Academic literature on the topic 'DeepL Translator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DeepL Translator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DeepL Translator"
Ziganshina, Liliya Eugenevna, Ekaterina V. Yudina, Azat I. Gabdrakhmanov, and Juliane Ried. "Assessing Human Post-Editing Efforts to Compare the Performance of Three Machine Translation Engines for English to Russian Translation of Cochrane Plain Language Health Information: Results of a Randomised Comparison." Informatics 8, no. 1 (February 10, 2021): 9. http://dx.doi.org/10.3390/informatics8010009.
Full textHandzel, Zbigniew. "TRANSLATOR DeepL – PRZEŁOM W TŁUMACZENIU KOMPUTEROWYM." ELEKTRONIKA - KONSTRUKCJE, TECHNOLOGIE, ZASTOSOWANIA 1, no. 6 (June 30, 2021): 22–24. http://dx.doi.org/10.15199/13.2021.6.3.
Full textBowker, Lynne. "Machine translation and author keywords: A viable search strategy for scholars with limited English proficiency?" Advances in Classification Research Online 29, no. 1 (June 28, 2019): 13. http://dx.doi.org/10.7152/acro.v29i1.15455.
Full textWIESMANN, Eva. "MACHINE TRANSLATION IN THE FIELD OF LAW: A STUDY OF THE TRANSLATION OF ITALIAN LEGAL TEXTS INTO GERMAN." Comparative Legilinguistics 37 (October 23, 2019): 117–53. http://dx.doi.org/10.14746/cl.2019.37.4.
Full textYang, Yichen. "From speakability to hypothetical mise en scène: A Chinese rendition of monologues from Peter Shaffer’s Amadeus from page to stage." Journal of Adaptation in Film & Performance 13, no. 1 (March 1, 2020): 79–90. http://dx.doi.org/10.1386/jafp_00014_1.
Full textRoberts, Trask. "Samuel Beckett's Disruptive Translations of ‘je voudrais que mon amour meure’." Journal of Beckett Studies 28, no. 2 (September 2019): 163–78. http://dx.doi.org/10.3366/jobs.2019.0266.
Full textR. Welch, Ellen. "Translating Authority: Cervantes’ Los trabajos de Persiles y Sigismunda in French (1618)." Translation and Literature 19, no. 1 (March 2010): 26–41. http://dx.doi.org/10.3366/e0968136109000752.
Full textEthelb, Hamza. "Hidden Hands: An Institutional Force in Political News Translation." Journal of Critical Studies in Language and Literature 1, no. 1 (May 20, 2020): 1–8. http://dx.doi.org/10.46809/jcsll.v1i1.1.
Full textMunip, Abdul. "UNIQUENESS IN TRANSLATING ARABIC HAGIOGRAPHY OF SHAIKH ‘ABD AL-QĀDIR AL-JAILĀNĪ: THE CASE OF AN-NŪR AL-BURHĀNĪ." Indonesian Journal of Applied Linguistics 7, no. 3 (January 31, 2018): 668. http://dx.doi.org/10.17509/ijal.v7i3.9817.
Full textAntonova, Anna. "Three Faces of the Monster: Interpreting Disability and Creating Meaning in Translations of Alice Munro’s “Child’s Play”." TranscUlturAl: A Journal of Translation and Cultural Studies 11, no. 1 (August 6, 2019): 85–103. http://dx.doi.org/10.21992/tc29400.
Full textDissertations / Theses on the topic "DeepL Translator"
Marcassoli, Giulia. "Gli output dei sistemi di traduzione automatica neurale: valutazione della qualità di Google Translate e DeepL Translator nella combinazione tedesco-italiano." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19536/.
Full textLuccioli, Alessandra. "Stereotipi di genere e traduzione automatica dall'inglese all’italiano: uno studio di caso sul femminile nelle professioni." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20408/.
Full textCozza, Antonella. "Google Translate e DeepL: la traduzione automatica in ambito turistico." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textDi, Gangi Mattia Antonino. "Neural Speech Translation: From Neural Machine Translation to Direct Speech Translation." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/259137.
Full textOlmucci, Poddubnyy Oleksandr. "Investigating Single Translation Function CycleGANs." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16126/.
Full textChatterjee, Rajen. "Automatic Post-Editing for Machine Translation." Doctoral thesis, Università degli studi di Trento, 2019. http://hdl.handle.net/11572/242495.
Full textCaglayan, Ozan. "Multimodal Machine Translation." Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1016/document.
Full textMachine translation aims at automatically translating documents from one language to another without human intervention. With the advent of deep neural networks (DNN), neural approaches to machine translation started to dominate the field, reaching state-ofthe-art performance in many languages. Neural machine translation (NMT) also revived the interest in interlingual machine translation due to how it naturally fits the task into an encoder-decoder framework which produces a translation by decoding a latent source representation. Combined with the architectural flexibility of DNNs, this framework paved the way for further research in multimodality with the objective of augmenting the latent representations with other modalities such as vision or speech, for example. This thesis focuses on a multimodal machine translation (MMT) framework that integrates a secondary visual modality to achieve better and visually grounded language understanding. I specifically worked with a dataset containing images and their translated descriptions, where visual context can be useful forword sense disambiguation, missing word imputation, or gender marking when translating from a language with gender-neutral nouns to one with grammatical gender system as is the case with English to French. I propose two main approaches to integrate the visual modality: (i) a multimodal attention mechanism that learns to take into account both sentence and convolutional visual representations, (ii) a method that uses global visual feature vectors to prime the sentence encoders and the decoders. Through automatic and human evaluation conducted on multiple language pairs, the proposed approaches were demonstrated to be beneficial. Finally, I further show that by systematically removing certain linguistic information from the input sentences, the true strength of both methods emerges as they successfully impute missing nouns, colors and can even translate when parts of the source sentences are completely removed
Sandström, Emil. "Molecular Optimization Using Graph-to-Graph Translation." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-172584.
Full textGarcía, Martínez Mercedes. "Factored neural machine translation." Thesis, Le Mans, 2018. http://www.theses.fr/2018LEMA1002/document.
Full textCommunication between humans across the lands is difficult due to the diversity of languages. Machine translation is a quick and cheap way to make translation accessible to everyone. Recently, Neural Machine Translation (NMT) has achievedimpressive results. This thesis is focus on the Factored Neural Machine Translation (FNMT) approach which is founded on the idea of using the morphological and grammatical decomposition of the words (lemmas and linguistic factors) in the target language. This architecture addresses two well-known challenges occurring in NMT. Firstly, the limitation on the target vocabulary size which is a consequence of the computationally expensive softmax function at the output layer of the network, leading to a high rate of unknown words. Secondly, data sparsity which is arising when we face a specific domain or a morphologically rich language. With FNMT, all the inflections of the words are supported and larger vocabulary is modelled with similar computational cost. Moreover, new words not included in the training dataset can be generated. In this work, I developed different FNMT architectures using various dependencies between lemmas and factors. In addition, I enhanced the source language side also with factors. The FNMT model is evaluated on various languages including morphologically rich ones. State of the art models, some using Byte Pair Encoding (BPE) are compared to the FNMT model using small and big training datasets. We found out that factored models are more robust in low resource conditions. FNMT has been combined with BPE units performing better than pure FNMT model when trained with big data. We experimented with different domains obtaining improvements with the FNMT models. Furthermore, the morphology of the translations is measured using a special test suite showing the importance of explicitly modeling the target morphology. Our work shows the benefits of applying linguistic factors in NMT
Bujwid, Sebastian. "GANtruth – a regularization method for unsupervised image-to-image translation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233849.
Full textI det här arbetet föreslår vi en ny och effektiv metod för att begränsa värdemängden för det illa-definierade problemet som utgörs av oövervakad bild-till-bild-översättning. Vi antar att miljön i källdomänen är känd, och vi föreslår att uttryckligen framtvinga bevarandet av grundfaktaetiketterna på bilder översatta från källa till måldomän. Vi utför empiriska experiment där information som semantisk segmentering och skillnad bevaras och visar belägg för att vår metod uppnår förbättrad prestanda över baslinjemetoden UNIT på att översätta bilder från SYNTHIA till Cityscapes. De genererade bilderna uppfattas som mer realistiska i undersökningar där människor tillfrågats och har minskat fel när de används som anpassade bilder i domänpassningsscenario. Dessutom är det underliggande grundfaktabevarande antagandet kompletterat med alternativa tillvägagångssätt och genom att kombinera det med UNIT-ramverket förbättrar vi resultaten ytterligare.
Books on the topic "DeepL Translator"
Bunt, Harry C. Trends in Parsing Technology: Dependency Parsing, Domain Adaptation, and Deep Parsing. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textMarieluise, Fleisser. Marieluise Fleisser's 'The deep sea fish': A translation and critical examination. Ann Arbor: University Microfilms, 1997.
Find full textDeep things out of darkness: The book of Job : essays and a new English translation. Kampen, Netherlands: Pharos, 1995.
Find full textHaroutyunian, Sona, and Dario Miccoli. Orienti migranti: tra letteratura e traduzione. Venice: Fondazione Università Ca’ Foscari, 2020. http://dx.doi.org/10.30687/978-88-6969-499-8.
Full textFavaro, Alice. Después de la caída del ‘ángel’. Venice: Edizioni Ca' Foscari, 2020. http://dx.doi.org/10.30687/978-88-6969-416-5.
Full textTyndale. Drink Deeply Bible: New Living Translation, Red Plastic Case (Bible Nlt). Tyndale House Publishers, 2007.
Find full textSmith, Valerie Rae. Marieluise Fleisser's The deep sea fish: A translation and critical examination. 1996.
Find full textTyndale. Drink Deeply Bible: New Living Translation, Blue Goldfish Plastic Case (Bible Nlt). Tyndale House Publishers, 2007.
Find full textTyndale. Drink Deeply Bible: New Living Translation, Orange Waves Plastic Case (Bible Nlt). Tyndale House Publishers, 2007.
Find full textShanmugamani, Rajalingappaa, Luca Massaron, Alberto Boschetti, Alexey Grigorev, and Abhishek Thakur. TensorFlow Deep Learning Projects: 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning. Packt Publishing, 2018.
Find full textBook chapters on the topic "DeepL Translator"
Steiner, Riccardo. "“The Deep Open Sea”1 “l’alto mare aperto”." In Translation / Transformation, 88–119. Abingdon, Oxon; New York, NY: Routledge, 2021. | Series: New library of psychoanalysis: Routledge, 2021. http://dx.doi.org/10.4324/9781003096399-5.
Full textLiu, Yang, and Jiajun Zhang. "Deep Learning in Machine Translation." In Deep Learning in Natural Language Processing, 147–83. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5209-5_6.
Full textKatzir, Oren, Dani Lischinski, and Daniel Cohen-Or. "Cross-Domain Cascaded Deep Translation." In Computer Vision – ECCV 2020, 673–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58536-5_40.
Full textSkansi, Sandro, Leo Mršić, and Ines Skelac. "A Lost Croatian Cybernetic Machine Translation Program." In Guide to Deep Learning Basics, 67–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37591-1_7.
Full textScott, Bernard. "Deep Learning MT and Logos Model." In Translation, Brains and the Computer, 173–202. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76629-4_8.
Full textSwathi, S., and L. S. Jayashree. "Machine Translation Using Deep Learning: A Comparison." In Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications, 389–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24051-6_38.
Full textMinh, Tuan Nguyen, Phayung Meesad, and Huy Cuong Nguyen Ha. "English-Vietnamese Machine Translation Using Deep Learning." In Lecture Notes in Networks and Systems, 99–107. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79757-7_10.
Full textMurez, Zak, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi, and Kyungnam Kim. "Domain Adaptation via Image to Image Translation." In Domain Adaptation in Computer Vision with Deep Learning, 117–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45529-3_7.
Full textZhang, Lin, Tiziano Portenier, Christoph Paulus, and Orcun Goksel. "Deep Image Translation for Enhancing Simulated Ultrasound Images." In Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis, 85–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60334-2_9.
Full textGuard, Nahid, and Suneeta V. Budihal. "Image-To-Image Translation Using Deep Convolutional GANs." In Information and Communication Technology for Competitive Strategies (ICTCS 2020), 569–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0739-4_54.
Full textConference papers on the topic "DeepL Translator"
Noever, David, Josh Kalin, Matthew Ciolino, Dom Hambrick, and Gerry Dozier. "Local Translation Services for Neglected Languages." In 8th International Conference on Artificial Intelligence and Applications (AIAP 2021). AIRCC Publishing Corporation, 2021. http://dx.doi.org/10.5121/csit.2021.110110.
Full textCai, Ruichu, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang, Zijian Li, and Zhihao Liang. "An Encoder-Decoder Framework Translating Natural Language to Database Queries." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/553.
Full textYedidiah, S. "Translating Equations Into Their Physical Meaning as an Effective Tool of Engineering." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98012.
Full textKobus, Catherine, Josep Crego, and Jean Senellart. "Domain Control for Neural Machine Translation." In RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning. Incoma Ltd. Shoumen, Bulgaria, 2017. http://dx.doi.org/10.26615/978-954-452-049-6_049.
Full textMiceli Barone, Antonio Valerio, Jindřich Helcl, Rico Sennrich, Barry Haddow, and Alexandra Birch. "Deep architectures for Neural Machine Translation." In Proceedings of the Second Conference on Machine Translation. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/w17-4710.
Full textNakov, Preslav, and Stephan Vogel. "Robust Tuning Datasets for Statistical Machine Translation." In RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning. Incoma Ltd. Shoumen, Bulgaria, 2017. http://dx.doi.org/10.26615/978-954-452-049-6_071.
Full text"Session details: Deep-1 (Image Translation)." In 2018 ACM Multimedia Conference, chair Nicu Sebe. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3240508.3286919.
Full textSebe, Nicu. "Session details: Deep-1 (Image Translation)." In MM '18: ACM Multimedia Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3286919.
Full textHong, Zhang-Wei, Yu-Ming Chen, Hsuan-Kung Yang, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, Brian Hsi-Lin Ho, et al. "Virtual-to-Real: Learning to Control in Visual Semantic Segmentation." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/682.
Full textKocmi, Tom, and Ondřej Bojar. "Curriculum Learning and Minibatch Bucketing in Neural Machine Translation." In RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning. Incoma Ltd. Shoumen, Bulgaria, 2017. http://dx.doi.org/10.26615/978-954-452-049-6_050.
Full textReports on the topic "DeepL Translator"
Terzyan, Aram. Post-Soviet State - Building in Kyrgyzstan: Behind and Beyond the Revolutions. Eurasia Institutes, April 2021. http://dx.doi.org/10.47669/caps-1-2021.
Full textBeuermann, Diether, Henry Mooney, Elton Bollers, David Rosenblatt, Maria Alejandra Zegarra, Laura Giles Álvarez, Gralyn Frazier, et al. Caribbean Quarterly Bulletin 2020: Volume 9: Issue 4, December 2020. Inter-American Development Bank, December 2020. http://dx.doi.org/10.18235/0002948.
Full text