Academic literature on the topic 'Deeplearning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deeplearning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Deeplearning"
Pulaparthi, Naga MahaLakshmi, Madhulika Dabbiru, Charishma Penkey, and Dr Nrusimhadri Naveen. "Brain Stroke Detection Using DeepLearning." International Journal of Research Publication and Reviews 4, no. 4 (April 2023): 2468–73. http://dx.doi.org/10.55248/gengpi.4.423.35996.
Full textVerma, Pratibha, Vineet Kumar Awasthi, and Sanat Kumar Sahu. "A Novel Design of Classification of Coronary Artery Disease Using Deep Learning and Data Mining Algorithms." Revue d'Intelligence Artificielle 35, no. 3 (June 30, 2021): 209–15. http://dx.doi.org/10.18280/ria.350304.
Full textA. J., Anju, and J. E. Judith. "Optimized Deeplearning Algorithm for Software Defects Prediction." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9s (August 31, 2023): 173–88. http://dx.doi.org/10.17762/ijritcc.v11i9s.7409.
Full textMotwani, Nilesh Parmanand, and Soumya S. "Human Activities Detection using DeepLearning Technique- YOLOv8." ITM Web of Conferences 56 (2023): 03003. http://dx.doi.org/10.1051/itmconf/20235603003.
Full textSherly, S. Irin, J. Sandhiya, S. Priyanga, M. A. Sharon Victoriya, and K. Sorna Ajantha. "Prediction of Cardiovascular Disease using DeepLearning Algorithm." Journal of Cognitive Human-Computer Interaction 5, no. 1 (2023): 20–31. http://dx.doi.org/10.54216/jchci.050102.
Full textLi, Xun, Xin Yun, Zhengfan Zhao, Kaibin Zhang, and Xiaohua Wang. "Lightweight Deeplearning Method for Multi-vehicle Object Recognition." Information Technology and Control 51, no. 2 (June 23, 2022): 294–312. http://dx.doi.org/10.5755/j01.itc.51.2.30667.
Full textDoroshenko, А. Yu, V. M. Shpyg, and R. V. Kushnirenko. "Deeplearning-based approach to improving numerical weather forecasts." PROBLEMS IN PROGRAMMING, no. 3 (September 2023): 91–98. http://dx.doi.org/10.15407/pp2023.03.091.
Full textTiku, Johanes Christianto, Wahyu Andi Saputra, and Novian Adi Prasetyo. "Pengembangan Sistem Deteksi Memakai Masker Menggunakan Open CV, Tensorflow dan Keras." JURIKOM (Jurnal Riset Komputer) 9, no. 4 (August 30, 2022): 1183. http://dx.doi.org/10.30865/jurikom.v9i4.4739.
Full textJo and Kim. "NIR Reflection Augmentation for DeepLearning-Based NIR Face Recognition." Symmetry 11, no. 10 (October 3, 2019): 1234. http://dx.doi.org/10.3390/sym11101234.
Full textSidana, Khushi. "REAL TIME YOGA POSE DETECTION USING DEEPLEARNING: A REVIEW." International Journal of Engineering Applied Sciences and Technology 7, no. 7 (November 1, 2022): 61–65. http://dx.doi.org/10.33564/ijeast.2022.v07i07.011.
Full textDissertations / Theses on the topic "Deeplearning"
Kapoor, Rishika. "Malaria Detection Using Deep Convolution Neural Network." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613749143868579.
Full textAccornero, Andrea. "Covid-19 x-ray Analisi con reti neurali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24952/.
Full textFall, Ahmad. "Interpretability of Neural Networks applied to Electrocardiograms : Translational Applications in Cardiovascular Diseases." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS473.pdf.
Full textElectrocardiograms (ECGs) are non-invasive tools for assessing the electrical activity of the heart, they are widely used to detect cardiac abnormalities. Deep learning algorithms enable automatic detection of complex patterns in ECG data, offering significant potential for improved cardiac diagnosis. However, their adoption is hindered by a low level of trust among medical professionals and a substantial need for data to train the models. Artificial intelligence, particularly deep learning, allows for exploration of hierarchical representations of complex data, leading to a better understanding of internal interactions. Nevertheless, interpretability of the models are crucial to gain specialists’ trust and facilitate widespread implementation. This thesis aims to develop a novel interpretability algorithm for neural networks applied to ECG analysis, working in close collaboration with cardiology specialists. Our study focuses on a specific cardiac pathology, Torsades-de-Pointes (TdP). TdP is a life threatening arrhythmia associated with various factors, including medications and congenital mutations. Accurate prediction of this risk can enhance patient care and potentially save lives. We started by designing a neural network algorithm for predicting the risk of TdP using ECG data. Second, we developed a new interpretability algorithm named Evocclusion, that enables a better understanding of the neural network’s decision process. This algorithm aims to provide human readable insights into the model’s predictions, leading to increased trust among clinicians and specialists. Third, we present two main frameworks developed to improve ECG analysis and the interpretability method. A crucial aspect of ECG analysis is signal quality. Therefore, we propose a new method using a denoising autoencoder to significantly remove noise from the ECG data and partially recover the waveform from alterations. This technique improves the reliability of the input data for subsequent analysis and ensures that the neural networks have access to high quality information. We also developed neural networks to segment the ECG and extract beats, P and T waves, and QRS complexes. These segmentation results enable a deeper understanding of the ECG components and facilitate further analysis. Additionally, we provide a method to assess a quality score vector of the ECG, enabling us to focus on parts of the signal that have a good quality score. This approach ensures that the most reliable information is used for analysis and clinicians which reduces the risk of false positives and negatives. This research seeks to enhance trust in artificial intelligence, leading to better automation of complex tasks in medicine and beyond, ultimately improving patient outcomes
Alshatta, Mohammad Samer. "Real Time Gym Activity Detection using Monocular RGB Camera." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-41440.
Full textStymne, Jakob, and Odeback Oliver Welin. "Evaluation of Temporal Convolutional Networks for Nanopore DNA Sequencing." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295624.
Full textNanopore sequencing är en nyligen utvecklad metod för DNA-sekvensering som innebär att man applicerar ett konstant elektriskt fält över ett membran och translokerar enkelsträngade DNA-molekyler genom membranporer. Detta resulterar i en elektrisk signal som beror på DNA-strukturen. Målet med detta projekt är att träna och evaluera icke-kausula ”temporal convolutional networks” som ska kunna översätta denna ofiltrerade elektriska signalen till den motsvarande nukleotidsekvensen. Träningsdatan är ett urval av genomen från bakterien E. coli och viruset phage Lambda. Vi implementerade och utvärderade ett antal olika nätverksstrukturer. Ett nätverk med fem residuala block med fem faltande lager i varje block gav maximal prestation, med en precision på 76.1% på testdata. Detta resultat indikerar att ett ”temporal convolution network” skulle kunna vara ett effektivt sätt att sekvensera DNA.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Di, Ielsi Luca. "Analisi di serie temporali riguardanti dati energetici mediante architetture neurali profonde." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10504/.
Full textIngelhag, Anders. "Samarbete mellan tekniklärare vid framtagning av undervisningsmaterial." Thesis, Högskolan i Halmstad, Akademin för lärande, humaniora och samhälle, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33658.
Full textRacette, Olsén Michael. "Electrocardiographic deviation detection : Using long short-term memory recurrent neural networks to detect deviations within electrocardiographic records." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76411.
Full textAntonini, Lorenzo. "Reinforcement Learning Middleware Solutions for Android-oriented Distributed Deployments." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textMajtán, Martin. "Trénovatelná segmentace obrazu s použitím hlubokých neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-241142.
Full textBooks on the topic "Deeplearning"
Raj, Rahul. Java Deep Learning Cookbook: Train neural networks for classification, NLP, and reinforcement learning using Deeplearning4j. Packt Publishing, 2019.
Find full textKarim, Md Rezaul. Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs. Packt Publishing, 2018.
Find full textJoshi, Nisheeth. Hands-On Artificial Intelligence with Java for Beginners: Build intelligent apps using machine learning and deep learning with Deeplearning4j. Packt Publishing, 2018.
Find full textKienzler, Romeo. Mastering Apache Spark 2.x - Second Edition: Scale your machine learning and deep learning systems with SparkML, DeepLearning4j and H2O. Packt Publishing - ebooks Account, 2017.
Find full textBook chapters on the topic "Deeplearning"
Himabindu, Y., R. Manjusha, and Latha Parameswaran. "Detection and Removal of RainDrop from Images Using DeepLearning." In Computational Vision and Bio-Inspired Computing, 1355–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37218-7_142.
Full textNagar, Pritesh, Hemant Kumar Menaria, and Manish Tiwari. "Novel Approach of Intrusion Detection Classification Deeplearning Using SVM." In First International Conference on Sustainable Technologies for Computational Intelligence, 365–81. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0029-9_29.
Full textKahla, Mayssa Ben, Dalel Kanzari, and Ahmed Maalel. "DeepLCP: Towards a DeepLearning Approach to Prevent Lung Cancer." In Digital Health in Focus of Predictive, Preventive and Personalised Medicine, 17–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49815-3_3.
Full textRenard, Arnaud, Jean-Matthieu Etancelin, and Michael Krajecki. "romeoLAB: A High Performance Training Platform for HPC, GPU and DeepLearning." In Communications in Computer and Information Science, 55–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73353-1_4.
Full textDiao, Chunyan, Dafang Zhang, Wei Liang, Kuan-Ching Li, and Man Jiang. "CRFST-GCN: A Deeplearning Spatial-Temporal Frame to Predict Traffic Flow." In Algorithms and Architectures for Parallel Processing, 3–17. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95384-3_1.
Full textZairi, Khadidja. "DeepLearning for Computer Vision Problems." In Advanced Deep Learning Applications in Big Data Analytics, 92–109. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-2791-7.ch005.
Full textBhargavi, K. "Deep Learning Architectures and Tools." In Deep Learning Applications and Intelligent Decision Making in Engineering, 55–75. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-2108-3.ch002.
Full textConference papers on the topic "Deeplearning"
Cai, Jingjing, Jianping Li, Wei Li, and Ji Wang. "Deeplearning Model Used in Text Classification." In 2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). IEEE, 2018. http://dx.doi.org/10.1109/iccwamtip.2018.8632592.
Full textRafi, Sk Mohammad, and Shaheda Akthar. "ECG Classification using a Hybrid Deeplearning Approach." In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). IEEE, 2021. http://dx.doi.org/10.1109/icais50930.2021.9395897.
Full textKumar, Manish, and Swati Srivastava. "Emotion Detection through Facial Expression using DeepLearning." In 2021 5th International Conference on Information Systems and Computer Networks (ISCON). IEEE, 2021. http://dx.doi.org/10.1109/iscon52037.2021.9702451.
Full textSrividya, K., S. Nagaraj, B. Puviyarasi, T. Sathies Kumar, A. Robinson stain Rufus, and G. Sreeja. "Deeplearning Based Bird Deterrent System for Agriculture." In 2021 4th International Conference on Computing and Communications Technologies (ICCCT). IEEE, 2021. http://dx.doi.org/10.1109/iccct53315.2021.9711779.
Full textRpunithavathi, Dr, Mr Mukesh Sai M, Mr Hiruthik R, Mr Sripadmesh S, and Mr Kishore RV. "Deepfake Detection with Deeplearning Using Resnet CNN Algorithm." In International Conference on Recent Trends in Data Science and its Applications (ICRTDA 2023). Denmark: River Publishers, 2023. http://dx.doi.org/10.13052/rp-9788770040723.209.
Full textHaritha, D., M. Krishna Pranathi, and M. Reethika. "COVID Detection from Chest X-rays with DeepLearning: CheXNet." In 2020 5th International Conference on Computing, Communication and Security (ICCCS). IEEE, 2020. http://dx.doi.org/10.1109/icccs49678.2020.9277077.
Full textSuriya Prakash, A., D. Vigneshwaran, R. Seenivasaga Ayyalu, and S. Jayanthi Sree. "Traffic Sign Recognition using Deeplearning for Autonomous Driverless Vehicles." In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2021. http://dx.doi.org/10.1109/iccmc51019.2021.9418437.
Full textWang, Qizhi, and ZiRu Wang. "Research on Deploying the Deeplearning Models with Embedded Devices." In 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2019. http://dx.doi.org/10.1109/cyber46603.2019.9066643.
Full textMK, Husna, and Mredhula L. "Prediction of Brain Tumor on MRI Images Using Deeplearning." In 2021 Fourth International Conference on Microelectronics, Signals & Systems (ICMSS). IEEE, 2021. http://dx.doi.org/10.1109/icmss53060.2021.9673656.
Full textLi, Hao, and Guomin Li. "Research on Facial Expression Recognition Based on LBP and DeepLearning." In 2019 International Conference on Robots & Intelligent System (ICRIS). IEEE, 2019. http://dx.doi.org/10.1109/icris.2019.00032.
Full text