Academic literature on the topic 'Deepl learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deepl learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deepl learning"
Chagas, Edgar Thiago De Oliveira. "Deep Learning e suas aplicações na atualidade." Revista Científica Multidisciplinar Núcleo do Conhecimento 04, no. 05 (May 8, 2019): 05–26. http://dx.doi.org/10.32749/nucleodoconhecimento.com.br/administracao/deep-learning.
Full textChagas, Edgar Thiago De Oliveira. "Deep Learning and its applications today." Revista Científica Multidisciplinar Núcleo do Conhecimento 04, no. 05 (May 8, 2019): 05–26. http://dx.doi.org/10.32749/nucleodoconhecimento.com.br/business-administration/deep-learning-2.
Full textJaiswal, Tarun, and Sushma Jaiswal. "Deep Learning in Medicine." International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (June 30, 2019): 212–17. http://dx.doi.org/10.31142/ijtsrd23641.
Full textZitar, Raed Abu, Ammar EL-Hassan, and Oraib AL-Sahlee. "Deep Learning Recommendation System for Course Learning Outcomes Assessment." Journal of Advanced Research in Dynamical and Control Systems 11, no. 10-SPECIAL ISSUE (October 31, 2019): 1491–78. http://dx.doi.org/10.5373/jardcs/v11sp10/20192993.
Full textEvseenko, Alla, and Dmitrii Romannikov. "Application of Deep Q-learning and double Deep Q-learning algorithms to the task of control an inverted pendulum." Transaction of Scientific Papers of the Novosibirsk State Technical University, no. 1-2 (August 26, 2020): 7–25. http://dx.doi.org/10.17212/2307-6879-2020-1-2-7-25.
Full textJaiswal, Tarun, and Sushma Jaiswal. "Deep Learning Based Pain Treatment." International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (June 30, 2019): 193–211. http://dx.doi.org/10.31142/ijtsrd23639.
Full textSha hao, 沙浩, 刘阳哲 Liu Yangzhe, and 张永兵 Zhang Yongbing. "基于深度学习的傅里叶叠层成像技术." Laser & Optoelectronics Progress 58, no. 18 (2021): 1811020. http://dx.doi.org/10.3788/lop202158.1811020.
Full textPark, Ingyu, and Unjoo Lee. "Automatic, Qualitative Scoring of the Clock Drawing Test (CDT) Based on U-Net, CNN and Mobile Sensor Data." Sensors 21, no. 15 (August 3, 2021): 5239. http://dx.doi.org/10.3390/s21155239.
Full textTolentino, Lean Karlo S., Ronnie O. Serfa Juan, August C. Thio-ac, Maria Abigail B. Pamahoy, Joni Rose R. Forteza, and Xavier Jet O. Garcia. "Static Sign Language Recognition Using Deep Learning." International Journal of Machine Learning and Computing 9, no. 6 (December 2019): 821–27. http://dx.doi.org/10.18178/ijmlc.2019.9.6.879.
Full textNizami Huseyn, Elcin. "APPLICATION OF DEEP LEARNING IN MEDICAL IMAGING." NATURE AND SCIENCE 03, no. 04 (October 27, 2020): 7–13. http://dx.doi.org/10.36719/2707-1146/04/7-13.
Full textDissertations / Theses on the topic "Deepl learning"
Dufourq, Emmanuel. "Evolutionary deep learning." Doctoral thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/30357.
Full textHussein, Ahmed. "Deep learning based approaches for imitation learning." Thesis, Robert Gordon University, 2018. http://hdl.handle.net/10059/3117.
Full textZhang, Jingwei [Verfasser], and Wolfram [Akademischer Betreuer] Burgard. "Learning navigation policies with deep reinforcement learning." Freiburg : Universität, 2021. http://d-nb.info/1235325571/34.
Full textWülfing, Jan [Verfasser], and Martin [Akademischer Betreuer] Riedmiller. "Stable deep reinforcement learning." Freiburg : Universität, 2019. http://d-nb.info/1204826188/34.
Full textWhite, Martin. "Deep Learning Software Repositories." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1516639667.
Full textHalle, Alex, and Alexander Hasse. "Topologieoptimierung mittels Deep Learning." Technische Universität Chemnitz, 2019. https://monarch.qucosa.de/id/qucosa%3A34343.
Full textGoh, Hanlin. "Learning deep visual representations." Paris 6, 2013. http://www.theses.fr/2013PA066356.
Full textRecent advancements in the areas of deep learning and visual information processing have presented an opportunity to unite both fields. These complementary fields combine to tackle the problem of classifying images into their semantic categories. Deep learning brings learning and representational capabilities to a visual processing model that is adapted for image classification. This thesis addresses problems that lead to the proposal of learning deep visual representations for image classification. The problem of deep learning is tackled on two fronts. The first aspect is the problem of unsupervised learning of latent representations from input data. The main focus is the integration of prior knowledge into the learning of restricted Boltzmann machines (RBM) through regularization. Regularizers are proposed to induce sparsity, selectivity and topographic organization in the coding to improve discrimination and invariance. The second direction introduces the notion of gradually transiting from unsupervised layer-wise learning to supervised deep learning. This is done through the integration of bottom-up information with top-down signals. Two novel implementations supporting this notion are explored. The first method uses top-down regularization to train a deep network of RBMs. The second method combines predictive and reconstructive loss functions to optimize a stack of encoder-decoder networks. The proposed deep learning techniques are applied to tackle the image classification problem. The bag-of-words model is adopted due to its strengths in image modeling through the use of local image descriptors and spatial pooling schemes. Deep learning with spatial aggregation is used to learn a hierarchical visual dictionary for encoding the image descriptors into mid-level representations. This method achieves leading image classification performances for object and scene images. The learned dictionaries are diverse and non-redundant. The speed of inference is also high. From this, a further optimization is performed for the subsequent pooling step. This is done by introducing a differentiable pooling parameterization and applying the error backpropagation algorithm. This thesis represents one of the first attempts to synthesize deep learning and the bag-of-words model. This union results in many challenging research problems, leaving much room for further study in this area
Geirsson, Gunnlaugur. "Deep learning exotic derivatives." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-430410.
Full textArnold, Ludovic. "Learning Deep Representations : Toward a better new understanding of the deep learning paradigm." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00842447.
Full textRodés-Guirao, Lucas. "Deep Learning for Digital Typhoon : Exploring a typhoon satellite image dataset using deep learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249514.
Full textEffektiva varningssystem kan hjälpa till med hanteringen av naturkatastrofer genom att möjliggöra tillräckliga evakueringar och resursfördelningar. Flera olika tillvägagångssätt har använts för att genomföra lämpliga tidiga varningssystem, såsom simuleringar eller statistiska modeller, som bygger på insamling av meteorologiska data. Datadriven teknik har visat sig vara effektiv för att bygga statistiska modeller som kan generalisera till okända data. Motiverat av detta, utforskar examensarbetet tekniker baserade på djupinlärning, vilka tillämpas på ett dataset med meteorologiska satellitbilder, Digital Typhoon". Vi fokuserar på intensitetsmätning och kategorisering av olika naturfenomen. Först bygger vi en klassificerare för att skilja mellan naturliga tropiska cykloner och extratropiska cykloner. Därefter implementerar vi en regressionsmodell för att uppskatta en tyfons mittrycksvärde. Dessutom utforskar vi rengöringsmetoder för att säkerställa att de data som används är tillförlitliga. De erhållna resultaten visar att tekniker för djupinlärning kan vara effektiva under vissa omständigheter, vilket ger tillförlitliga klassificerings- och regressionsmodeller samt extraktorer. Mer forskning för att dra fler slutsatser och validera de erhållna resultaten förväntas i framtiden.
Els sistemes d’alerta ràpida poden ajudar en la gestió dels esdeveniments de desastres naturals, permetent una evacuació i administració dels recursos adequada. En aquest sentit s’han utilitzat diferentes tècniques per implementar sistemes d’alerta, com ara simulacions o models estadístics, tots ells basats en la recollida de dades meteorològiques. S’ha demostrat que les tècniques basades en dades són eficaces a l’hora de construir models estadístics, podent generalitzar-se a a noves dades. Motivat per això, en aquest treball, explorem l’ús de tècniques d’aprenentatge profund (o deep learning) aplicades a les imatges meteorològiquesper satèl·lit de tifons del projecte "Digital Typhoon". Ens centrem en la mesura i la categorització de la intensitat de diferentsfenòmens naturals. En primer lloc, construïm un classificador per diferenciar ciclonstropicals naturals i ciclons extratropicals i, en segon lloc, implementemun model de regressió per estimar el valor de pressió central d’un tifó.A més, també explorem metodologies de neteja per garantir que lesdades utilitzades siguin fiables. Els resultats obtinguts mostren que les tècniques d’aprenentatgeprofundes poden ser efectives en determinades circumstàncies, proporcionant models fiables de classificació/regressió i extractors de característiques.Es preveu que hi hagi més recerques per obtenir més conclusions i validar els resultats obtinguts en el futur.
Books on the topic "Deepl learning"
Saefken, Benjamin, Alexander Silbersdorff, and Christoph Weisser, eds. Learning deep. Göttingen: Göttingen University Press, 2020. http://dx.doi.org/10.17875/gup2020-1338.
Full textWani, M. Arif, Mehmed Kantardzic, and Moamar Sayed-Mouchaweh, eds. Deep Learning Applications. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1816-4.
Full textDong, Hao, Zihan Ding, and Shanghang Zhang, eds. Deep Reinforcement Learning. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4095-0.
Full textSewak, Mohit. Deep Reinforcement Learning. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8285-7.
Full textKim, Phil. MATLAB Deep Learning. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2845-6.
Full textCalin, Ovidiu. Deep Learning Architectures. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36721-3.
Full textMatsushita, Kayo, ed. Deep Active Learning. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5660-4.
Full textMichelucci, Umberto. Applied Deep Learning. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3790-8.
Full textMoons, Bert, Daniel Bankman, and Marian Verhelst. Embedded Deep Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99223-5.
Full textEl-Amir, Hisham, and Mahmoud Hamdy. Deep Learning Pipeline. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5349-6.
Full textBook chapters on the topic "Deepl learning"
Schmidhuber, Jürgen. "Deep Learning." In Encyclopedia of Machine Learning and Data Mining, 1–11. Boston, MA: Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7502-7_909-1.
Full textSchmidhuber, Jürgen. "Deep Learning." In Encyclopedia of Machine Learning and Data Mining, 338–48. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_909.
Full textDu, Ke-Lin, and M. N. S. Swamy. "Deep Learning." In Neural Networks and Statistical Learning, 717–36. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-7452-3_24.
Full textŽižka, Jan, František Dařena, and Arnošt Svoboda. "Deep Learning." In Text Mining with Machine Learning, 223–34. First. | Boca Raton : CRC Press, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429469275-11.
Full textRebala, Gopinath, Ajay Ravi, and Sanjay Churiwala. "Deep Learning." In An Introduction to Machine Learning, 127–40. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15729-6_11.
Full textAggarwal, Manasvi, and M. N. Murty. "Deep Learning." In Machine Learning in Social Networks, 35–66. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-4022-0_3.
Full textWatson, Samuel S. "Deep Learning." In Data Science for Mathematicians, 409–40. First edition. | Boca Raton, FL : CRC Press, 2020.: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429398292-9.
Full textAlshamrani, Rayan, and Xiaogang Ma. "Deep Learning." In Encyclopedia of Big Data, 1–5. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-32001-4_533-1.
Full textVarga, Ervin. "Deep Learning." In Practical Data Science with Python 3, 427–50. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4859-1_12.
Full textAkerkar, Rajendra. "Deep Learning." In Artificial Intelligence for Business, 33–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97436-1_3.
Full textConference papers on the topic "Deepl learning"
"[Title page i]." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00001.
Full text"[Title page iii]." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00002.
Full text"[Copyright notice]." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00003.
Full text"Table of contents." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00004.
Full text"Message from the DEEP-ML 2019 Chairs." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00005.
Full text"DEEP-ML 2019 Organizing Committee." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00006.
Full text"DEEP-ML 2019 Program Committee." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00007.
Full text"Keynote Abstracts." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00008.
Full textKaskavalci, Halil Can, and Sezer Goren. "A Deep Learning Based Distributed Smart Surveillance Architecture using Edge and Cloud Computing." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00009.
Full textLee, Kyu Beom, and Hyu Soung Shin. "An Application of a Deep Learning Algorithm for Automatic Detection of Unexpected Accidents Under Bad CCTV Monitoring Conditions in Tunnels." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00010.
Full textReports on the topic "Deepl learning"
Caldeira, Joao. Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1623354.
Full textCatanach, Thomas, and Jed Duersch. Efficient Generalizable Deep Learning. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1760400.
Full textGroh, Micah. NOvA Reconstruction using Deep Learning. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1462092.
Full textGeiss, Andrew, Joseph Hardin, Sam Silva, William Jr., Adam Varble, and Jiwen Fan. Deep Learning for Ensemble Forecasting. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769692.
Full textBalaji, Praveen. Detecting Stellar Streams through Deep Learning. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1637622.
Full textLi, Li. Deep Learning for Hydro-Biogeochemistry Processes. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1769693.
Full textDraelos, Timothy John, Nadine E. Miner, Christopher C. Lamb, Craig Michael Vineyard, Kristofor David Carlson, Conrad D. James, and James Bradley Aimone. Neurogenesis Deep Learning: Extending deep networks to accommodate new classes. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1505351.
Full textJiang, M., and B. Matei. Mesh Failure Prediction Using Deep Learning Techniques. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1601556.
Full textAlbanesi, Stefania, and Domonkos Vamossy. Predicting Consumer Default: A Deep Learning Approach. Cambridge, MA: National Bureau of Economic Research, August 2019. http://dx.doi.org/10.3386/w26165.
Full textDoria, David, Bryan Dawson, and Manuel Vindiola. Enhanced Experience Replay for Deep Reinforcement Learning. Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ada624278.
Full text