Academic literature on the topic 'Deep subduction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep subduction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Deep subduction"

1

Porter, Katherine A., and William M. White. "Deep mantle subduction flux." Geochemistry, Geophysics, Geosystems 10, no. 12 (December 2009): n/a. http://dx.doi.org/10.1029/2009gc002656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pagé, Lilianne, and Keiko Hattori. "Abyssal Serpentinites: Transporting Halogens from Earth’s Surface to the Deep Mantle." Minerals 9, no. 1 (January 20, 2019): 61. http://dx.doi.org/10.3390/min9010061.

Full text
Abstract:
Serpentinized oceanic mantle lithosphere is considered an important carrier of water and fluid-mobile elements, including halogens, into subduction zones. Seafloor serpentinite compositions indicate Cl, Br and I are sourced from seawater and sedimentary pore fluids, while F may be derived from hydrothermal fluids. Overall, the heavy halogens are expelled from serpentinites during the lizardite–antigorite transition. Fluorine, on the other hand, appears to be retained or may be introduced from dehydrating sediments and/or igneous rocks during early subduction. Mass balance calculations indicate nearly all subducted F is kept in the subducting slab to ultrahigh-pressure conditions. Despite a loss of Cl, Br and I from serpentinites (and other lithologies) during early subduction, up to 15% of these elements are also retained in the deep slab. Based on a conservative estimate for serpentinite thickness of the metamorphosed slab (500 m), antigorite serpentinites comprise 37% of this residual Cl, 56% of Br and 50% of I, therefore making an important contribution to the transport of these elements to the deep mantle.
APA, Harvard, Vancouver, ISO, and other styles
3

Scambelluri, Marco, and Pascal Philippot. "Deep fluids in subduction zones." Lithos 55, no. 1-4 (January 2001): 213–27. http://dx.doi.org/10.1016/s0024-4937(00)00046-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Christensen, Ulrich. "Geodynamic models of deep subduction." Physics of the Earth and Planetary Interiors 127, no. 1-4 (December 2001): 25–34. http://dx.doi.org/10.1016/s0031-9201(01)00219-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wencai, Yang. "Analysis of deep intracontinental subduction." Episodes 23, no. 1 (March 1, 2000): 20–24. http://dx.doi.org/10.18814/epiiugs/2000/v23i1/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hodder, A. P. W. "Deep subduction and mantle heterogeneities." Tectonophysics 134, no. 4 (March 1987): 263–72. http://dx.doi.org/10.1016/0040-1951(87)90341-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Obara, Kazushige, and Takuya Nishimura. "Main Results from the Program Promotion Panel for Subduction-Zone Earthquakes." Journal of Disaster Research 15, no. 2 (March 20, 2020): 87–95. http://dx.doi.org/10.20965/jdr.2020.p0087.

Full text
Abstract:
Understanding the occurrence mechanism of subduction zone earthquakes scientifically is intrinsically important for not only forecast of future subduction earthquakes but also disaster mitigation for strong ground motion and tsunami accompanied by large earthquakes. The Program Promotion Panel for Subduction-zone earthquakes mainly focused on interplate megathrust earthquakes in the subduction zones and the research activity included collection and classification of historical data on earthquake phenomena, clarifying the current earthquake phenomena and occurrence environment of earthquake sources, modelling earthquake phenomena, forecast of further earthquake activity based on monitoring crustal activity and precursory phenomena, and development of observation and analysis technique. Moreover, we studied the occurrence mechanism of intraslab earthquakes within the subducting oceanic plate. Five-year observational research program actually produced enormous results for deep understanding of subduction zone earthquakes phenomena, especially in terms of slow earthquakes, infrequent huge earthquakes, and intraslab earthquakes. This paper mainly introduces results from researches on these phenomena in subduction zones.
APA, Harvard, Vancouver, ISO, and other styles
8

Manning, Craig E., and Maria Luce Frezzotti. "Subduction-Zone Fluids." Elements 16, no. 6 (December 1, 2020): 395–400. http://dx.doi.org/10.2138/gselements.16.6.395.

Full text
Abstract:
Fluids are essential to the physical and chemical processes in subduction zones. Two types of subduction-zone fluids can be distinguished. First, shallow fluids, which are relatively dilute and water rich and that have properties that vary between subduction zones depending on the local thermal regime. Second, deep fluids, which possess higher proportions of dissolved silicate, salts and non-polar gases relative to water content, and have properties that are broadly similar in most subduction systems, regardless of the local thermal structure. We review key physical and chemical properties of fluids in two key subduction-zone contexts—along the slab top and beneath the volcanic front—to illustrate the distinct properties of shallow and deep subduction-zone fluids.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Jianbo. "Accretionary complex: Geological records from oceanic subduction to continental deep subduction." Science China Earth Sciences 63, no. 12 (August 24, 2020): 1868–83. http://dx.doi.org/10.1007/s11430-019-9652-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ZHENG, Yongfei. "Mineralogical evidence for continental deep subduction." Chinese Science Bulletin 48, no. 10 (2003): 952. http://dx.doi.org/10.1360/03wd0195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Deep subduction"

1

Karel, Patrick Robert. "Seismic Analysis of the Tonga Subduction Zone and Implications on the Thermo-Petrologic Evolution of Deep Subduction." Miami University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=miami1313773845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Klonowska, Iwona. "Deep subduction of the Seve Nappe Complex in the Scandinavian Caledonides." Doctoral thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-332525.

Full text
Abstract:
This thesis seeks to improve our understanding of the processes involved in continental collision zones, with a particular focus on subduction-exhumation. The main objective of this work has been to define the tectonometamorphic evolution of the deeply subducted Seve Nappe Complex (SNC) in the Scandinavian Caledonides. I utilize mineralogy, petrology and geochronology to constrain the P-T-t paths of the SNC rocks in Sweden. The research has focused on the high grade rocks of the SNC and resulted in the discovery of metamorphic diamonds within the gneisses in west-central Jämtland and southern Västerbotten. Microdiamonds provided evidence for the ultra-high pressure metamorphism (UHPM) and subduction of continental rocks to mantle depths. The UHPM in these rocks was confirmed by calculations of the P-T conditions. The UHPM is further recorded by eclogites and garnet pyroxenites from northern Jämtland and eclogites from Norrbotten. All these findings provide compelling evidence for regional UHPM of vast parts of the SNC (at least 400 km along the strike of this allochthonous unit). The SNC rocks followed nearly isothermal decompression paths and paragneisses have locally experienced partial melting during exhumation. Formation of the peculiar Ba- and Ti-enriched dark mica in the Tväråklumparna metasediments is related to the latter stage. In-situ monazite dating of the diamond-bearing gneisses from west-central Jämtland supports previous geochronological data inferring that the peak of metamorphism is probably Middle Ordovician and was followed by Early Silurian partial melting. The exact timing of the UHPM here still remains to be resolved. The Lu-Hf garnet and U-Pb zircon dating of eclogite and gneiss from northern Jämtland confirms the Middle Ordovician age of the UHP-HP metamorphism of the SNC rocks. The chemical dating of monazite from the Marsfjället gneiss suggests an earlier UHP history of the Seve rocks in southern Västerbotten as a post-UHP uplift is dated to ca. 470 Ma. Based on the P-T-t data obtained in this thesis, particularly on the evidence for Middle Ordovician UHPM and subsequent Silurian exhumation, a new tectonic model for the Scandinavian Caledonides has been proposed. The outcomes of this thesis therefore improve our understanding of the tectonometamorphic history of the Caledonides.
APA, Harvard, Vancouver, ISO, and other styles
3

Castle, John C. "Imaging mid-mantle discontinuities : implications for mantle chemistry, dynamics, rheology, and deep earthquakes /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/6809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yoshida, Kenta. "Deep fluid characteristics in the subduction zone: A window from metamorphic quartz veins." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bellew, Glen M. "Consolidation properties, stress history, and modeling of pore pressures for deep sea sediments at the Nankai Trough /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1421111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seccia, Danilo <1980&gt. "Deep geometry of subduction below the Andean belt of Colombia as revealed by seismic tomography." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4290/.

Full text
Abstract:
In this study new tomographic models of Colombia were calculated. I used the seismicity recorded by the Colombian seismic network during the period 2006-2009. In this time period, the improvement of the seismic network yields more stable hypocentral results with respect to older data set and allows to compute new 3D Vp and Vp/Vs models. The final dataset consists of 10813 P- and 8614 S-arrival times associated to 1405 earthquakes. Tests with synthetic data and resolution analysis indicate that velocity models are well constrained in central, western and southwestern Colombia to a depth of 160 km; the resolution is poor in the northern Colombia and close to Venezuela due to a lack of seismic stations and seismicity. The tomographic models and the relocated seismicity indicate the existence of E-SE subducting Nazca lithosphere beneath central and southern Colombia. The North-South changes in Wadati-Benioff zone, Vp & Vp/Vs pattern and volcanism, show that the downgoing plate is segmented by slab tears E-W directed, suggesting the presence of three sectors. Earthquakes in the northernmost sector represent most of the Colombian seimicity and concentrated on 100-170 km depth interval, beneath the Eastern Cordillera. Here a massive dehydration is inferred, resulting from a delay in the eclogitization of a thickened oceanic crust in a flat-subduction geometry. In this sector a cluster of intermediate-depth seismicity (Bucaramanga Nest) is present beneath the elbow of the Eastern Cordillera, interpreted as the result of massive and highly localized dehydration phenomenon caused by a hyper-hydrous oceanic crust. The central and southern sectors, although different in Vp pattern show, conversely, a continuous, steep and more homogeneous Wadati-Benioff zone with overlying volcanic areas. Here a "normalthickened" oceanic crust is inferred, allowing for a gradual and continuous metamorphic reactions to take place with depth, enabling the fluid migration towards the mantle wedge.
APA, Harvard, Vancouver, ISO, and other styles
7

Bloch, Wasja [Verfasser]. "In-situ Properties of the Subducting Nazca Slab: Constraints on the Deep Water Cycle and the Dynamics of Subduction from Seismological Observations / Wasja Bloch." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1140043447/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Holmberg, Johanna. "Pressure-Temperature-time Constraints on the Deep Subduction of the Seve Nappe Complex in Jämtland and southern Västerbotten, Scandinavian Caledonides." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-334822.

Full text
Abstract:
The Scandinavian Caledonides are defined by long transported thrust sheets emplaced in a nappe stratigraphic succession onto the Paleozoic Baltica platform, as a result of the collision between the paleo-continents Baltica and Laurentia. This Palaeozoic collisional orogen is nowadays exposed at mid-crustal levels, thus provides an excellent ground for in situ studies of mountain building processes. The complex nappe stack is subdivided into the Lower, Middle, Upper and Uppermost allochthons. The tectonostratigraphic highest unit in the Middle Allochthon is the Seve Nappe Complex (SNC), itself segmented into Lower, Middle and Upper Seve nappes, which all experienced different metamorphic evolution. The SNC is known for high pressure (HP) and ultrahigh pressure (UHP) subduction related rocks and the target for the Collisional Orogeny in the Scandinavian Caledonides (COSC-1) scientific drilling programme. The drilling resulted in a continuous c. 2.4 km long drill core through the Lower Seve Nappe, drilled in the eastern slope of Åreskutan Mt in west-central Jämtland. Above the COSC-1 profile lies the high grade Middle Seve Nappe (i.e. Åreskutan Nappe), which experienced UHP verified by the presence of microdiamonds in kyanite bearing gneisses. Recently, microdiamonds have also been discovered in gneisses (described here) further north close to Saxnäs in southern Västerbotten.     The metamorphic history of the Lower Seve Nappe is reconstructed based on material from the COSC-1 drill core, which also enables evaluation of the tectonometamorphic relationship to the overlying high grade Middle Seve Nappe. The Lower Seve Nappe comprise calc-silicates, calcareous gneisses and mylonitic micaschists and two tectonometamorphic events are recognized, prograde metamorphism (M1-D1) and retrograde thrust related metamorphism (M2-D2). Pressure and temperature (PT) conditions of the Lower Seve Nappe is constrained by state-of-the-art Quartz-in-Garnet (QuiG) barometry based on the shift in Raman band position of quartz inclusions in garnet, and Titanium-in-Quartz (TitaniQ) thermometry (satellite masters project). Supplementary conventional barometry based on phengite composition is applied where the use of QuiG is limited. The PT conditions of the M1-D1 is constrained to ~ 8-13 kbar, 525-695 o C and the M2-D2 event ~7-10 kbar, 450-550 o C. Conclusively, the Lower Seve Nappe was metamorphosed in upper greenschist-amphibolite to lower eclogite facies conditions at depths around 40-60 km and later suffered from greenschist overprint during thrusting. Lu-Hf garnet geochronology confirm that the overlying high-grade Åreskutan Nappe experienced UHP conditions around 450 Ma at depths around 120 km. Likewise, Ar-Ar dating implies peak conditions of the Lower Seve around 460-450 Ma. Moreover, their respective lower shear zones were active at the same time, c. 424 Ma. Conclusively, they were juxtaposed in their current tectonostratigraphic positions in a subduction channel in the early Silurian as a result of exhumation. Additionally, the microdiamond bearing kyanite-garnet gneisses from Saxnäs indeed show similarities to the Åreskutan gneisses, which strongly implies that the UHPM in this unit of the Scandinavian Caledonides is of regional character.
De Skandinaviska Kaledoniderna har bildats genom en kollision mellan de två kontinentalplattorna Baltika och Laurentia då Japetushavet stängdes omkring 400 miljoner år sedan. Till följd av de starkt komprimerande krafterna transporterades stora flak (skollor) av havsbottenberggrund och kontinentalskorpa hundratals kilometer upp på Baltikakontinenten. Skollorna är överskjutna på varandra omlott och benämns som undre, mellersta, övre och översta skollberggrunderna och återfinns idag i vår fjällkedja. Innan kollisionen med Laurentia krockade Baltika med en vulkanisk öbåge, vilket resulterade i att delar av Baltika pressades ner så pass djupt att bland annat diamanter bildades till följd av det ultrahöga trycket. Bevis för omvandling under extremt tryck finns i den så kallade Seveskollan som utgör en del av den mellersta skollberggrunden. Seveskollan är ett komplex av tre olika enheter, som utsatts för olika grad av metamorfos till följd av tryck och temperatur. Till följd av väder och vind under miljontals år så är fjällkedjan idag nederoderad och därav väl exponerad. Det gör att de Skandinaviska Kaledoniderna är en av världens bästa platser att studera och förstå bergskedjebildade processer. Av den anledningen borrade djupborrningsprojektet COSC-1 en cirka 2.4 km långt kärnborrhål genom den lägst belägna enheten i Seve komplexet (lägre Seveskollan) strax nedanför Åreskutan i Jämtlandsfjällen. Över COSC-1 profilen ligger den berggrund som tillhör den mellersta Seveskollan, även kallad Åreskutanskollan. Åreskutanskollan är en del av Baltika som utsattes för ultrahöga tryck, och i kyanitförande gnejser har diamanter inneslutna i det motståndskraftiga mineralet granat påträffats. Nyligen, längre norrut i Saxnäs (södra Västerbotten) har ytterligare diamantförande gnejser påträffats i den mellersta Seveskollan, som karaktäriseras i den här studien.      Material från COSC-1 borrkärnan har använts för att bestämma under vilka tryck och temperatur bergarterna i den lägre Seveskollan har metmorfoserats, för att förstå den tektoniska och metamorfa utvecklingen och även relationen till den överliggande högmetamorfa Åreskutanskollan. Trycket har bestämts genom den relativt oprövade metoden QuiG -barometri. Små kristaller av kvarts inneslutna i granat har analyserats med Raman spektroskopi och de fysikaliska parametrarna av kvarts och granat kan direkt översättas till tryck. Temperatur har erhållits genom det temperaturkänsliga ämnet titan i kvartsinneslutningarna. Resultatet visar att den lägre Seveskollan har genomgått minst två metamorfa faser genom tektonisk påverkan. Den första fasen varierar från övre grönskiffer-amfibolit till lägre eklogitfacies under tryck och temperatur av ca 8-13 kbar, 525-695 o C. Den andra fasen är associerad med överskjutning och skjuvning, vilket orsakade retrograd metamorfos i grönskifferfacies under lägre tryck och temperatur (ca 7-10 kbar, 450-550 o C). Datering baserat på radioaktivt sönderfall av lutetium till hafnium i granat fastställer att Åreskutanskollan utsattes för ultrahögt tryck för omkring 450 miljoner år sedan, samtidigt som lägre Seveskollan nådde metamorft klimax. Resultaten visar även att lägre och mellersta Seveskollorna skjuvades samtidigt, omkring 424 miljoner år sedan. Det betyder att de erhöll sina nuvarande tektonostratigrafiska positioner på stort djup innan överskjutningen på Baltika. Detaljerad petrografi påvisar att de diamantförande kyanit-och granatförande gnejserna från Saxnäs visar påtagliga likheter med Åreskutanskollans högtrycksgnejser. Det tyder på att berggrunden i Saxnäs kan kopplas samman med Åreskutanskollan och att ultrahögtrycksmetamorfos av den mellersta Seveskollan omfattar ett större område än vad som tidigare antagits.
APA, Harvard, Vancouver, ISO, and other styles
9

Mukti, Muhammad Ma'ruf. "Tectonic Evolution of the South Sumatra-Java Forearc System from Deep Seismic Reflection Data." Paris, Institut de physique du globe, 2013. http://www.theses.fr/2013GLOB1101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hammerschmidt, Sebastian B. [Verfasser], Achim [Akademischer Betreuer] Kopf, and Wolfgang [Akademischer Betreuer] Bach. "Monitoring of Deep Fluids in the Nankai Subduction Complex, SE offshore Japan / Sebastian B. Hammerschmidt. Gutachter: Achim Kopf ; Wolfgang Bach. Betreuer: Achim Kopf." Bremen : Staats- und Universitätsbibliothek Bremen, 2014. http://d-nb.info/1072226421/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Deep subduction"

1

Hale, Molnar Peter, ed. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Boulder, Colo: Geological Society of America, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Trask, Richard P. The subduction experiment: Cruise report R/V Oceanus : cruise number 240 Leg 3 : subduction 1 mooring deployment cruise, 17 June-5 July 1991. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stanley, William D. Progress report on U.S. Geological Survey-Department of Energy interagency agreement DE-A121-83MC20422-Task no. 4: Electromagnetic geophysics applied to sediment subduction and deep source gas. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stanley, William D. Progress report on U.S. Geological Survey-Department of Energy interagency agreement DE-A121-83MC20422-Task no. 4: Electromagnetic geophysics applied to sediment subduction and deep source gas. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stanley, William D. Progress report on U.S. Geological Survey-Department of Energy interagency agreement DE-A121-83MC20422-Task no. 4: Electromagnetic geophysics applied to sediment subduction and deep source gas. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stanley, William D. Progress report on U.S. Geological Survey-Department of Energy interagency agreement DE-A121-83MC20422-Task no. 4: Electromagnetic geophysics applied to sediment subduction and deep source gas. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stanley, William D. Progress report on U.S. Geological Survey-Department of Energy interagency agreement DE-A121-83MC20422-Task no. 4: Electromagnetic geophysics applied to sediment subduction and deep source gas. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geological Society of America, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

C, Rubie David, and Hilst, Robert Dirk van der, 1961-, eds. Processes and consequences of deep subduction. Amsterdam: Elsevier, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

R, Hacker Bradley, McClelland William C. 1957-, Liou J. G, and Geological Society of America, eds. Ultrahigh-pressure metamorphism: Deep continental subduction. Boulder, Colo: Geological Society of America, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Deep subduction"

1

Chen, Wang-Ping, Li-Ru Wu, and Mary Ann Glennon. "Characteristics of Multiple Ruptures During Large Deep-Focus Earthquakes." In Subduction Top to Bottom, 357–68. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm096p0357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Seno, Tetsuzo, and Yoshiko Yamanaka. "Double Seismic Zones, Compressional Deep Trench-Outer Rise Events, and Superplumes." In Subduction Top to Bottom, 347–55. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm096p0347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rüpke, Lars, Jason Phipps Morgan, and Jacqueline Eaby Dixon. "Implications of Subduction Rehydration for Earth's Deep Water Cycle." In Earth's Deep Water Cycle, 263–76. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/168gm20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stein, Seth, and Carol A. Stein. "Thermo-Mechanical Evolution of Oceanic Lithosphere: Implications for the Subduction Process and Deep Earthquakes." In Subduction Top to Bottom, 1–17. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm096p0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lawrence, Jesse F., and Michael E. Wysession. "Seismic Evidence for Subduction-Transported Water in the Lower Mantle." In Earth's Deep Water Cycle, 251–61. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/168gm19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Braunmiller, Jochen, Suzan Van Der Lee, and Lindsey Doermann. "Mantle Transition Zone Thickness in the Central South-American Subduction Zone." In Earth's Deep Water Cycle, 215–24. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/168gm16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tosi, Nicola, Petra Maierová, and David A. Yuen. "Influence of Variable Thermal Expansivity and Conductivity on Deep Subduction." In Geophysical Monograph Series, 115–33. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118888865.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iwamori, Hikaru, and Tomoeki Nakakuki. "Fluid Processes in Subduction Zones and Water Transport to the Deep Mantle." In Physics and Chemistry of the Deep Earth, 372–91. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118529492.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ichikawa, Hiroki, Kenji Kawai, Shinji Yamamoto, and Masanori Kameyama. "Effect of Water on Subduction of Continental Materials to the Deep Earth." In The Earth's Heterogeneous Mantle, 275–99. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15627-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

van der Hilst, Rob D., Sri Widiyantoro, Kenneth C. Creager, and Thomas J. McSweeney. "Deep subduction and aspherical variations in P-wavespeed at the base of Earth's mantle." In The Core‐Mantle Boundary Region, 5–20. Washington, D. C.: American Geophysical Union, 1998. http://dx.doi.org/10.1029/gd028p0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Deep subduction"

1

Behr, Whitney M., and Thorsten Becker. "DEEP SEDIMENT SUBDUCTION CONTROLS SUBDUCTION PLATE SPEEDS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jones, Rosie, Ray Burgess, Kristina Walowski, Tamsin A. Mather, and Christopher Ballentine. "The Subduction Recycling of Halogens: Insights from the Shallow and Deep Mantle." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Behr, Whitney M., Alissa Kotowski, and Kyle Ashley. "METAMORPHICALLY-INDUCED RHEOLOGICAL HETEROGENEITY AND THE DEEP TREMOR SOURCE IN SUBDUCTION ZONES." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-299672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kamei, R., R. G. Pratt, and T. Tsuji. "Waveform Tomography Imaging of Deep Crustal Faults - Application to Nankai Subduction Zone." In 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011. Netherlands: EAGE Publications BV, 2011. http://dx.doi.org/10.3997/2214-4609.20149629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

O'Reilly, Suzanne Yvette, Qing Xiong, William L. Griffin, Hadrien Henry, Jian-Ping Zheng, and Norman Pearson. "Chromitite in a Tibetan Ophiolite Records Deep Upper-Mantle Circulation and Episodic Subduction." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

French, Melodie, and Cailey B. Condit. "DEFORMATION PARTITIONING ALONG AN IDEALIZED SUBDUCTION PLATE BOUNDARY AT DEEP SLOW SLIP CONDITIONS." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-340123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Behr, Whitney M., Alissa Kotowski, and Kyle T. Ashley. "YOUNG SCIENTIST AWARD (DONATH MEDAL): METAMORPHIC HETEROGENEITY AND TRANSIENT RHEOLOGY OF THE DEEP SUBDUCTION INTERFACE." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-276871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kuchay, Olga A. "The focal mechanisms of earthquakes in the bending region of the lithospheric plate depending on the characteristics of its sinking." In Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Экономика. Геоэкология. Федеральное государственное бюджетное учреждение науки Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук, 2020. http://dx.doi.org/10.18303/b978-5-4262-0102-6-2020-047.

Full text
Abstract:
In the subduction zone of the Aleutian arc, the angle of inclination of the sinking Pacific plate affects the focal mechanisms of earthquakes registered in the upper part (up to 35 km) of the oceanic plate at the point of its bend, before sinking into the deep–water trough. With a steep slope of the immersion Pacific plate, there are earthquakes with normal faults in the foci, with a gentle slope – a small number with thrust faults. In areas of flat plate displacement in the depth range of 36–70, earthquakes with with normal faults in the foci.
APA, Harvard, Vancouver, ISO, and other styles
9

Condit, Cailey, Victor Guevara, Jonathan R. Delph, and Melodie French. "METAMORPHIC DEHYDRATION FROM OCEANIC CRUST PROVIDES FLUID SOURCES FOR DEEP SLOW SLIP AND TREMOR IN SUBDUCTION ZONES." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-357702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qin, Y., and S. Singh. "Strategy for Full Waveform Inversion of Ultra-long Offset Streamer Data from Deep Water at Sumatra Subduction Front." In 77th EAGE Conference and Exhibition 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201413058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography