Dissertations / Theses on the topic 'Defect properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Defect properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Vuong, Amanda. "Nanocarbon : defect architectures and properties." Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/845194/.
Full textWeight, Braden Michael. "Inspection of Excited State Properties in Defected Carbon Nanotubes from Multiple Exciton Generation to Defect-Defect Interactions." Thesis, North Dakota State University, 2020. https://hdl.handle.net/10365/31784.
Full textDogo, Harun. "Point defect properties in iron chromium alloys." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Sep%5FDogo.pdf.
Full textThesis Advisor(s): Craig Smith, Xavier Maruyama. "September 2006." Includes bibliographical references (p. 57-59). Also available in print.
Ashley, Nicholas J. "Defect Properties of Binary Non-Oxide Ceramics." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520879.
Full textSmith, A. G. H. "Structural and defect properties of strontium titanate." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1344085/.
Full textWilson, Daniel John. "Defect and surface properties of the silver halides." Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1446536/.
Full textBruce, J. M. "Self-diffusion and point defect studies in plastic crystals." Thesis, University of Strathclyde, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382256.
Full textShi, Hongting. "Defect structure and optical properties of alkaline earth fluorides." Doctoral thesis, [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=984572015.
Full textChirkov, Andrey S., and Andrei V. Nazarov. "N-body potentials in simulation of point defect properties." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-195230.
Full textChirkov, Andrey, and Andrei Nazarov. "N-body potentials in simulation of point defect properties." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-194546.
Full textChirkov, Andrey, and Andrei Nazarov. "N-body potentials in simulation of point defect properties." Diffusion fundamentals 3 (2005) 1, S. 1-11, 2005. https://ul.qucosa.de/id/qucosa%3A14289.
Full textChirkov, Andrey S., and Andrei V. Nazarov. "N-body potentials in simulation of point defect properties." Diffusion fundamentals 2 (2005) 12, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A13291.
Full textLee, M. E. "Crystallographic, optical and electrical properties of some* ?? defect chalocpyrite semiconductors." Thesis, University of Nottingham, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.353559.
Full textLu, Qiyang. "Controlling properties of functional oxides by tuning oxygen defect chemistry." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115715.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 164-192).
Oxygen defects are essential building blocks for properties and functionalities of oxides, including electrical conductivity, magnetism, ferroelectricity as well as catalytic and electrocatalytic activity. Therefore, fundamental understanding of how to tune the oxygen defect chemistry is essential for advancing applications based on these defect sensitive properties. This thesis investigated pathways to controlling the concentration and structure of oxygen defects on selected case studies with model oxide systems. Three novel effects were assessed and shown to be operative for obtaining a large impact on the oxygen defect chemistry equilibria. These are heterogeneous chemical doping of the surface for improving surface electrocatalytic activity and stability, electrochemical bias to control phase with drastic changes obtained in electronic and phonon transport properties, as well as strain engineering to alter the oxygen interstitial capacity and oxygen exchange kinetics. Surface chemical modifications were applied to the near-surface regions of Lao.8Sro.2CoO 3 (LSC) by replacing the Co cations locally with less reducible cations, such as Hf and Ti. This strategy was shown to effectively stabilize the LSC surfaces and suppress surface segregation of Sr at elevated temperatures. This introduced surface stability by local chemical doping greatly enhanced the long-term electrochemical performance of LSC electrode, which provides a new route for improving the efficiency of solid oxide fuel and electrolysis cells. Applying electrical bias was investigated as another effective method to tune the oxygen stoichiometry, exemplified by the case studies on SrCoOx (SCO). In situ X-ray diffraction was used to investigate the topotactic phase transition between brownmillerite phase SrCoO2.5 (BM-SCO) and perovskite phase SrCoO 3 6 (P-SCO) triggered electrochemically at elevated temperatures. An electrical bias of merely 30 mV was shown sufficient to trigger the BM-->P phase transition. This is much more feasible than chemically induced phase transition, which requires high pressure (> 1 bar) and specialized pressurized apparatus. Moreover, the evolution of electronic structure during the BM4P phase transition was probed in operando by using ambient-pressure X-ray photoelectron and absorption spectroscopy (AP-XPS/XAS). The similar experimental scheme, which combines in operando surface characterizations and electrochemical controlling of oxygen stoichiometry, was extended to oxide systems beyond perovskites. This allows us to investigate the defect chemistry of oxides in a much broader range of effective oxygen partial pressure than what conventional methods can achieve. Firstly, we showed that the surface defect chemistry equilibrium of fluoritestructured Pro.iCeo.902-6 (PCO) strongly deviated from the bulk counterpart, due to the possibly enhanced defect-defect interactions or lattice strain effect at surfaces. Secondly, we found a novel metal-insulator transition triggered electrochemically in VO, by changing the phase between the metallic dioxide VO2 and the insulating pentoxide V2O5 Lastly, we lowered the operation temperature of this electrochemical control of oxygen stoichiometry down to room temperature by using ionic liquid or ion gels as the electrolyte. We achieved tuning of thermal conductivity in SrCoOx with a range of more than one order of magnitude, by using electrochemically triggered phase transitions at room temperature. We also investigated the effect of lattice strain on oxygen defect formation energy in Ruddlesden-Popper (RP) phase oxide Nd2NiO4+6 (NNO). We found that tensile strain along the c-axis of NNO lattice effectively reduced the formation enthalpy of oxygen interstitials, which can provide a new route for designing the defect chemistry of RP phase oxide for electrocatalytic applications..
by Qiyang Lu.
Ph. D.
Healy, Fiona. "Computer modelling of crystal and defect properties of silver halides." Thesis, Keele University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332367.
Full textTsai, Ming-Jinn. "The defect structure and transport properties of some high Tc superconductors." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/60122.
Full textStefanik, Todd Stanley 1973. "Electrical properties and defect structures of praseodymium-cerium oxide solid solutions." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/16623.
Full textIncludes bibliographical references (p. 130-135).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
A defect chemistry model consistent with observed trends in the pO2 and temperature dependence of electrical conductivity in praseodymium cerium oxide (PCO) was developed. Four point DC conductivity measurements were made from 1 atm to 1018 atm p02 over isotherms ranging from 600-1 000ʻC in materials containing 0-20% Pr. A pO02-dependent ionic conductivity was observed at high pO2 values in compositions containing 0.5% and 1% Pr. This behavior was attributed to oxidation of Pr3+ to Pr4+ under oxidizing conditions, thereby decreasing the concentration of acceptor dopants in the PCO material. In compositions containing 10% and 20% Pr, an electron hopping conductivity was observed at high pO02 values. This contribution was strongest at low temperatures and was attributed to the formation of a praseodymium impurity band within the CeO2 band gap. Defect association significantly altered the predicted pO2 dependence of the impurity band conductivity, especially at low temperatures. The temperature dependences of the thermodynamic parameters governing defect formation and transport in PCO were determined. The reduction enthalpy of cerium was significantly decreased with additions of Pr from approximately 4.7 eV (the value in pure CeO2) to 3.4 eV in 20% PCO. The energy between the Pr impurity band and the CeO2 conduction band was approximately 0.95 eV for 10% and 20% PCO samples. The measured trap depth was significantly higher (approximately 1.6 eV) in 0.5% and 1% PCO. The migration enthalpy for impurity band hopping conductivity was approximately 0.55 eV, slightly higher than the hopping enthalpy for intrinsic carriers in CeO2 (0.4 eV).
(cont.) The oxygen ion migration enthalpy measured for most samples was approximately 0.6- 0.7 eV, in agreement with values determined for other rare-earth doped systems. At 20% Pr, the total migration energy increased to approximately 0.9 eV. This increase was attributed to an association energy at high doping levels. Coulometric titration and points to the possible existence of uncharged oxygen vacancies, particularly at low temperatures. During the course of these experiments, it became evident that the mechanical stability of PCO needs to be addressed if the material is to be used in real applications. Oxygen uptake/evolution during reduction/oxidation cycles appears to result in development of significant stresses and cracking. While the material may be useful in powder form, this cracking issue must be addressed if it is to be used in bulk or thin film form.
by Todd Stanley Stefanik.
Ph.D.
Anindya, Khalid. "Interlayer Defect Effects on the Phonon Properties of Bilayer Graphene and its Nanoribbon." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40411.
Full textKamani, Sandeep Kumar. "Influence of defects on thermal and mechanical properties of metals." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2901.
Full textNowotny, Maria Materials Science & Engineering Faculty of Science UNSW. "Defect disorder, semiconducting properties and chemical diffusion of titanium dioxide single crystal." Awarded by:University of New South Wales. School of Materials Science and Engineering, 2006. http://handle.unsw.edu.au/1959.4/27223.
Full textGoodman, Stewart Alexander. "Influence of particle irradiation on the electrical and defect properties of GaAs." Thesis, University of Pretoria, 1994. http://hdl.handle.net/2263/37284.
Full textThesis (PhD)--University of Pretoria, 1994.
gm2014
Physics
unrestricted
Shi, Tingting. "Optoelectronic and Defect Properties in Earth Abundant Photovoltaic Materials: First-principle Calculations." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418391935.
Full textWiktor, Julia. "Identification of equilibrium and irradiation-induced defects in nuclear ceramics : electronic structure calculations of defect properties and positron annihilation characteristics." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4050.
Full textDuring in-pile irradiation the fission of actinide nuclei causes the creation of large amounts of defects, which affect the physical and chemical properties of materials inside the reactor, in particular the fuel and structural materials. Positron annihilation spectroscopy (PAS) can be used to characterize irradiation induced defects, empty or containing fission products. This non-destructive experimental technique involves detecting the radiation generated during electron-positron annihilation in a sample and deducing the properties of the material studied. As positrons get trapped in open volume defects in solids, by measuring their lifetime and momentum distributions of the annihilation radiation, one can obtain information on the open and the chemical environments of the defects. In this work electronic structure calculations of positron annihilation characteristics were performed using two-component density functional theory (TCDFT). To calculate the momentum distributions of the annihilation radiation, we implemented the necessary methods in the open-source ABINIT program. The theoretical results have been used to contribute to the identification of the vacancy defects in two nuclear ceramics, silicon carbide (SiC) and uranium dioxide (UO2)
Zhan, Xiaowen. "DEFECT CHEMISTRY AND TRANSPORT PROPERTIES OF SOLID STATE MATERIALS FOR ENERGY STORAGE APPLICATIONS." UKnowledge, 2018. https://uknowledge.uky.edu/cme_etds/88.
Full textFritze, Holger [Verfasser]. "Electromechanical properties and defect chemistry of High-Temperature piezoelectric materials / Dr. Holger Fritze." Clausthal-Zellerfeld : Universitätsbibliothek Clausthal, 2008. http://d-nb.info/1010653776/34.
Full textKhaliq, Jibran. "Effect of doping and defect structures on thermo physical properties of thermoelectric materials." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8444.
Full textSpears, Marlene Ann. "Defect chemistry and electrical properties of ruthenium- and bismuth-substituted gadolinium titanate pyrochlore." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11443.
Full textFan, Yue Ph D. Massachusetts Institute of Technology. "Atomistic simulation of defect structure evolution and mechanical properties at long time scales." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82865.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 127-146).
This thesis is a computational and theoretical investigation of the response of materials' mechanical properties to a wide range of environmental conditions, with a particular focus on the coupled effects of strain rate and temperature. The thesis provides original contributions to the fundamental understanding of how the materials mechanical properties change, as manifested by defect structure evolution, with temperature and strain rate conditions, as well as to the development of methodology used for enabling the investigation of dislocation-defect interactions over a much wider range of time scales than of reach to traditional techniques. This thesis advanced the capabilities of a recently developed activation-relaxation based atomistic method to enhance the accuracy of kinetic predictions, and to enable the investigation of dislocation-defect interactions dynamically at long time scales. We took the Autonomous Basin Climbing (ABC) method as a starting point, and incorporated the ability to sample multiple transition pathways associated with a given state. This new feature addresses the problem of overestimating the system evolution time due to the one-dimensional nature of the original ABC algorithm. The ABC method was further implemented in a dynamic framework, which makes it possible for the first time to directly simulate the dislocation-obstacle interactions at very low strain rates. This approach allows for a new way to connect the atomistic results to models at the meso-scale for simulating the plasticity of metals. We analytically derived how the applied strain rate couples with the thermal activation process, based on the framework of transition state theory informed by the atomistic approach described above. We demonstrated the coupling effect is a common mechanism behind many important phenomena, and provide three examples from the atomic level on the dislocation mobility and dislocation interactions with radiation induced defects. (i) A well-known universal flow stress upturn behavior in metals has been examined. We provide a simple physically based model to predict the flow stress at various strain rates, without invoking any assumed mechanisms or fitting parameters as in the traditional constitutional models. (ii) We implemented this new model in (i) to investigate the dislocation-obstacle interactions. The approach enabled us to map the interaction between an edge dislocation and a self interstitial atom (SIA) cluster in Zr in a two-parameter space consisting of temperature and strain rate. This approach allows the direct atomistic simulation of dislocation-obstacle interactions at experimental time scale, namely at low strain rates, which cannot be reached by traditional atomistic techniques. The dislocation is found to absorb the SIA cluster and climb at low strain rates and high temperatures, while it passes through the SIA cluster at high strain rates and low temperatures. The predicted mechanism map is able to reconcile the seeming controversy between previous experimental and computational findings. (iii) A dislocation-void interaction in bcc Fe at prescribed strain rate is also investigated. We demonstrated that different applied strain rates can affect the interaction mechanism and the defect microstructure, and eventually lead to a negative strain rate sensitivity (nSRS) of yield strength below a critical strain rate. This finding at the unit process level supplements the previous explanations of the nSRS with higher level constitutive relations. Beyond the specific cases analyzed in metals in this thesis, the insights gained on the coupling between strain rate and thermal activation can be used to explain the dependence on strain rate and temperature in other important classes of materials (e.g. colloids, cement) and phenomena (e.g. corrosion, creep).
by Yue Fan.
Ph.D.
Mishra, Shantanu, Doreen Beyer, Reinhard Berger, Junzhi Liu, Oliver Gröning, José I. Urgel, Klaus Müllen, Pascal Ruffieux, Xinliang Feng, and Roman Fasel. "Topological defect-induced magnetism in a nanographene." American Chemical Society, 2019. https://tud.qucosa.de/id/qucosa%3A73172.
Full textKnapp, Meghan C. "Investigations into the structure and properties of ordered perovskites, layered perovskites, and defect pyrochlores." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1149097068.
Full textDragan, Mirela-Anca. "Defect chemistry, transport properties and thermodynamic stability of acceptor doped and undoped layered La2NiO4." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=979096375.
Full textRead, Mark S. D. "Atomistic simulation studies of the defect and surface properties of perovskite-based oxide-catalysts." Thesis, University of Surrey, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298920.
Full textWillis, A. E. "Mammalian DNA ligases : characterization of their biochemical properties and a defect in Bloom's syndrome." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47305.
Full textHallander, Per. "Towards defect free forming of multi-stacked composite aerospace components using tailored interlayer properties." Doctoral thesis, KTH, Lättkonstruktioner, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185694.
Full textQC 20160425
Burg, Tristan Kevin Materials Science & Engineering Faculty of Science UNSW. "Semiconducting properties of polycrystalline titanium dioxide." Publisher:University of New South Wales. Materials Science & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41262.
Full textNeagu, Dragos. "Materials and microstructures for high temperature electrochemical devices through control of perovskite defect chemistry." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3606.
Full textNakao, Takayuki. "Studies on Point-Defect Structure of Solid Oxide Fuel Cell Materials and Their Electrochemical Properties." Kyoto University, 2011. http://hdl.handle.net/2433/142306.
Full text0048
新制・課程博士
博士(人間・環境学)
甲第16178号
人博第561号
新制||人||135(附属図書館)
22||人博||561(吉田南総合図書館)
28757
京都大学大学院人間・環境学研究科相関環境学専攻
(主査)教授 内本 喜晴, 教授 杉山 雅人, 教授 田部 勢津久, 准教授 福塚 友和
学位規則第4条第1項該当
Darvish, Shadi. "Thermodynamic Investigation of La0.8Sr0.2MnO3±δ Cathode, including the Prediction of Defect Chemistry, Electrical Conductivity and Thermo-Mechanical Properties." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3653.
Full textWhite, Brandon M. "Characterizing the Association Between Mandible Mechanical Properties and Function in the Rabbit." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1506426954676547.
Full textNawaz, Ali. "Modification of charge transport properties in defect-free poly(3-hexylthiophene-2,5-diyl) field-effect transistors." reponame:Repositório Institucional da UFPR, 2017. http://hdl.handle.net/1884/53109.
Full textTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Curso de Pós-Graduação em Física. Defesa: Curitiba, 15/12/2017
Inclui referências : f. 93-102
Resumo: O trabalho atual investiga a melhoria das propriedades de transporte de carga em transistores de efeito de campo de baixa tensão (FETs), que utilizam poli(3-hexiltiofeno-2,5-diil) (P3HT) não-100% e 100% regioregular como os semicondutores orgânicos, e poli(álcool vinílico) reticulado (cr-PVA) como isolante. O trabalho de pesquisa realizado durante o projeto pode ser dividido em duas partes. A primeira parte investiga a melhoria das propriedades de transporte de carga na interface cr-PVA/P3HT, e a influência de defeitos de regioregularidade de P3HT nas propriedades da interface. A segunda parte demonstra a preparação de filmes finos que consistem em moléculas alinhadas de P3HT 100% regioregular e, consequentemente, a aplicação desses filmes alinhados para o desenvolvimento de dispositivos de alto desempenho. No caso da primeira parte, o problema essencial é que o transporte de carga na interface de cr-PVA/P3HT está limitado pela presença de armadilhas na interface que correspondem aos dipolos de superfície de cr-PVA. Esses dipolos de superfície possuem a capacidade de modificar a distribuição de carga em moléculas adjacentes de P3HT, o que pode levar à localização e a captura de cargas. Isso representa um problema fisico complexo, sendo que a variação de energia potencial na interface depende da posição e orientação das armadilhas dipolares em relação às moléculas de P3HT. No entanto, a solução é conceitualmente simples, pois, em princípio, é apenas necessário passivar as armadilhas. Para conseguir isso, é apresentada uma técnica experimental econômica, na qual a superfície de cr-PVA é tratada com um surfactante catiônico, brometo de hexadeciltrimetilamónio (CTAB). As cabeças hidrofílicas carregadas positivamente de CTAB visam a passivação das armadilhas carregadas negativamente da superfície de cr-PVA. A deposição de CTAB sobre o cr-PVA, em relação ao cr-PVA somente, resulta em aumento significativo na capacitância do isolanate (Ci), e as imagens de microscopia de força atômica (AFM) mostram que a superfície de cr-PVA é coberta com grãos de surfactante bem conectados. Em caso de dispositivos baseados em P3HT não-100% regioregular, este tratamento resulta em uma melhora da mobilidade de efeito de campo (?FET) por um fator de ~3 (?FET médio de 0.44 cm2/V.s) quando comparado aos dispositivos não tratados. Para investigar como o tratamento do surfactante modifica o transporte de carga na interface, a variação de ?FET em função da espessura efetiva do gargalo do canal (l0) também é analisada e discutida detalhadamente. Curiosamente, ao contrário dos dispositivos baseado em P3HT não-100% regioregular, o tratamento com surfactante em dispositivos baseado em P3HT 100% regioregular resulta em degradação de ?FET e do desempenho geral dos dispositivos. Isso indica que a interação de defeitos de regioregularidade e armadilhas de superfície de cr-PVA é um fator crítico que afeta as propriedades de transporte de carga na interface cr-PVA/P3HT. Para investigar este assunto, a interação das moléculas de P3HT não-100% e 100% regioregular com dipolos de superfície de cr-PVA é investigada usando espectroscopia de absorbância, AFM e cálculos de química quântica. Observa-se que, dependendo da presença ou ausência de defeitos de regioregularidade de P3HT (e, portanto, da planaridade molecular), o contato entre as moléculas de P3HT e os dipolos de superfície de cr-PVA afeta a ordem molecular do P3HT de forma diferente. Por causa dos defeitos de regioregularidade, as moléculas de polímero não-100% regioregular produzem momentos de dipolo mais altos em comparação com moléculas 100% regioregular. Consequentemente, discute-se como a interação de moléculas de P3HT não-100% e 100% regioregular com dipolos de cr-PVA contribuem à desordem energética na interface cr-PVA/P3HT. Neste caso, o transporte de carga em dispositivos de FET é investigado para quatro espessuras diferentes de P3HT não-100% e 100% regioregular. Os resultados elétricos mostram que o comportamento de ?FET × l0 e a dependência de ?FET na espessura do canal são uma função forte da presença ou ausência de defeitos de regioregularidade de P3HT. Neste trabalho, os dispositivos (não tratados) baseados em P3HT 100% regioregular demonstram ?FET tão alto quanto 1.20 cm2/V.s. Esses valores tornam esses dispositivos reconhecíveis para a integração em várias aplicações comerciais. No entanto, um desenho de circuitos para muitas outras aplicações de alto desempenho impõem um requisito de ?FET mais rigoroso (> 5 cm2/V.s). Para alcançar este marco, na segunda parte do projeto de pesquisa, está apresentada uma técnica de deposição simples (chamado, floating-film transfer method, em inglês), que permite o alinhamento supra-molecular das moléculas de P3HT 100% regioregular. A aplicação de filmes de polímero alinhados em FETs resulta em valores de ?FET de até 8 cm2/V.s, que é o valor mais alto reportado até agora para os FETs baseados em P3HT. Palavras-chaves: Transistores orgânicos de efeito de campo, poli(3-hexiltiofeno-2,5-diil) livre de defeitos, regioregularidade, poli(álcool vinílico) reticulado, interface isolante/semicondutor, armadilhas dipolares.
Abstract: The current work investigates the improvement of charge transport properties in low-voltage organic field-effect transistors (OFETs) that utilize non-100% and 100% regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) as the organic semiconductors, and cross-linked poly(vinyl alcohol) (cr-PVA) as the gate insulator. The essential research work performed during the project can be divided into two parts. The first part investigates the improvement of charge transport properties at the cr-PVA/P3HT interface, and the influence of regioregularity defects of P3HT on interface properties. The second part demonstrates the development of high performance OFETs based on supra-molecularly aligned thin films of 100% regioregular P3HT. In the case of the first part, the essential problem in hand is that charge transport at the cr-PVA/P3HT interface is limited by the presence of charge traps at the interface corresponding to the surface dipoles of cr-PVA. These surface dipoles hold the ability to modify charge distribution on adjacent P3HT molecules, which can lead to localization and trapping of otherwise mobile charge carriers. This presents a physically complex problem, since the potential energy variations at the interface depends on the position and orientation of the dipolar traps with respect to P3HT molecules. However, the solution is conceptually simple since, in principle, it is only required to passivate the traps. In order to achieve this, a cost-effective experimental technique is presented, in which the cr-PVA surface is treated with a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB). The positively charged hydrophilic heads of CTAB are aimed at passivating the negatively charged traps of the cr-PVA surface. The deposition of CTAB over cr-PVA leads to significant enhancement in gate insulator capacitance (Ci), and the atomic force microscopy (AFM) images show that the cr-PVA surface is covered with well-connected surfactant grains. In the case of non-100% regioregular P3HT OFETs, this treatment results in an improvement of field-effect mobility (?FET) by a factor of ~3 (average ?FET of 0.44 cm2/V.s) when compared to untreated devices. In order to investigate how the surfactant treatment modifies charge transport at the interface, variation of ?FET as a function of the effective bottleneck thickness of the conducting channel (l0) is also analyzed and thoroughly discussed. Quite interestingly, contrary to non-100% regioregular P3HT devices, the surfactant treatment in 100% regioregular P3HT devices leads to degradation of ?FET and overall device performance. This indicates that the interaction of regioregularity defects and cr-PVA surface traps is a crucial factor affecting charge transport properties at the cr-PVA/P3HT interface. In order to address this issue, the interaction of non-100% and 100% regioregular P3HT molecules with cr-PVA surface dipoles is investigated using UV-vis absorbance spectroscopy, AFM and quantum chemical calculations. It is observed that, depending on the presence or absence of regioregularity defects of P3HT (and thus the molecular planarity); the intimate contact between P3HT molecules and cr-PVA surface dipoles affects the molecular order of P3HT differently. Because of the regioregularity defects, the non-100% regioregular polymer molecules produce higher dipole moments compared to 100% regioregular molecules. Consequently, it is discussed how the interaction of non-100% and 100% regioregular P3HT molecules with cr-PVA surface dipoles contribute differently to the potential energy variations at the cr-PVA/P3HT interface. In this case, the charge transport in FET devices is investigated for four different thicknesses of both non-100% and 100% regioregular P3HT. The electrical results reveal that the behavior of ?FET × l0 and the dependence of ?FET on channel thickness are a strong function of the presence/absence of the regioregularity defects of P3HT. In this project, the untreated 100% regioregular P3HT devices demonstrate ?FET as high as 1.20 cm2/V.s. Such high values make these devices recognizable for translation to various commercial applications. However, the circuit designs of many other high performance applications impose a more stringent ?FET requirement (> 5 cm2/V.s). In order to achieve this landmark, in the second part of the research project, a simple and cost-effective deposition technique (floating-film transfer method) is presented, which allows supra-molecular alignment of 100% regioregular P3HT molecules. The application of aligned polymer films in FET devices leads to the demonstration of ?FET values as high as 8 cm2/V.s, which is the highest value reported so far for P3HT based OFETs. Keywords: Organic field-effect transistors, defect-free poly(3-hexylthiophene-2,5-diyl), regioregularity, cross-linked poly(vinyl alcohol), insulator/semiconductor interface, dipolar charge traps.
Upadhyay, Manas Vijay. "On the role of defect incompatibilities on mechanical properties of polycrystalline aggregates: a multi-scale study." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53041.
Full textYan, Miaolei. "Defect Analysis and Microstructural Effects on the Surface Exchange Properties of La0.7Sr0.3MnO3(LSM) Epitaxial Thin Films." Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/650.
Full textRiahi, Fatma, Sofiane Laouar, and Djamel Eddine Mekki. "Contribution to the understanding of the point defect influence on some transport properties in UO 2+x." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191474.
Full textRiahi, Fatma, Sofiane Laouar, and Djamel Eddine Mekki. "Contribution to the understanding of the point defect influence on some transport properties in UO 2+x." Diffusion fundamentals 11 (2009) 98, S. 1-15, 2009. https://ul.qucosa.de/id/qucosa%3A14071.
Full textKim, Sunho Ph D. Massachusetts Institute of Technology. "Defect and electrical properties of high-K̳ dielectric Gd₂O₃ for magneto-ionic and memristive memory devices." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129007.
Full textCataloged from student-submitted PDF of thesis. The "K̳̳" in title on title page appeared as subscript "K."
Includes bibliographical references (pages 127-134).
While high-[subscript K] dielectrics utilized in CMOS technology are noted for their highly insulating characteristics, they have demonstrated surprising electrolytic behavior as key components in a variety of thin film memory devices, including those based on magneto-ionic and memristive behavior. In this work, we focus on the rare earth sesquioxide, Gd₂O₃, a well-known high-κ dielectric that has exhibited a variety of electrolytic properties during the development and operation of the first magneto-ionic devices developed at MIT. Specifically, we focused our investigation on the defect chemistry and electrical properties of Gd₂O₃ in order to better understand the relationship between the structure, chemistry, processing conditions, and operating environment and the material's low-temperature ionic and electronic transport properties and the means for their optimization vis-à-vis memory device operation.
Phase (monoclinic and cubic) and dopant controlled (Ca, Ce, Sr, Zr) polycrystalline pellets of 8 different Gd₂O₃ systems were prepared to investigate various defect regimes in consideration of this material's polymorphism. We considered intrinsic anion-Frenkel disorder and electronic disorder, equilibration with the gas phase, water incorporation, and dopant incorporation in the defect modeling, taking into account the roles of crystallographic structure as well as oxygen ion defect and protonic generation. The primary method utilized to characterize the defect chemistry and transport properties of Gd₂O₃ was the analysis of the dopant, p0₂ and temperature dependencies of the electrical conductivity extracted from complex impedance spectra obtained over the p0₂ range of 1 to 10⁻¹⁵ atm, for 5 isotherms between 700 and 900 °C with 50 °C steps and for a range of acceptor and donor dopants.
Based on the p0₂ dependency of conductivities, in light of the defect modeling, the majority point defects in each system were identified. Electronic and ionic migration energies and thermodynamic parameters were extracted via the defect modeling and temperature dependencies of conductivities. In nearly all cases, the predominant charge carrier under oxidizing conditions at elevated temperatures was identified as the p-type electron-hole, largely due to oxygen excess non-stoichiometry in these systems. With decreasing p0₂, transport tended to switch from semiconducting towards ionic. Depending on phase, dopant type & concentration, temperature, and relative humidity, the predominant ionic conductivity was found to be via oxygen interstitials, oxygen vacancies, and/or protons, the latter given by the propensity of Gd₂O₃ to take up water in solid solution from the environment by the formation of OH[superscript .]species.
Unexpectedly, the ionic mobilities of defects in the denser and less symmetric monoclinic system exhibited higher ionic mobilities than the more open bixbyite structure. The hole electronic species in the investigated systems were found to migrate via the small polaron hopping mechanism with rather large hopping energies. This resulted in an inversion of hole and proton mobility magnitudes at reduced temperatures in the monoclinic system. Extrapolation of ionic and electronic defect conductivities to near room temperature, based on our derived defect and transport models, was not able to explain, on its own, the observed electrolytic properties of the Gd₂O₃ thin films utilized in magneto-ionic devices.
In an attempt to connect the transport properties obtained under equilibrium conditions at elevated temperatures with the behavior of Gd₂O₃ near room temperature, selected thin films Gd₂O₃, prepared by pulsed laser deposition or sputtering, were investigated by complex impedance spectroscopy over the temperature range of 20 - 170°C. While films prepared under dry conditions were indeed found to be highly electrically insulating, films exposed to water vapor exhibited dramatically higher proton conductivities (more than ~10⁸ x) than values extrapolated from high temperature. Parallel thermogravimetric analysis on Gd₂O₃ powder specimens, as a function of temperature, under high humidity conditions, demonstrated a correlation between uptake/loss of incorporated water and conductivity upon cooling and heating, respectively.
We can therefore conclude that the large disconnect between the electrical and electrolytic properties observed between high-κ dielectrics used in CMOS devices such as Gd₂O₃, and their much more highly conductive counterparts used in thin film memory devices, depends strategically on the thin film processing conditions. High-κ dielectrics are fabricated in carefully controlled environments with low relative humidity, while research on, for example, Gd₂O₃ - based magneto-ionic memory devices, is performed under ambient laboratory conditions, where significant water uptake becomes possible at surfaces and grain boundaries. The results and insights obtained in this study can be expected to be applied in achieving further progress in the understanding and optimization of magneto-ionic, memristive, and other devices that rely on proton gating.
by Sunho Kim.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Materials Science and Engineering
Alabaster, C. M. "The Microwave properties of tissue and other lossy dielectrics." Thesis, Cranfield University, 2004. http://hdl.handle.net/1826/251.
Full textPelini, Thomas. "Optical properties of point defects in hexagonal boron nitride." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS139.
Full textThe purpose of this thesis was to explore and caracterize optically the point defects in hexagonal boron nitride. The study of defects in this semiconductor is of fundamental importance firstly for the material science in which it plays a key role thanks to its lamellar structure (2D material) and its high thermal and chemical stability, and secondly for the quantum nanotechnology domain where its large bandgap (~ 6 eV) allows for exploiting deep levels point imperfections as «artificial atom» in the crystal lattice. During this thesis, defects in two spectral ranges have been studied: a first family emitting in the visible wavelengths, and a second one emitting in the ultraviolet range.Firstly, we made use of a scanning confocal microscope working in ambient conditions and at visible wavelengths. The recording of photoluminescence spatial maps permited to show the existence of localised hot spot of light, under the diffraction limit of the miscroscope, and emitting around 600 nm (2 eV). Time photon-correlation measurements revealed on one hand that we were dealing with single quantum emitters, and on the other hand allowed for probing the photodynamics of those systems, in particular at very long time-scale. Various photostability regimes are observed and discussed. Last but not least, power resolved study was also performed and demonstrated that a number of the emitters (~ 5%) are photo-stable at high excitation power and saturate at few millions counts per second: those point defects are one of the brightest single-photon source at room temperature in solid-state systems.Secondly, we explored the defects in the ultraviolet spectral range. A prerequisite to the engineering of defects in semiconductors for technological applications is the knowledge of their chemical origin. With this in mind, we studied shallow and deep levels in carbon-doped hBN samples by combining macro-photoluminescence and reflectance measurements. We showed the existence of new optically-active transitions (around 300 nm) and discussed the implication of carbon in these levels. The in-depth study of these levels have required the development of a new scanning micro-photoluminescence confocal microscope operating at 266 nm under cryogenic environment. The design and performances of the optical system are described, and the experimental challenges explained in details. Using this new setup, we went further into the examination of the deep levels. In particular, a study was carried out regarding the spatial correlation between these new spectral lines and the well-known point defect at 4.1 eV. Then, we used new crystals with isotopically-purified carbon doping as a strategy to investigate the long-standing question concerning the chemical origin of the 4.1 eV defect. Through this attempt, we brought to light the spatial dependence of the optical features for this specific emitter. Last but not least, we present our work dedicated to isolate the emission of a single 4.1 eV defect. We studied the photoluminescence of thin undoped flakes, pre-characterized with an electron microscope, that contain a low density of emitters, and inspected in particular their photostability in these thin crystals
Katayama, Shota. "Electronic structures and optical properties of Sn(II) ternary oxides." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199306.
Full textGuler, Ipek. "Optical And Electrical Transport Properties Of Some Quaternarythallium Dichalcogenides." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613362/index.pdf.
Full textAlabaster, Clive M. "The microwave properties of tissue and other lossy dielectrics." Thesis, Cranfield University, 2004. http://dspace.lib.cranfield.ac.uk/handle/1826/251.
Full text