Academic literature on the topic 'Deep subduction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deep subduction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deep subduction"
Porter, Katherine A., and William M. White. "Deep mantle subduction flux." Geochemistry, Geophysics, Geosystems 10, no. 12 (December 2009): n/a. http://dx.doi.org/10.1029/2009gc002656.
Full textPagé, Lilianne, and Keiko Hattori. "Abyssal Serpentinites: Transporting Halogens from Earth’s Surface to the Deep Mantle." Minerals 9, no. 1 (January 20, 2019): 61. http://dx.doi.org/10.3390/min9010061.
Full textScambelluri, Marco, and Pascal Philippot. "Deep fluids in subduction zones." Lithos 55, no. 1-4 (January 2001): 213–27. http://dx.doi.org/10.1016/s0024-4937(00)00046-3.
Full textChristensen, Ulrich. "Geodynamic models of deep subduction." Physics of the Earth and Planetary Interiors 127, no. 1-4 (December 2001): 25–34. http://dx.doi.org/10.1016/s0031-9201(01)00219-9.
Full textWencai, Yang. "Analysis of deep intracontinental subduction." Episodes 23, no. 1 (March 1, 2000): 20–24. http://dx.doi.org/10.18814/epiiugs/2000/v23i1/004.
Full textHodder, A. P. W. "Deep subduction and mantle heterogeneities." Tectonophysics 134, no. 4 (March 1987): 263–72. http://dx.doi.org/10.1016/0040-1951(87)90341-6.
Full textObara, Kazushige, and Takuya Nishimura. "Main Results from the Program Promotion Panel for Subduction-Zone Earthquakes." Journal of Disaster Research 15, no. 2 (March 20, 2020): 87–95. http://dx.doi.org/10.20965/jdr.2020.p0087.
Full textManning, Craig E., and Maria Luce Frezzotti. "Subduction-Zone Fluids." Elements 16, no. 6 (December 1, 2020): 395–400. http://dx.doi.org/10.2138/gselements.16.6.395.
Full textZhou, Jianbo. "Accretionary complex: Geological records from oceanic subduction to continental deep subduction." Science China Earth Sciences 63, no. 12 (August 24, 2020): 1868–83. http://dx.doi.org/10.1007/s11430-019-9652-6.
Full textZHENG, Yongfei. "Mineralogical evidence for continental deep subduction." Chinese Science Bulletin 48, no. 10 (2003): 952. http://dx.doi.org/10.1360/03wd0195.
Full textDissertations / Theses on the topic "Deep subduction"
Karel, Patrick Robert. "Seismic Analysis of the Tonga Subduction Zone and Implications on the Thermo-Petrologic Evolution of Deep Subduction." Miami University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=miami1313773845.
Full textKlonowska, Iwona. "Deep subduction of the Seve Nappe Complex in the Scandinavian Caledonides." Doctoral thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-332525.
Full textCastle, John C. "Imaging mid-mantle discontinuities : implications for mantle chemistry, dynamics, rheology, and deep earthquakes /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/6809.
Full textYoshida, Kenta. "Deep fluid characteristics in the subduction zone: A window from metamorphic quartz veins." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199115.
Full textBellew, Glen M. "Consolidation properties, stress history, and modeling of pore pressures for deep sea sediments at the Nankai Trough /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1421111.
Full textSeccia, Danilo <1980>. "Deep geometry of subduction below the Andean belt of Colombia as revealed by seismic tomography." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4290/.
Full textBloch, Wasja [Verfasser]. "In-situ Properties of the Subducting Nazca Slab: Constraints on the Deep Water Cycle and the Dynamics of Subduction from Seismological Observations / Wasja Bloch." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1140043447/34.
Full textHolmberg, Johanna. "Pressure-Temperature-time Constraints on the Deep Subduction of the Seve Nappe Complex in Jämtland and southern Västerbotten, Scandinavian Caledonides." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-334822.
Full textDe Skandinaviska Kaledoniderna har bildats genom en kollision mellan de två kontinentalplattorna Baltika och Laurentia då Japetushavet stängdes omkring 400 miljoner år sedan. Till följd av de starkt komprimerande krafterna transporterades stora flak (skollor) av havsbottenberggrund och kontinentalskorpa hundratals kilometer upp på Baltikakontinenten. Skollorna är överskjutna på varandra omlott och benämns som undre, mellersta, övre och översta skollberggrunderna och återfinns idag i vår fjällkedja. Innan kollisionen med Laurentia krockade Baltika med en vulkanisk öbåge, vilket resulterade i att delar av Baltika pressades ner så pass djupt att bland annat diamanter bildades till följd av det ultrahöga trycket. Bevis för omvandling under extremt tryck finns i den så kallade Seveskollan som utgör en del av den mellersta skollberggrunden. Seveskollan är ett komplex av tre olika enheter, som utsatts för olika grad av metamorfos till följd av tryck och temperatur. Till följd av väder och vind under miljontals år så är fjällkedjan idag nederoderad och därav väl exponerad. Det gör att de Skandinaviska Kaledoniderna är en av världens bästa platser att studera och förstå bergskedjebildade processer. Av den anledningen borrade djupborrningsprojektet COSC-1 en cirka 2.4 km långt kärnborrhål genom den lägst belägna enheten i Seve komplexet (lägre Seveskollan) strax nedanför Åreskutan i Jämtlandsfjällen. Över COSC-1 profilen ligger den berggrund som tillhör den mellersta Seveskollan, även kallad Åreskutanskollan. Åreskutanskollan är en del av Baltika som utsattes för ultrahöga tryck, och i kyanitförande gnejser har diamanter inneslutna i det motståndskraftiga mineralet granat påträffats. Nyligen, längre norrut i Saxnäs (södra Västerbotten) har ytterligare diamantförande gnejser påträffats i den mellersta Seveskollan, som karaktäriseras i den här studien. Material från COSC-1 borrkärnan har använts för att bestämma under vilka tryck och temperatur bergarterna i den lägre Seveskollan har metmorfoserats, för att förstå den tektoniska och metamorfa utvecklingen och även relationen till den överliggande högmetamorfa Åreskutanskollan. Trycket har bestämts genom den relativt oprövade metoden QuiG -barometri. Små kristaller av kvarts inneslutna i granat har analyserats med Raman spektroskopi och de fysikaliska parametrarna av kvarts och granat kan direkt översättas till tryck. Temperatur har erhållits genom det temperaturkänsliga ämnet titan i kvartsinneslutningarna. Resultatet visar att den lägre Seveskollan har genomgått minst två metamorfa faser genom tektonisk påverkan. Den första fasen varierar från övre grönskiffer-amfibolit till lägre eklogitfacies under tryck och temperatur av ca 8-13 kbar, 525-695 o C. Den andra fasen är associerad med överskjutning och skjuvning, vilket orsakade retrograd metamorfos i grönskifferfacies under lägre tryck och temperatur (ca 7-10 kbar, 450-550 o C). Datering baserat på radioaktivt sönderfall av lutetium till hafnium i granat fastställer att Åreskutanskollan utsattes för ultrahögt tryck för omkring 450 miljoner år sedan, samtidigt som lägre Seveskollan nådde metamorft klimax. Resultaten visar även att lägre och mellersta Seveskollorna skjuvades samtidigt, omkring 424 miljoner år sedan. Det betyder att de erhöll sina nuvarande tektonostratigrafiska positioner på stort djup innan överskjutningen på Baltika. Detaljerad petrografi påvisar att de diamantförande kyanit-och granatförande gnejserna från Saxnäs visar påtagliga likheter med Åreskutanskollans högtrycksgnejser. Det tyder på att berggrunden i Saxnäs kan kopplas samman med Åreskutanskollan och att ultrahögtrycksmetamorfos av den mellersta Seveskollan omfattar ett större område än vad som tidigare antagits.
Mukti, Muhammad Ma'ruf. "Tectonic Evolution of the South Sumatra-Java Forearc System from Deep Seismic Reflection Data." Paris, Institut de physique du globe, 2013. http://www.theses.fr/2013GLOB1101.
Full textHammerschmidt, Sebastian B. [Verfasser], Achim [Akademischer Betreuer] Kopf, and Wolfgang [Akademischer Betreuer] Bach. "Monitoring of Deep Fluids in the Nankai Subduction Complex, SE offshore Japan / Sebastian B. Hammerschmidt. Gutachter: Achim Kopf ; Wolfgang Bach. Betreuer: Achim Kopf." Bremen : Staats- und Universitätsbibliothek Bremen, 2014. http://d-nb.info/1072226421/34.
Full textBooks on the topic "Deep subduction"
Hale, Molnar Peter, ed. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Boulder, Colo: Geological Society of America, 1993.
Find full textTrask, Richard P. The subduction experiment: Cruise report R/V Oceanus : cruise number 240 Leg 3 : subduction 1 mooring deployment cruise, 17 June-5 July 1991. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1993.
Find full textStanley, William D. Progress report on U.S. Geological Survey-Department of Energy interagency agreement DE-A121-83MC20422-Task no. 4: Electromagnetic geophysics applied to sediment subduction and deep source gas. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.
Find full textStanley, William D. Progress report on U.S. Geological Survey-Department of Energy interagency agreement DE-A121-83MC20422-Task no. 4: Electromagnetic geophysics applied to sediment subduction and deep source gas. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.
Find full textStanley, William D. Progress report on U.S. Geological Survey-Department of Energy interagency agreement DE-A121-83MC20422-Task no. 4: Electromagnetic geophysics applied to sediment subduction and deep source gas. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.
Find full textStanley, William D. Progress report on U.S. Geological Survey-Department of Energy interagency agreement DE-A121-83MC20422-Task no. 4: Electromagnetic geophysics applied to sediment subduction and deep source gas. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.
Find full textStanley, William D. Progress report on U.S. Geological Survey-Department of Energy interagency agreement DE-A121-83MC20422-Task no. 4: Electromagnetic geophysics applied to sediment subduction and deep source gas. [Reston, Va.?]: U.S. Dept. of the Interior, Geological Survey, 1985.
Find full textUltrahigh-Pressure Metamorphism: Deep Continental Subduction. Geological Society of America, 2006.
Find full textC, Rubie David, and Hilst, Robert Dirk van der, 1961-, eds. Processes and consequences of deep subduction. Amsterdam: Elsevier, 2001.
Find full textR, Hacker Bradley, McClelland William C. 1957-, Liou J. G, and Geological Society of America, eds. Ultrahigh-pressure metamorphism: Deep continental subduction. Boulder, Colo: Geological Society of America, 2006.
Find full textBook chapters on the topic "Deep subduction"
Chen, Wang-Ping, Li-Ru Wu, and Mary Ann Glennon. "Characteristics of Multiple Ruptures During Large Deep-Focus Earthquakes." In Subduction Top to Bottom, 357–68. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm096p0357.
Full textSeno, Tetsuzo, and Yoshiko Yamanaka. "Double Seismic Zones, Compressional Deep Trench-Outer Rise Events, and Superplumes." In Subduction Top to Bottom, 347–55. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm096p0347.
Full textRüpke, Lars, Jason Phipps Morgan, and Jacqueline Eaby Dixon. "Implications of Subduction Rehydration for Earth's Deep Water Cycle." In Earth's Deep Water Cycle, 263–76. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/168gm20.
Full textStein, Seth, and Carol A. Stein. "Thermo-Mechanical Evolution of Oceanic Lithosphere: Implications for the Subduction Process and Deep Earthquakes." In Subduction Top to Bottom, 1–17. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm096p0001.
Full textLawrence, Jesse F., and Michael E. Wysession. "Seismic Evidence for Subduction-Transported Water in the Lower Mantle." In Earth's Deep Water Cycle, 251–61. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/168gm19.
Full textBraunmiller, Jochen, Suzan Van Der Lee, and Lindsey Doermann. "Mantle Transition Zone Thickness in the Central South-American Subduction Zone." In Earth's Deep Water Cycle, 215–24. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/168gm16.
Full textTosi, Nicola, Petra Maierová, and David A. Yuen. "Influence of Variable Thermal Expansivity and Conductivity on Deep Subduction." In Geophysical Monograph Series, 115–33. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118888865.ch6.
Full textIwamori, Hikaru, and Tomoeki Nakakuki. "Fluid Processes in Subduction Zones and Water Transport to the Deep Mantle." In Physics and Chemistry of the Deep Earth, 372–91. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118529492.ch13.
Full textIchikawa, Hiroki, Kenji Kawai, Shinji Yamamoto, and Masanori Kameyama. "Effect of Water on Subduction of Continental Materials to the Deep Earth." In The Earth's Heterogeneous Mantle, 275–99. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15627-9_9.
Full textvan der Hilst, Rob D., Sri Widiyantoro, Kenneth C. Creager, and Thomas J. McSweeney. "Deep subduction and aspherical variations in P-wavespeed at the base of Earth's mantle." In The Core‐Mantle Boundary Region, 5–20. Washington, D. C.: American Geophysical Union, 1998. http://dx.doi.org/10.1029/gd028p0005.
Full textConference papers on the topic "Deep subduction"
Behr, Whitney M., and Thorsten Becker. "DEEP SEDIMENT SUBDUCTION CONTROLS SUBDUCTION PLATE SPEEDS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305317.
Full textJones, Rosie, Ray Burgess, Kristina Walowski, Tamsin A. Mather, and Christopher Ballentine. "The Subduction Recycling of Halogens: Insights from the Shallow and Deep Mantle." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1225.
Full textBehr, Whitney M., Alissa Kotowski, and Kyle Ashley. "METAMORPHICALLY-INDUCED RHEOLOGICAL HETEROGENEITY AND THE DEEP TREMOR SOURCE IN SUBDUCTION ZONES." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-299672.
Full textKamei, R., R. G. Pratt, and T. Tsuji. "Waveform Tomography Imaging of Deep Crustal Faults - Application to Nankai Subduction Zone." In 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011. Netherlands: EAGE Publications BV, 2011. http://dx.doi.org/10.3997/2214-4609.20149629.
Full textO'Reilly, Suzanne Yvette, Qing Xiong, William L. Griffin, Hadrien Henry, Jian-Ping Zheng, and Norman Pearson. "Chromitite in a Tibetan Ophiolite Records Deep Upper-Mantle Circulation and Episodic Subduction." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1966.
Full textFrench, Melodie, and Cailey B. Condit. "DEFORMATION PARTITIONING ALONG AN IDEALIZED SUBDUCTION PLATE BOUNDARY AT DEEP SLOW SLIP CONDITIONS." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-340123.
Full textBehr, Whitney M., Alissa Kotowski, and Kyle T. Ashley. "YOUNG SCIENTIST AWARD (DONATH MEDAL): METAMORPHIC HETEROGENEITY AND TRANSIENT RHEOLOGY OF THE DEEP SUBDUCTION INTERFACE." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-276871.
Full textKuchay, Olga A. "The focal mechanisms of earthquakes in the bending region of the lithospheric plate depending on the characteristics of its sinking." In Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Экономика. Геоэкология. Федеральное государственное бюджетное учреждение науки Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук, 2020. http://dx.doi.org/10.18303/b978-5-4262-0102-6-2020-047.
Full textCondit, Cailey, Victor Guevara, Jonathan R. Delph, and Melodie French. "METAMORPHIC DEHYDRATION FROM OCEANIC CRUST PROVIDES FLUID SOURCES FOR DEEP SLOW SLIP AND TREMOR IN SUBDUCTION ZONES." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-357702.
Full textQin, Y., and S. Singh. "Strategy for Full Waveform Inversion of Ultra-long Offset Streamer Data from Deep Water at Sumatra Subduction Front." In 77th EAGE Conference and Exhibition 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201413058.
Full text