Journal articles on the topic 'Deep ultraviolet (DUV) lithography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Deep ultraviolet (DUV) lithography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wen, Zaoxia, Xingyu Liu, Wenxiu Chen, et al. "Progress in Polyhedral Oligomeric Silsesquioxane (POSS) Photoresists: A Comprehensive Review across Lithographic Systems." Polymers 16, no. 6 (2024): 846. http://dx.doi.org/10.3390/polym16060846.
Full textGüniat, Lucas, Lea Ghisalberti, Li Wang, et al. "GaAs nanowires on Si nanopillars: towards large scale, phase-engineered arrays." Nanoscale Horizons 7, no. 2 (2022): 211–19. http://dx.doi.org/10.1039/d1nh00553g.
Full textKim, Sang-Kon. "Understanding the Exposure Process in the Extreme Ultra Violet Lithography." Journal of Nanoscience and Nanotechnology 21, no. 8 (2021): 4466–69. http://dx.doi.org/10.1166/jnn.2021.19412.
Full textCheng, Xiuyan, Di Liang, Miao Jiang, et al. "Review of Directed Self-Assembly Material, Processing, and Application in Advanced Lithography and Patterning." Micromachines 16, no. 6 (2025): 667. https://doi.org/10.3390/mi16060667.
Full textChen, Boyi. "Application of Photolithography in Integrated Circuits." Applied and Computational Engineering 126, no. 1 (2025): 33–38. https://doi.org/10.54254/2755-2721/2025.20005.
Full textJournal, of Global Research in Electronics and Communications. "Recent Developments in Semiconductor Wafer Fabrication: Materials, Processes, and Innovations." Journal of Global Research in Electronics and Communications 2, no. 2 (2025): 08–12. https://doi.org/10.5281/zenodo.14993769.
Full textLi, Fengting, Haojie Sun, Weijing Liu, Ruijin Hong, and Chunxian Tao. "Accurate Determination of the Low-Light-Level Absorption of DUV-Fused Silica at 193 nm with Laser Calorimetry." Photonics 11, no. 4 (2024): 305. http://dx.doi.org/10.3390/photonics11040305.
Full textLin, Chung-Chih, Audrey Na, Yi-Kuei Wu, Likarn Wang, and Neil Na. "Optimization of Grating Coupler over Single-Mode Silicon-On-Insulator Waveguide to Reach < 1 dB Loss through Deep-Learning-Based Inverse Design." Photonics 11, no. 3 (2024): 267. http://dx.doi.org/10.3390/photonics11030267.
Full textLi, Wei, Qiang Xin, Bin Fan, Qiang Chen, and Yonghong Deng. "A Review of Emerging Technologies in Ultra-Smooth Surface Processing for Optical Components." Micromachines 15, no. 2 (2024): 178. http://dx.doi.org/10.3390/mi15020178.
Full textChen, Sicong, Christopher Lim, and Vincent Chai. "HF Compatibility Study on KrF and I-Line System Resist." Key Engineering Materials 965 (November 28, 2023): 99–104. http://dx.doi.org/10.4028/p-ph0pys.
Full textHan, Ping, Dapeng Jiang, Huamin Kou, et al. "Mechanism of Impurity Content in Degradation and Damage Characteristics of Calcium Fluoride Crystals by X-Ray and Deep-Ultraviolet Laser Irradiation." Photonics 12, no. 6 (2025): 579. https://doi.org/10.3390/photonics12060579.
Full textVlnieska, Vitor, Margarita Zakharova, Andrey Mikhaylov, and Danays Kunka. "Lithographic Performance of Aryl Epoxy Thermoset Resins as Negative Tone Photoresist for Microlithography." Polymers 12, no. 10 (2020): 2359. http://dx.doi.org/10.3390/polym12102359.
Full textRavich, Gil. "Deep Ultraviolet Microscopy." EDFA Technical Articles 3, no. 3 (2001): 1–23. http://dx.doi.org/10.31399/asm.edfa.2001-3.p001.
Full textFang, Wannian, Qiang Li, Jiaxing Li, et al. "Deep Ultraviolet Photodetector: Materials and Devices." Crystals 13, no. 6 (2023): 915. http://dx.doi.org/10.3390/cryst13060915.
Full textLiu, Wenyi. "Analysis Of Degradation Effect on Deep-Ultraviolet Leds." Highlights in Science, Engineering and Technology 121 (December 24, 2024): 7–15. https://doi.org/10.54097/rf3r7p67.
Full textFukuda, Soichiro, Shunsuke Ito, Jun Nishikawa, et al. "Deep Ultraviolet Light-Emitting Diode Light Therapy for Fusobacterium nucleatum." Microorganisms 9, no. 2 (2021): 430. http://dx.doi.org/10.3390/microorganisms9020430.
Full textXu, Ruiqiang, Qiushi Kang, Youwei Zhang, Xiaoli Zhang, and Zihui Zhang. "Research Progress of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes." Micromachines 14, no. 4 (2023): 844. http://dx.doi.org/10.3390/mi14040844.
Full textAli, Asif, So-Young Kim, Muhammad Hussain, et al. "Deep-Ultraviolet (DUV)-Induced Doping in Single Channel Graphene for Pn-Junction." Nanomaterials 11, no. 11 (2021): 3003. http://dx.doi.org/10.3390/nano11113003.
Full textHao, Jiandong, Ling Li, Ningqiang Shi, and Zhenxing Liu. "Deep ultraviolet applications of mono-bilayer boron nitride nanoribbons: a first-principles study." Physica Scripta 99, no. 3 (2024): 035958. http://dx.doi.org/10.1088/1402-4896/ad2825.
Full textSHATALOV, M., A. LUNEV, X. HU, et al. "PERFORMANCE AND APPLICATIONS OF DEEP UV LED." International Journal of High Speed Electronics and Systems 21, no. 01 (2012): 1250011. http://dx.doi.org/10.1142/s0129156412500115.
Full textIMAI, Motoyuki, and Eiichi NISHIKAWA. "Comparison of Etching Effects Using Deep Ultraviolet (DUV) and Vacuum Ultraviolet/Deep Ultraviolet (VUV/DUV) Irradiation on Multiwalled Carbon Nanotubes." Journal of the Surface Finishing Society of Japan 66, no. 10 (2015): 467–71. http://dx.doi.org/10.4139/sfj.66.467.
Full textKozu, Tomomi, Makoto Yamaguchi, Masayuki Fujitsuka, Olga Milikofu, and Ken Nishida. "Residual Stress Analysis of Indentation on 4H-SiC by Deep-Ultraviolet Excited Raman Spectroscopy." Materials Science Forum 821-823 (June 2015): 233–36. http://dx.doi.org/10.4028/www.scientific.net/msf.821-823.233.
Full textMichel, Anna P. M., and Jason Kapit. "Deep Ultraviolet Light Emitting Diode (LED)-Based Sensing of Sulfur Dioxide." Applied Spectroscopy 71, no. 5 (2016): 996–1003. http://dx.doi.org/10.1177/0003702816665126.
Full textBăjenescu, Titu-Marius I. "DEEP ULTRAVIOLET LIGHT EMITTING DIODES (DUV LEDS)." Journal of Engineering Science XXV (2) (June 15, 2018): 6–19. https://doi.org/10.5281/zenodo.2559253.
Full textOU Zuoyuan, XU Sizhi, LIU Xing, et al. "All-solid-state high-power deep ultraviolet picosecond laser." Acta Physica Sinica 74, no. 14 (2025): 0. https://doi.org/10.7498/aps.74.20250247.
Full textTipton, Mike. "Applying deep ultraviolet lithography." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8, no. 6 (1990): 1740. http://dx.doi.org/10.1116/1.585150.
Full textChang, Jih-Yuan, Man-Fang Huang, Chih-Yung Huang, Shih-Chin Lin, Ching-Chiun Wang, and Yen-Kuang Kuo. "Band-Engineered Structural Design of High-Performance Deep-Ultraviolet Light-Emitting Diodes." Crystals 11, no. 3 (2021): 271. http://dx.doi.org/10.3390/cryst11030271.
Full textHuang, Jiaxin, Qingna Wang, Xiaofang Ye, et al. "Light-Field Optimization of Deep-Ultraviolet LED Modules for Efficient Microbial Inactivation." Coatings 14, no. 5 (2024): 568. http://dx.doi.org/10.3390/coatings14050568.
Full textWu, Zhenping, Lei Jiao, Xiaolong Wang, et al. "A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction." Journal of Materials Chemistry C 5, no. 34 (2017): 8688–93. http://dx.doi.org/10.1039/c7tc01741c.
Full textWang, Tien-Yu, Wei-Chih Lai, Syuan-Yu Sie, Sheng-Po Chang, Cheng-Huang Kuo, and Jinn-Kong Sheu. "Deep Ultraviolet AlGaN-Based Light-Emitting Diodes with p-AlGaN/AlGaN Superlattice Hole Injection Structures." Processes 9, no. 10 (2021): 1727. http://dx.doi.org/10.3390/pr9101727.
Full textCao, Rui, Ye Zhang, Huide Wang, et al. "Solar-blind deep-ultraviolet photodetectors based on solution-synthesized quasi-2D Te nanosheets." Nanophotonics 9, no. 8 (2020): 2459–66. http://dx.doi.org/10.1515/nanoph-2019-0539.
Full textKuo, Shiou-Yi, Chia-Jui Chang, Zhen-Ting Huang, and Tien-Chang Lu. "Improvement of Light Extraction in Deep Ultraviolet GaN Light Emitting Diodes with Mesh P-Contacts." Applied Sciences 10, no. 17 (2020): 5783. http://dx.doi.org/10.3390/app10175783.
Full textHopkins, Adam J., Justin L. Cooper, Luisa T. M. Profeta, and Alan R. Ford. "Portable Deep-Ultraviolet (DUV) Raman for Standoff Detection." Applied Spectroscopy 70, no. 5 (2016): 861–73. http://dx.doi.org/10.1177/0003702816638285.
Full textChen, Quan, Yonghui Zhang, Tao Zheng, et al. "Polarization detection in deep-ultraviolet light with monoclinic gallium oxide nanobelts." Nanoscale Advances 2, no. 7 (2020): 2705–12. http://dx.doi.org/10.1039/d0na00364f.
Full textMatsumoto, Takahiro, Ichiro Tatsuno, and Tadao Hasegawa. "Instantaneous Water Purification by Deep Ultraviolet Light in Water Waveguide: Escherichia Coli Bacteria Disinfection." Water 11, no. 5 (2019): 968. http://dx.doi.org/10.3390/w11050968.
Full textSampath, Anand V., Yoajia Chen, Q. Zhou, et al. "AlGaN/SiC Heterojunction Ultraviolet Photodiodes." Materials Science Forum 858 (May 2016): 1206–9. http://dx.doi.org/10.4028/www.scientific.net/msf.858.1206.
Full textHwang, Chahwan, Jae Sang Heo, Kyung-Tae Kim, et al. "Facile organic surfactant removal of various dimensionality nanomaterials using low-temperature photochemical treatment." RSC Advances 9, no. 2 (2019): 730–37. http://dx.doi.org/10.1039/c8ra08173e.
Full textNagasawa, Yosuke, and Akira Hirano. "A Review of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Sapphire." Applied Sciences 8, no. 8 (2018): 1264. http://dx.doi.org/10.3390/app8081264.
Full textKang, Chieh-Yu, Chih-Hao Lin, Tingzhu Wu, Po-Tsung Lee, Zhong Chen, and Hao-Chung Kuo. "A Novel Liquid Packaging Structure of Deep-Ultraviolet Light-Emitting Diodes to Enhance the Light-Extraction Efficiency." Crystals 9, no. 4 (2019): 203. http://dx.doi.org/10.3390/cryst9040203.
Full textWu, Haiming, Mengdi Guo, Mengzhou Yang, Zhixun Luo, and Klavs Hansen. "Selective C–C and C–N bond activation in dopamine and norepinephrine under deep ultraviolet laser irradiation." Chemical Communications 55, no. 28 (2019): 4015–18. http://dx.doi.org/10.1039/c9cc00444k.
Full textGong, Mingfeng, Xuejiao Sun, Cheng Lei, et al. "Study on the Degradation Performance of AlGaN-Based Deep Ultraviolet LEDs under Thermal and Electrical Stress." Coatings 14, no. 7 (2024): 904. http://dx.doi.org/10.3390/coatings14070904.
Full textJha, Shankar K., Yasin Ekinci, Mario Agio, and Jörg F. Löffler. "Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: ultrasensitive, real-time and reproducible detection of TNT." Analyst 140, no. 16 (2015): 5671–77. http://dx.doi.org/10.1039/c4an01719f.
Full textLiu, Xu, Zhihua Yang, and Shilie Pan. "A perspective on deep-ultraviolet nonlinear optical materials." Journal of Applied Physics 135, no. 12 (2024). http://dx.doi.org/10.1063/5.0195432.
Full textSabnis, Ram W., Mary J. Spencer, and Douglas J. Guerrero. "Novel organic, polymeric materials for electronics applications." MRS Proceedings 722 (2002). http://dx.doi.org/10.1557/proc-722-k9.16.
Full textRooks, M. J., P. Mceuen, S. Wind, and D. E. Prober. "30-nm-Scale Device Fabrication for Electron Transport Studies." MRS Proceedings 76 (1986). http://dx.doi.org/10.1557/proc-76-55.
Full textZhao, Yingdong, Riyao Cong, Zijian Chen, Jun Zhao, Pengzhong Chen, and Xiaojun Peng. "Sub‐10‐nm Lithography for Sn4–Oxo Clusters: Effect of Molecular Polarity on Sensitivity and Resolution." Advanced Functional Materials, April 7, 2025. https://doi.org/10.1002/adfm.202423957.
Full textScott, J. R., D. Atkinson, and A. O. Adeyeye. "Mapping the transition from quasi-2D to 3D spin textures in NiFe nanomagnets." Applied Physics Letters 124, no. 22 (2024). http://dx.doi.org/10.1063/5.0212429.
Full textSengupta, S. S., D. Baker, S. Sethi та S. Bothra. "Optimizing Sputtered Tin ARC Film Properties for Lithography of Sub-0.25μm Interconnect". MRS Proceedings 514 (1998). http://dx.doi.org/10.1557/proc-514-539.
Full textPark, Geon‐Tae, Jae‐Hyun Kim, Seunghun Lee, et al. "Conformal Antireflective Multilayers for High‐Numerical‐Aperture Deep‐Ultraviolet Lenses." Advanced Optical Materials, June 25, 2024. http://dx.doi.org/10.1002/adom.202401040.
Full textLu, Xin-Yu, Rui-Sheng Zhang, Guan-Wen Yang, Qiang Li, Bo Li, and Guang-Peng Wu. "Aqueous Developable and CO2‐Sourced Chemical Amplification Photoresist with High Performance." Angewandte Chemie International Edition, May 5, 2024. http://dx.doi.org/10.1002/anie.202401850.
Full text