Deep Saline Aquifers." In SPE International Conference and Exhibition on Formation Damage Control. SPE, 2024. http://dx.doi.org/10.2118/217873-ms.
Full textAndré, L. "Well Injectivity during CO2 Storage Operations in Deep Saline Aquifers." In First EAGE Workshop on Well Injectivity and Productivity in Carbonates. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201412023.
Full textPenigin, A., A. Ivanova, P. Grishin, D. Bakulin, T. Yunusov, A. Morkovkin, and A. Cheremisin. "Experimental Investigation of CO2 Storage Parameters for Deep Saline Aquifers." In SPE Conference at Oman Petroleum & Energy Show. SPE, 2024. http://dx.doi.org/10.2118/218823-ms.
Full textBenson, Sally M. "Multiphase Flow and Trapping of Carbon Dioxide in Deep Saline Aquifers." In Offshore Technology Conference. Offshore Technology Conference, 2008. http://dx.doi.org/10.4043/19244-ms.
Full textJi, Xiaoyan, Yuanhui Ji, and Chongwei Xiao. "Thermodynamic and Dynamic Investigation for CO2 Storage in Deep Saline Aquifers." In World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp11057652.
Full textMo, Sjur, Peter Zweigel, Erik G. B. Lindeberg, and Idar Akervoll. "Effect of Geologic Parameters on CO2 Storage in Deep Saline Aquifers." In SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/93952-ms.
Full textReports on the topic "Deep saline aquifers"
Mallick, Subhashis, and Vladimir Alvarado. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1158900.
Full textLindquist, W. Brent. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/948548.
Full textPeters, Catherine A. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers. Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1064444.
Full textXu, Tianfu, John A. Apps, and Karsten Pruess. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep saline arenaceous aquifers. Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/801952.
Full textCarter, T. R., C. E. Logan, J K Clark, H. A. J. Russell, E. H. Priebe, and S. Sun. A three-dimensional bedrock hydrostratigraphic model of southern Ontario. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331098.
Full textJean-Philippe Nicot, Renaud Bouroullec, Hugo Castellanos, Susan Hovorka, Srivatsan Lakshminarasimhan, and Jeffrey Paine. Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/901785.
Full textNguyen, Minh, and Philip H. Stauffer. Understanding CO2 Storage Into Deep Saline Aquifers at the Shenhua Site, Ordos Basin using Simulation-based Sensitivity Analysis. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1374288.
Full textStauffer, Philip H. Pre-feasibility Study to Identify Opportunities for Increasing CO2 Storage in Deep, Saline Aquifers by Active Aquifer Management and Treatment of Produced Water. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1154964.
Full textHarto, Christopher. Quantitative Assesment of Options for Managing Brines Extracted from Deep Saline Aquiflers used for Carbon Storage. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1155055.
Full text