Dissertations / Theses on the topic 'Deepl learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Deepl learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dufourq, Emmanuel. "Evolutionary deep learning." Doctoral thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/30357.
Full textHussein, Ahmed. "Deep learning based approaches for imitation learning." Thesis, Robert Gordon University, 2018. http://hdl.handle.net/10059/3117.
Full textZhang, Jingwei [Verfasser], and Wolfram [Akademischer Betreuer] Burgard. "Learning navigation policies with deep reinforcement learning." Freiburg : Universität, 2021. http://d-nb.info/1235325571/34.
Full textWülfing, Jan [Verfasser], and Martin [Akademischer Betreuer] Riedmiller. "Stable deep reinforcement learning." Freiburg : Universität, 2019. http://d-nb.info/1204826188/34.
Full textWhite, Martin. "Deep Learning Software Repositories." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1516639667.
Full textHalle, Alex, and Alexander Hasse. "Topologieoptimierung mittels Deep Learning." Technische Universität Chemnitz, 2019. https://monarch.qucosa.de/id/qucosa%3A34343.
Full textGoh, Hanlin. "Learning deep visual representations." Paris 6, 2013. http://www.theses.fr/2013PA066356.
Full textRecent advancements in the areas of deep learning and visual information processing have presented an opportunity to unite both fields. These complementary fields combine to tackle the problem of classifying images into their semantic categories. Deep learning brings learning and representational capabilities to a visual processing model that is adapted for image classification. This thesis addresses problems that lead to the proposal of learning deep visual representations for image classification. The problem of deep learning is tackled on two fronts. The first aspect is the problem of unsupervised learning of latent representations from input data. The main focus is the integration of prior knowledge into the learning of restricted Boltzmann machines (RBM) through regularization. Regularizers are proposed to induce sparsity, selectivity and topographic organization in the coding to improve discrimination and invariance. The second direction introduces the notion of gradually transiting from unsupervised layer-wise learning to supervised deep learning. This is done through the integration of bottom-up information with top-down signals. Two novel implementations supporting this notion are explored. The first method uses top-down regularization to train a deep network of RBMs. The second method combines predictive and reconstructive loss functions to optimize a stack of encoder-decoder networks. The proposed deep learning techniques are applied to tackle the image classification problem. The bag-of-words model is adopted due to its strengths in image modeling through the use of local image descriptors and spatial pooling schemes. Deep learning with spatial aggregation is used to learn a hierarchical visual dictionary for encoding the image descriptors into mid-level representations. This method achieves leading image classification performances for object and scene images. The learned dictionaries are diverse and non-redundant. The speed of inference is also high. From this, a further optimization is performed for the subsequent pooling step. This is done by introducing a differentiable pooling parameterization and applying the error backpropagation algorithm. This thesis represents one of the first attempts to synthesize deep learning and the bag-of-words model. This union results in many challenging research problems, leaving much room for further study in this area
Geirsson, Gunnlaugur. "Deep learning exotic derivatives." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-430410.
Full textArnold, Ludovic. "Learning Deep Representations : Toward a better new understanding of the deep learning paradigm." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00842447.
Full textRodés-Guirao, Lucas. "Deep Learning for Digital Typhoon : Exploring a typhoon satellite image dataset using deep learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249514.
Full textEffektiva varningssystem kan hjälpa till med hanteringen av naturkatastrofer genom att möjliggöra tillräckliga evakueringar och resursfördelningar. Flera olika tillvägagångssätt har använts för att genomföra lämpliga tidiga varningssystem, såsom simuleringar eller statistiska modeller, som bygger på insamling av meteorologiska data. Datadriven teknik har visat sig vara effektiv för att bygga statistiska modeller som kan generalisera till okända data. Motiverat av detta, utforskar examensarbetet tekniker baserade på djupinlärning, vilka tillämpas på ett dataset med meteorologiska satellitbilder, Digital Typhoon". Vi fokuserar på intensitetsmätning och kategorisering av olika naturfenomen. Först bygger vi en klassificerare för att skilja mellan naturliga tropiska cykloner och extratropiska cykloner. Därefter implementerar vi en regressionsmodell för att uppskatta en tyfons mittrycksvärde. Dessutom utforskar vi rengöringsmetoder för att säkerställa att de data som används är tillförlitliga. De erhållna resultaten visar att tekniker för djupinlärning kan vara effektiva under vissa omständigheter, vilket ger tillförlitliga klassificerings- och regressionsmodeller samt extraktorer. Mer forskning för att dra fler slutsatser och validera de erhållna resultaten förväntas i framtiden.
Els sistemes d’alerta ràpida poden ajudar en la gestió dels esdeveniments de desastres naturals, permetent una evacuació i administració dels recursos adequada. En aquest sentit s’han utilitzat diferentes tècniques per implementar sistemes d’alerta, com ara simulacions o models estadístics, tots ells basats en la recollida de dades meteorològiques. S’ha demostrat que les tècniques basades en dades són eficaces a l’hora de construir models estadístics, podent generalitzar-se a a noves dades. Motivat per això, en aquest treball, explorem l’ús de tècniques d’aprenentatge profund (o deep learning) aplicades a les imatges meteorològiquesper satèl·lit de tifons del projecte "Digital Typhoon". Ens centrem en la mesura i la categorització de la intensitat de diferentsfenòmens naturals. En primer lloc, construïm un classificador per diferenciar ciclonstropicals naturals i ciclons extratropicals i, en segon lloc, implementemun model de regressió per estimar el valor de pressió central d’un tifó.A més, també explorem metodologies de neteja per garantir que lesdades utilitzades siguin fiables. Els resultats obtinguts mostren que les tècniques d’aprenentatgeprofundes poden ser efectives en determinades circumstàncies, proporcionant models fiables de classificació/regressió i extractors de característiques.Es preveu que hi hagi més recerques per obtenir més conclusions i validar els resultats obtinguts en el futur.
Franceschelli, Giorgio. "Generative Deep Learning and Creativity." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textPalasek, Petar. "Action recognition using deep learning." Thesis, Queen Mary, University of London, 2017. http://qmro.qmul.ac.uk/xmlui/handle/123456789/30828.
Full textZhuang, Zhongfang. "Deep Learning on Attributed Sequences." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/507.
Full textZhang, Chiyuan Ph D. Massachusetts Institute of Technology. "Deep learning and structured data." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115643.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 135-150).
In the recent years deep learning has witnessed successful applications in many different domains such as visual object recognition, detection and segmentation, automatic speech recognition, natural language processing, and reinforcement learning. In this thesis, we will investigate deep learning from a spectrum of different perspectives. First of all, we will study the question of generalization, which is one of the most fundamental notion in machine learning theory. We will show how, in the regime of deep learning, the characterization of generalization becomes different from the conventional way, and propose alternative ways to approach it. Moving from theory to more practical perspectives, we will show two different applications of deep learning. One is originated from a real world problem of automatic geophysical feature detection from seismic recordings to help oil & gas exploration; the other is motivated from a computational neuroscientific modeling and studying of human auditory system. More specifically, we will show how deep learning could be adapted to play nicely with the unique structures associated with the problems from different domains. Lastly, we move to the computer system design perspective, and present our efforts in building better deep learning systems to allow efficient and flexible computation in both academic and industrial worlds.
by Chiyuan Zhang.
Ph. D.
Drexler, Jennifer Fox. "Deep unsupervised learning from speech." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105696.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 87-92).
Automatic speech recognition (ASR) systems have become hugely successful in recent years - we have become accustomed to speech interfaces across all kinds of devices. However, despite the huge impact ASR has had on the way we interact with technology, it is out of reach for a significant portion of the world's population. This is because these systems rely on a variety of manually-generated resources - like transcripts and pronunciation dictionaries - that can be both expensive and difficult to acquire. In this thesis, we explore techniques for learning about speech directly from speech, with no manually generated transcriptions. Such techniques have the potential to revolutionize speech technologies for the vast majority of the world's population. The cognitive science and computer science communities have both been investing increasing time and resources into exploring this problem. However, a full unsupervised speech recognition system is a hugely complicated undertaking and is still a long ways away. As in previous work, we focus on the lower-level tasks which will underlie an eventual unsupervised speech recognizer. We specifically focus on two tasks: developing linguistically meaningful representations of speech and segmenting speech into phonetic units. This thesis approaches these tasks from a new direction: deep learning. While modern deep learning methods have their roots in ideas from the 1960s and even earlier, deep learning techniques have recently seen a resurgence, thanks to huge increases in computational power and new efficient learning algorithms. Deep learning algorithms have been instrumental in the recent progress of traditional supervised speech recognition; here, we extend that work to unsupervised learning from speech.
by Jennifer Fox Drexler.
S.M.
Rippel, Oren. "Sculpting representations for deep learning." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104581.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 149-164).
In machine learning, the choice of space in which to represent our data is of vital importance to their effective and efficient analysis. In this thesis, we develop approaches to address a number of problems in representation learning. We employ deep learning as means of sculpting our representations, and also develop improved representations for deep learning models. We present contributions that are based on five papers and make progress in several different research directions. First, we present techniques which leverage spatial and relational structure to achieve greater computational efficiency of model optimization and query retrieval. This allows us to train distance metric learning models 5-30 times faster; optimize convolutional neural networks 2-5 times faster; perform content-based image retrieval hundreds of times faster on codes hundreds of times longer than feasible before; and improve the complexity of Bayesian optimization to linear in the number of observations in contrast to the cubic dependence in its naive Gaussian process formulation. Furthermore, we introduce ideas to facilitate preservation of relevant information within the learned representations, and demonstrate this leads to improved supervision results. Our approaches achieve state-of-the-art classification and transfer learning performance on a number of well-known machine learning benchmarks. In addition, while deep learning models are able to discover structure in high dimensional input domains, they only offer implicit probabilistic descriptions. We develop an algorithm to enable probabilistic interpretability of deep representations. It constructs a transformation to a representation space under which the map of the distribution is approximately factorized and has known marginals. This allows tractable density estimation and.inference within this alternate domain.
by Oren Rippel.
Ph. D.
Simonovsky, Martin. "Deep learning on attributed graphs." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1133/document.
Full textGraph is a powerful concept for representation of relations between pairs of entities. Data with underlying graph structure can be found across many disciplines, describing chemical compounds, surfaces of three-dimensional models, social interactions, or knowledge bases, to name only a few. There is a natural desire for understanding such data better. Deep learning (DL) has achieved significant breakthroughs in a variety of machine learning tasks in recent years, especially where data is structured on a grid, such as in text, speech, or image understanding. However, surprisingly little has been done to explore the applicability of DL on graph-structured data directly.The goal of this thesis is to investigate architectures for DL on graphs and study how to transfer, adapt or generalize concepts working well on sequential and image data to this domain. We concentrate on two important primitives: embedding graphs or their nodes into a continuous vector space representation (encoding) and, conversely, generating graphs from such vectors back (decoding). To that end, we make the following contributions.First, we introduce Edge-Conditioned Convolutions (ECC), a convolution-like operation on graphs performed in the spatial domain where filters are dynamically generated based on edge attributes. The method is used to encode graphs with arbitrary and varying structure.Second, we propose SuperPoint Graph, an intermediate point cloud representation with rich edge attributes encoding the contextual relationship between object parts. Based on this representation, ECC is employed to segment large-scale point clouds without major sacrifice in fine details.Third, we present GraphVAE, a graph generator allowing to decode graphs with variable but upper-bounded number of nodes making use of approximate graph matching for aligning the predictions of an autoencoder with its inputs. The method is applied to the task of molecule generation
Watson, Cody. "Deep Learning In Software Engineering." W&M ScholarWorks, 2020. https://scholarworks.wm.edu/etd/1616444371.
Full textBroström, Axel, and Richard Kristiansson. "Exotic Derivatives and Deep Learning." Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228476.
Full textDenna masteruppsats undersöker användningen avArtificiella Neurala Nätverk (ANN) för att beräkna nuvärdet, Value-at-Risk ochExpected Shortfall för optioner, både Europeiska köpoptioner samt mer komplexarainbow-optioner. ANN:t jämförs med ett Taylorpolynom av andra ordningen somanvänder känsligheter mot ett flertal riskfaktorer. En typ av ANN som kallasmultilayer perceptron väljs baserat på tidigare forskning inom området ochappliceras på båda typerna av optioner. Datan som används har genererats frånett finansiellt riskhanteringssystem för såväl köpoptioner som rainbow-optionertillsammans med tillhörande Taylorapproximation. Studien visar att även om ANNslår Taylorpolynomet för vissa specifika beräkningar av nuvärdet och riskvärdenså är den generella slutsatsen att ett ANN som är tränad och utvärderad enligtmetoden i denna studie inte presterar bättre än ett Taylorpolynom även om detär teoretiskt möjligt att ANN:t kan göra det. Den viktigaste slutsatsen fråndenna studie är att ANN:t verkar kunna lära sig prissätta komplexa finansielladerivat som annars kräver Monte Carlo-simulering. Således validerar dennastudie ett koncept som kräver ytterligare utveckling före det implementeras
Ovidiu, Chelcea Vlad, and Björn Ståhl. "Deep Reinforcement Learning for Snake." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239362.
Full textFigué, Valentin. "Depth prediction by deep learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240593.
Full textAtt känna till djupet i en bild är av avgörande betydelse för scenförståelse i flera industriella tillämpningar, exempelvis för självkörande bilar. Bestämning av djup utifrån enstaka bilder har fått en alltmer framträdande roll i studier på senare år, tack vare utvecklingen inom deep learning. I många praktiska fall tillhandahålls ytterligare information som är högst användbar, vilket man bör ta hänsyn till då man designar en arkitektur för att förbättra djupuppskattningarnas kvalitet och robusthet. I detta examensarbete presenteras därför ett så kallat djupt fullständigt faltningsnätverk, som tillåter att man utnyttjar information från tidssekvenser både monokulärt och i stereo samt nya sätt att optimalt träna nätverken i multipla skalor. I examensarbetet konstateras att information från multipla skalor är av synnerlig vikt för noggrann uppskattning av djup och för avsevärt förbättrad prestanda, vilket resulterat i nya state-of-the-art-resultat på syntetiska data från Virtual KITTI såväl som på riktiga bilder fråndet utmanande KITTI-datasetet.
Kim, Alisa. "Deep Learning for Uncertainty Measurement." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22161.
Full textThis thesis focuses on solving the problem of uncertainty measurement and its impact on business decisions while pursuing two goals: first, develop and validate accurate and robust models for uncertainty quantification, employing both the well established statistical models and newly developed machine learning tools, with particular focus on deep learning. The second goal revolves around the industrial application of proposed models, applying them to real-world cases when measuring volatility or making a risky decision entails a direct and substantial gain or loss. This thesis started with the exploration of implied volatility (IV) as a proxy for investors' perception of uncertainty for a new class of assets - crypto-currencies. The second paper focused on methods to identify risk-loving traders and employed the DNN infrastructure for it to investigate further the risk-taking behavior of market actors that both stems from and perpetuates uncertainty. The third paper addressed the challenging endeavor of fraud detection and offered the decision support model that allowed a more accurate and interpretable evaluation of financial reports submitted for audit. Following the importance of risk assessment and agents' expectations in economic development and building on the existing works of Baker (2016) and their economic policy uncertainty (EPU) index, it offered a novel DL-NLP-based method for the quantification of economic policy uncertainty. In summary, this thesis offers insights that are highly relevant to both researchers and practitioners. The new deep learning-based solutions exhibit superior performance to existing approaches to quantify and explain economic uncertainty, allowing for more accurate forecasting, enhanced planning capacities, and mitigated risks. The offered use-cases provide a road-map for further development of the DL tools in practice and constitute a platform for further research.
Franch, Gabriele. "Deep Learning for Spatiotemporal Nowcasting." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/295096.
Full textRosar, Kós Lassance Carlos Eduardo. "Graphs for deep learning representations." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0204.
Full textIn recent years, Deep Learning methods have achieved state of the art performance in a vast range of machine learning tasks, including image classification and multilingual automatic text translation. These architectures are trained to solve machine learning tasks in an end-to-end fashion. In order to reach top-tier performance, these architectures often require a very large number of trainable parameters. There are multiple undesirable consequences, and in order to tackle these issues, it is desired to be able to open the black boxes of deep learning architectures. Problematically, doing so is difficult due to the high dimensionality of representations and the stochasticity of the training process. In this thesis, we investigate these architectures by introducing a graph formalism based on the recent advances in Graph Signal Processing (GSP). Namely, we use graphs to represent the latent spaces of deep neural networks. We showcase that this graph formalism allows us to answer various questions including: ensuring generalization abilities, reducing the amount of arbitrary choices in the design of the learning process, improving robustness to small perturbations added to the inputs, and reducing computational complexity
Siarohin, Aliaksandr. "Image Animation Using Deep Learning." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/310291.
Full textMBITI, JOHN N. "Deep learning for portfolio optimization." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-104567.
Full textGerlach, Johanna, Alexander Riedel, Seyyid Uslu, Frank Engelmann, and Nico Brehm. "Montagegerechte Gestaltungsrichtlinien mittels Deep Learning." Thelem Universitätsverlag & Buchhandlung GmbH & Co. KG, 2021. https://tud.qucosa.de/id/qucosa%3A75857.
Full textHussain, Jabbar. "Deep Learning Black Box Problem." Thesis, Uppsala universitet, Institutionen för informatik och media, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-393479.
Full textLi, Shuai Ph D. Massachusetts Institute of Technology. "Computational imaging through deep learning." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122070.
Full textThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 143-154).
Computational imaging (CI) is a class of imaging systems that uses inverse algorithms to recover an unknown object from the physical measurement. Traditional inverse algorithms in CI obtain an estimate of the object by minimizing the Tikhonov functional, which requires explicit formulations of the forward operator of the physical system, as well as the prior knowledge about the class of objects being imaged. In recent years, machine learning architectures, and deep learning (DL) in particular, have attracted increasing attentions from CI researchers. Unlike traditional inverse algorithms in CI, DL approach learns both the forward operator and the objects' prior implicitly from training examples. Therefore, it is especially attractive when the forward imaging model is uncertain (e.g. imaging through random scattering media), or the prior about the class of objects is difficult to be expressed analytically (e.g. natural images).
In this thesis, the application of DL approaches in two different CI scenarios are investigated: imaging through a glass diffuser and quantitative phase retrieval (QPR), where an Imaging through Diffuser Network (IDiffNet) and a Phase Extraction Neural Network (PhENN) are experimentally demonstrated, respectively. This thesis also studies the influences of the two main factors that determine the performance of a trained neural network: network architecture (connectivity, network depth, etc) and training example quality (spatial frequency content in particular). Motivated by the analysis of the latter factor, two novel approaches, spectral pre-modulation approach and Learning Synthesis by DNN (LS-DNN) method, are successively proposed to improve the visual qualities of the network outputs. Finally, the LS-DNN enhanced PhENN is applied to a phase microscope to recover the phase of a red blood cell (RBC) sample.
Furthermore, through simulation of the learned weak object transfer function (WOTF) and experiment on a star-like phase target, we demonstrate that our network has indeed learned the correct physical model rather than doing something trivial as pattern matching.
by Shuai Li.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mechanical Engineering
Dumas, Thierry. "Deep learning for image compression." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S029/document.
Full textOver the last twenty years, the amount of transmitted images and videos has increased noticeably, mainly urged on by Facebook and Netflix. Even though broadcast capacities improve, this growing amount of transmitted images and videos requires increasingly efficient compression methods. This thesis aims at improving via learning two critical components of the modern image compression standards, which are the transform and the intra prediction. More precisely, deep neural networks are used for this task as they exhibit high power of approximation, which is needed for learning a reliable approximation of an optimal transform (or an optimal intra prediction filter) applied to image pixels. Regarding the learning of a transform for image compression via neural networks, a challenge is to learn an unique transform that is efficient in terms of rate-distortion while keeping this efficiency when compressing at different rates. That is why two approaches are proposed to take on this challenge. In the first approach, the neural network architecture sets a sparsity on the transform coefficients. The level of sparsity gives a direct control over the compression rate. To force the transform to adapt to different compression rates, the level of sparsity is stochastically driven during the training phase. In the second approach, the rate-distortion efficiency is obtained by minimizing a rate-distortion objective function during the training phase. During the test phase, the quantization step sizes are gradually increased according a scheduling to compress at different rates using the single learned transform. Regarding the learning of an intra prediction filter for image compression via neural networks, the issue is to obtain a learned filter that is adaptive with respect to the size of the image block to be predicted, with respect to missing information in the context of prediction, and with respect to the variable quantization noise in this context. A set of neural networks is designed and trained so that the learned prediction filter has this adaptibility
Ouyang, Wei. "Deep Learning for Advanced Microscopy." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC174/document.
Full textBackground: Microscopy plays an important role in biology since several centuries, but its resolution has long been limited to ~250nm due to diffraction, leaving many important biological structures (e.g. viruses, vesicles, nuclear pores, synapses) unresolved. Over the last decade, several super-resolution methods have been developed that break this limit. Among the most powerful and popular super-resolution techniques are those based on single molecular localization (single molecule localization microscopy, or SMLM) such as PALM and STORM. By precisely localizing positions of isolated fluorescent molecules in thousands or more sequentially acquired diffraction limited images, SMLM can achieve resolutions of 20-50 nm or better. However, SMLM is inherently slow due to the necessity to accumulate enough localizations to achieve high resolution sampling of the fluorescent structures. The drawback in acquisition speed (typically ~30 minutes per super-resolution image) makes it difficult to use SMLM in high-throughput and live cell imaging. Many methods have been proposed to address this issue, mostly by improving the localization algorithms to localize overlapping spots, but most of them compromise spatial resolution and cause artifacts.Methods and results: In this work, we applied deep learning based image-to-image translation framework for improving imaging speed and quality by restoring information from rapidly acquired low quality SMLM images. By utilizing recent advances in deep learning including the U-net and Generative Adversarial Networks, we developed our method Artificial Neural Network Accelerated PALM (ANNA-PALM) which is capable of learning structural information from training images and using the trained model to accelerate SMLM imaging by tens to hundreds folds. With experimentally acquired images of different cellular structures (microtubules, nuclear pores and mitochondria), we demonstrated that deep learning can efficiently capture the structural information from less than 10 training samples and reconstruct high quality super-resolution images from sparse, noisy SMLM images obtained with much shorter acquisitions than usual for SMLM. We also showed that ANNA-PALM is robust to possible variations between training and testing conditions, due either to changes in the biological structure or to changes in imaging parameters. Furthermore, we take advantage of the acceleration provided by ANNA-PALM to perform high throughput experiments, showing acquisition of ~1000 cells at high resolution in ~3 hours. Additionally, we designed a tool to estimate and reduce possible artifacts is designed by measuring the consistency between the reconstructed image and the experimental wide-field image. Our method enables faster and gentler imaging which can be applied to high-throughput, and provides a novel avenue towards live cell high resolution imaging. Deep learning methods rely on training data and their performance can be improved even further with more training data. One cheap way to obtain more training data is through data sharing within the microscopy community. However, it often difficult to exchange or share localization microscopy data, because localization tables alone are typically several gigabytes in size, and there is no dedicated platform for localization microscopy data which provide features such as rendering, visualization and filtering. To address these issues, we developed a file format that can losslessly compress localization tables into smaller files, alongside with a web platform called ShareLoc (https://shareloc.xyz) that allows to easily visualize and share 2D or 3D SMLM data. We believe that this platform can greatly improve the performance of deep learning models, accelerate tool development, facilitate data re-analysis and further promote reproducible research and open science
Gunér, Gustaf. "Receipt Scanning Using Deep Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279697.
Full textAnställda på företag gör ofta utlägg för inköp. Dessa inköp måste rapporteras manuellt, antingen av varje enskild anställd eller genom att skicka kvittona till företagets revisor och låta denna person göra det. I båda fallen transkriberas delar av kvitton manuellt. Denna process är tidskrävande och utgör en risk för att den mänskliga faktorn orsakar fel i avskrivningen, vilket kan leda till tvetydigheter i företagets finansiella redovisningar. En helautomatisk kvittoscanner, som från ett foto av ett kvitto kan extrahera ut metadata (t.ex. totalpris, moms och individuella objektnamn) skulle lösa många av dessa problem. Utöver att lösningen skulle göra rapporteringsprocessen mer effektiv, vilket skulle mins- ka kostnader och spara tid, skulle även korrektheten i datan kunna förbättras. I denna rapport utvärderas möjligheterna att använda djupinlärning som metod för att scanna kvitton, i jämförelse med en heuristisk metod baserad på dator-seende. Båda metoderna detekterar kvittot i bilden, förbehandlar originalfotot baserat på kvittots platsinformation och extraherar sedan texten med hjälp av optisk teckenigenkänning. Metoderna utvärderades baserat på noggrannheten i de förutspådda platserna för kvittona och noggrannheten i de extraherade texterna. Resultaten visar att djupinlärningsmetoden uppnådde avsevärt bättre resultat än den heuristiska metoden, i båda avseendena. I den generiska testuppsättningen, som inkluderade samtliga testinstanser, uppnådde djupinlärningsmetoden 31.1 procentenheter högre genomsnittlig Intersection over Uni- on (IoU), 23.4 procentenheter lägre genomsnittlig Character Error Rate (CER) och 17.5 procentenheter lägre genomsnittlig Word Error Rate (WER).
Elmarakeby, Haitham Abdulrahman. "Deep Learning for Biological Problems." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/86264.
Full textPh. D.
Amar, Gilad. "Deep learning for supernovae detection." Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/27090.
Full textStigenberg, Jakob. "Scheduling using Deep Reinforcement Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284506.
Full textI takt med radionätverks fortsatta utveckling under de senaste decenniernahar även komplexiteten och svårigheten i att effektivt utnyttja de tillgängligaresurserna ökat. I varje trådlöst nätverk finns en schemaläggare som styrtrafikflödet genom nätverket. Schemaläggaren är därmed en nyckelkomponentnär det kommer till att effektivt utnyttja de tillgängliga nätverksresurserna. Ien given nätverkspecifikation, t.ex. Long-Term Evoluation eller New Radio,är det givet vilka möjligheter till allokering som schemaläggaren kan använda.Hur schemaläggaren utnyttjar dessa möjligheter, det vill säga implementationenav schemaläggaren, är helt upp till varje enskild tillverkare. I tidigarearbete har fokus främst legat på att manuellt definera sorteringsvikter baseratpå, bland annat, Quality of Service (QoS) -klass, kanalkvalitet och fördröjning.Nätverkspaket skickas sedan givet viktordningen. I detta examensarbetepresenteras en ny metod för schemaläggning baserat på förstärkande inlärning.Metoden hanterar resursallokeraren som en svart låda och lär sig denbästa sorteringen direkt från indata (end-to-end) och hanterar även kontrollpaket.Ramverket utvärderades med ett Deep Q-Network i ett scenario medflera fördröjningskänsliga röstanvändare tillsammans med en (oändligt) storfilnedladdning. Algoritmen lärde sig att minska mängden försenade röstpaket,alltså öka QoS, med 29.6% samtidigt som den ökade total överföringshastighetmed 20.5, 23.5 och 16.2% i den 10:e, 50:e samt 90:e kvantilen.
Ramesh, Shreyas. "Deep Learning for Taxonomy Prediction." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/89752.
Full textMaster of Science
Taxonomy prediction is a science involving the hierarchical classification of DNA fragments up to the rank species. Given species diversity on Earth, taxonomy prediction gets challenging with (i) increasing number of species (labels) to classify and (ii) decreasing input (DNA) size. In this research, we introduce Predicting Linked Organisms, Plinko, for short. Plinko is a fully-functioning, state-of-the-art predictive system that accurately captures DNA - Taxonomy relationships where other state-of-the-art algorithms falter. Three major challenges in taxonomy prediction are (i) large dataset sizes (order of 109 sequences) (ii) large label spaces (order of 103 labels) and (iii) low resolution inputs (100 base pairs or less). Plinko leverages multi-view convolutional neural networks and the pre-defined taxonomy tree structure to improve multi-level taxonomy prediction for hard to classify sequences under the three conditions stated above. Plinko has the advantage of relatively low storage footprint, making the solution portable, and scalable with anticipated genome database growth. To the best of our knowledge, Plinko is the first to use multi-view convolutional neural networks as the core algorithm in a compositional, alignment-free approach to taxonomy prediction.
Xiao, Yao. "Vehicle Detection in Deep Learning." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91375.
Full textMaster of Science
Computer vision techniques are becoming increasingly popular. For example, face recognition is used to help police find criminals, vehicle detection is used to prevent drivers from serious traffic accidents, and written word recognition is used to convert written words into printed words. With the rapid development of vehicle detection given the use of deep learning techniques, there are still concerns about the performance of state-of-the art vehicle detection techniques. For example, state-of-the-art vehicle detectors are restricted by the large variation of scales. People working on vehicle detection are developing techniques to solve this problem. This thesis proposes an advanced vehicle detection model, utilizing deep learning techniques to detect the potential objects’ information.
Howard, Shaun Michael. "Deep Learning for Sensor Fusion." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1495751146601099.
Full textAbrishami, Hedayat. "Deep Learning Based Electrocardiogram Delineation." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563525992210273.
Full textMansanet, Sandín Jorge. "Contributions to Deep Learning Models." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/61296.
Full text[ES] El Aprendizaje Profundo (Deep Learning en inglés) es una nueva área dentro del campo del Aprendizaje Automático que pretende crear modelos computacionales que aprendan varias representaciones de los datos utilizando arquitecturas profundas. Este tipo de métodos ha ganado mucha popularidad durante los últimos años debido a los impresionantes resultados obtenidos en diferentes tareas como el reconocimiento automático del habla, el reconocimiento y la detección automática de objetos, el procesamiento de lenguajes naturales, etc. El principal objetivo de esta tesis es aportar una serie de contribuciones realizadas dentro del marco del Aprendizaje Profundo, particularmente enfocadas a problemas relacionados con la visión por computador. Estas contribuciones se resumen en dos novedosos métodos: una nueva técnica de regularización para Restricted Boltzmann Machines llamada Mask Selective Regularization (MSR), y una potente red neuronal discriminativa llamada Local Deep Neural Network (Local-DNN). Por una lado, el método MSR se basa en aprovechar las ventajas de las técnicas de regularización clásicas basadas en las normas L2 y L1. Ambas regularizaciones se aplican sobre los parámetros de la RBM teniendo en cuenta el estado del modelo durante el entrenamiento y la topología de los datos de entrada. Por otro lado, El modelo Local-DNN se basa en dos conceptos fundamentales: características locales y arquitecturas profundas. De forma similar a las redes convolucionales, Local-DNN restringe el aprendizaje a regiones locales de la imagen de entrada. La red neuronal pretende clasificar cada característica local con la etiqueta de la imagen a la que pertenece, y, finalmente, todas estas contribuciones se tienen en cuenta utilizando un sencillo sistema de votación durante la predicción. Los métodos propuestos a lo largo de la tesis han sido ampliamente evaluados en varios experimentos utilizando distintas bases de datos, principalmente en problemas de visión por computador. Los resultados obtenidos muestran el buen funcionamiento de dichos métodos, y sirven para validar las estrategias planteadas. Entre ellos, destacan los resultados obtenidos aplicando el modelo Local-DNN al problema del reconocimiento de género utilizando imágenes faciales, donde se han mejorado los resultados publicados del estado del arte.
[CAT] L'Aprenentatge Profund (Deep Learning en anglès) és una nova àrea dins el camp de l'Aprenentatge Automàtic que pretén crear models computacionals que aprenguen diverses representacions de les dades utilitzant arquitectures profundes. Aquest tipus de mètodes ha guanyat molta popularitat durant els últims anys a causa dels impressionants resultats obtinguts en diverses tasques com el reconeixement automàtic de la parla, el reconeixement i la detecció automàtica d'objectes, el processament de llenguatges naturals, etc. El principal objectiu d'aquesta tesi és aportar una sèrie de contribucions realitzades dins del marc de l'Aprenentatge Profund, particularment enfocades a problemes relacionats amb la visió per computador. Aquestes contribucions es resumeixen en dos nous mètodes: una nova tècnica de regularització per Restricted Boltzmann Machines anomenada Mask Selective Regularization (MSR), i una potent xarxa neuronal discriminativa anomenada Local Deep Neural Network ( Local-DNN). D'una banda, el mètode MSR es basa en aprofitar els avantatges de les tècniques de regularització clàssiques basades en les normes L2 i L1. Les dues regularitzacions s'apliquen sobre els paràmetres de la RBM tenint en compte l'estat del model durant l'entrenament i la topologia de les dades d'entrada. D'altra banda, el model Local-DNN es basa en dos conceptes fonamentals: característiques locals i arquitectures profundes. De forma similar a les xarxes convolucionals, Local-DNN restringeix l'aprenentatge a regions locals de la imatge d'entrada. La xarxa neuronal pretén classificar cada característica local amb l'etiqueta de la imatge a la qual pertany, i, finalment, totes aquestes contribucions es fusionen durant la predicció utilitzant un senzill sistema de votació. Els mètodes proposats al llarg de la tesi han estat àmpliament avaluats en diversos experiments utilitzant diferents bases de dades, principalment en problemes de visió per computador. Els resultats obtinguts mostren el bon funcionament d'aquests mètodes, i serveixen per validar les estratègies plantejades. Entre d'ells, destaquen els resultats obtinguts aplicant el model Local-DNN al problema del reconeixement de gènere utilitzant imatges facials, on s'han millorat els resultats publicats de l'estat de l'art.
Mansanet Sandín, J. (2016). Contributions to Deep Learning Models [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61296
TESIS
Deselaers, Johannes. "Deep Learning Pupil Center Localization." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287538.
Full textDetta projekt strävar efter att uppnå högpresterande objektlokalisering med djupa faltningsnätverker/Convolutional Neural Networks (CNNs) - särskilt för pupillcenter i samband med eyetracking. Tre olika nätverksarkitekturer som passar uppgiften utvecklas, utvärderas och jämförs - en baserad på regression med fullt anslutna lager, ett Fully Convolutional Network och ett Deconvolutional Network. Den bäst presterande modellen uppnår ett medelfel på endast 0.52 pixelavstånd och ett medianfel på 0.42 pixelavstånd jämfört med marken sanningsetiketten. Den 95:e percentilen ligger på 1.12 pixelfel. Detta överträffar prestandan hos nuvarande toppmoderna detekteringsalgoritmer för pupillcentrum med en storleksordning, ett resultat som kan ackrediteras både till algoritmen såväl som till dataset som överstiger datasets som används för detta ändamål i tidigare publikationer i lämplighet, kvalitet och storlek. Möjligheter till ytterligare förbättringar av beräkningskostnaden baserad på ny kompressionsforskning föreslås.
Jaderberg, Maxwell. "Deep learning for text spotting." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:e893c11e-6b6b-4d11-bb25-846bcef9b13e.
Full textShakibi, Babak. "Predicting parameters in deep learning." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/50999.
Full textScience, Faculty of
Computer Science, Department of
Graduate
Nguyen, Thien Huu. "Deep Learning for Information Extraction." Thesis, New York University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10260911.
Full textThe explosion of data has made it crucial to analyze the data and distill important information effectively and efficiently. A significant part of such data is presented in unstructured and free-text documents. This has prompted the development of the techniques for information extraction that allow computers to automatically extract structured information from the natural free-text data. Information extraction is a branch of natural language processing in artificial intelligence that has a wide range of applications, including question answering, knowledge base population, information retrieval etc. The traditional approach for information extraction has mainly involved hand-designing large feature sets (feature engineering) for different information extraction problems, i.e, entity mention detection, relation extraction, coreference resolution, event extraction, and entity linking. This approach is limited by the laborious and expensive effort required for feature engineering for different domains, and suffers from the unseen word/feature problem of natural languages.
This dissertation explores a different approach for information extraction that uses deep learning to automate the representation learning process and generate more effective features. Deep learning is a subfield of machine learning that uses multiple layers of connections to reveal the underlying representations of data. I develop the fundamental deep learning models for information extraction problems and demonstrate their benefits through systematic experiments.
First, I examine word embeddings, a general word representation that is produced by training a deep learning model on a large unlabelled dataset. I introduce methods to use word embeddings to obtain new features that generalize well across domains for relation extraction. This is done for both the feature-based method and the kernel-based method of relation extraction.
Second, I investigate deep learning models for different problems, including entity mention detection, relation extraction and event detection. I develop new mechanisms and network architectures that allow deep learning to model the structures of information extraction problems more effectively. Some extensive experiments are conducted on the domain adaptation and transfer learning settings to highlight the generalization advantage of the deep learning models for information extraction.
Finally, I investigate the joint frameworks to simultaneously solve several information extraction problems and benefit from the inter-dependencies among these problems. I design a novel memory augmented network for deep learning to properly exploit such inter-dependencies. I demonstrate the effectiveness of this network on two important problems of information extraction, i.e, event extraction and entity linking.
Yang, Yang. "Learning Hierarchical Representations for Video Analysis Using Deep Learning." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5892.
Full textPh.D.
Doctorate
Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
Backstad, Sebastian. "Federated Averaging Deep Q-NetworkA Distributed Deep Reinforcement Learning Algorithm." Thesis, Umeå universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149637.
Full textFaulkner, Ryan. "Dyna learning with deep belief networks." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97177.
Full textL'objectif de l'apprentissage par renforcement est de choisir de bonnes actions dansun environnement où les informations sont fournies par une récompense numérique, etl'état actuel (données sensorielles) est supposé être disponible à chaque pas de temps. Lanotion de "correct" est définie comme étant la maximisation des rendements attendus cumulatifsdans le temps. Il est parfois utile de construire des modèles de l'environnementpour aider à résoudre le problème. Nous étudions l'apprentissage par renforcement destyleDyna, une approche performante dans les situations où les données réelles disponiblesne sont pas nombreuses. L'idée principale est de compléter les trajectoires réelles aveccelles simulées échantillonnées partir d'un modèle appri de l'environnement. Toutefois,dans les domaines à plusieurs états, le problème de l'apprentissage d'un bon modèlegénératif de l'environnement est jusqu'à présent resté ouvert. Nous proposons d'utiliserles réseaux profonds de croyance pour apprendre un modèle de l'environnement. Lesréseaux de croyance profonds (Hinton, 2006) sont des modèles génératifs qui sont efficaces pourl'apprentissage des relations de dépendance temporelle parmi des données complexes. Ila été démontré que de tels modèles peuvent être appris dans un laps de temps raisonnablequand ils sont construits en utilisant des modèles de l'énergie. Nous présentons notre algorithmepour l'utilisation des réseaux de croyance profonds en tant que modèle génératifpour simuler l'environnement dans l'architecture Dyna, ainsi que des résultats empiriquesprometteurs.
Monica, Riccardo. "Deep Incremental Learning for Object Recognition." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12331/.
Full textCuccovillo, Andrea. "Deep Learning: descrizione e alcune applicazioni." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14896/.
Full textValeriana, Riccardo. "Deep Learning: Algoritmo di Classificazione Immagini." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17557/.
Full text