Academic literature on the topic 'Defects detection and classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Defects detection and classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Defects detection and classification"
Peng, Peiran, Ying Wang, Can Hao, Zhizhong Zhu, Tong Liu, and Weihu Zhou. "Automatic Fabric Defect Detection Method Using PRAN-Net." Applied Sciences 10, no. 23 (November 26, 2020): 8434. http://dx.doi.org/10.3390/app10238434.
Full textZhao, Weidong, Hancheng Huang, Dan Li, Feng Chen, and Wei Cheng. "Pointer Defect Detection Based on Transfer Learning and Improved Cascade-RCNN." Sensors 20, no. 17 (September 1, 2020): 4939. http://dx.doi.org/10.3390/s20174939.
Full textZz, Mi, C. Cong, Y. Cheng, and Zhang Hm. "Study on defects detection technique of precise optical element." E3S Web of Conferences 53 (2018): 01037. http://dx.doi.org/10.1051/e3sconf/20185301037.
Full textJian, Chuan Xia, Jian Gao, and Xin Chen. "A Review of TFT-LCD Panel Defect Detection Methods." Advanced Materials Research 734-737 (August 2013): 2898–902. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.2898.
Full textWu, Bao Hua, Lei Duan, Gui Hua Wang, Hai Yang Wang, and Jing Peng. "Gene Expression Programming Based Classification for Automated Birth Defects Detection." Applied Mechanics and Materials 197 (September 2012): 508–14. http://dx.doi.org/10.4028/www.scientific.net/amm.197.508.
Full textCzimmermann, Tamás, Gastone Ciuti, Mario Milazzo, Marcello Chiurazzi, Stefano Roccella, Calogero Maria Oddo, and Paolo Dario. "Visual-Based Defect Detection and Classification Approaches for Industrial Applications—A SURVEY." Sensors 20, no. 5 (March 6, 2020): 1459. http://dx.doi.org/10.3390/s20051459.
Full textLu, Manhuai, and Chin-Ling Chen. "Detection and Classification of Bearing Surface Defects Based on Machine Vision." Applied Sciences 11, no. 4 (February 18, 2021): 1825. http://dx.doi.org/10.3390/app11041825.
Full textJiang, Qingsheng, Dapeng Tan, Yanbiao Li, Shiming Ji, Chaopeng Cai, and Qiming Zheng. "Object Detection and Classification of Metal Polishing Shaft Surface Defects Based on Convolutional Neural Network Deep Learning." Applied Sciences 10, no. 1 (December 20, 2019): 87. http://dx.doi.org/10.3390/app10010087.
Full textLiu, Zixi, Zhengliang Hu, Longxiang Wang, Tianshi Zhou, Jintao Chen, Zhenyu Zhu, Hao Sui, Hongna Zhu, and Guangming Li. "Effective detection of metal surface defects based on double-line laser ultrasonic with convolutional neural networks." Modern Physics Letters B 35, no. 15 (April 15, 2021): 2150263. http://dx.doi.org/10.1142/s0217984921502638.
Full textLu, Yuzhen, and Renfu Lu. "siritool: A Matlab Graphical User Interface for Image Analysis in Structured-Illumination Reflectance Imaging for Fruit Defect Detection." Transactions of the ASABE 63, no. 4 (2020): 1037–47. http://dx.doi.org/10.13031/trans.13612.
Full textDissertations / Theses on the topic "Defects detection and classification"
Allanqawi, Khaled Kh S. Kh. "A framework for the classification and detection of design defects and software quality assurance." Thesis, Kingston University, 2015. http://eprints.kingston.ac.uk/34534/.
Full textNouri, Arash. "Correlation-Based Detection and Classification of Rail Wheel Defects using Air-coupled Ultrasonic Acoustic Emissions." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/78139.
Full textMaster of Science
Ngendangenzwa, Blaise. "Defect detection and classification on painted specular surfaces." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-146063.
Full textVolvokoncernens hyttfabrik i Umeå är en av Norrlands största verkstadsindustrier.Hyttfabriken tillverkar bara hytter för lastbilar och tillhör en av världens modernaste produktionsanläggningar. Trots ett hög automatiserat och datoriserat system bland många processer så är kvalitetsinspektionen av målade hytter fortfarande utförd manuellt. En smart och automatiserad kvalitetskontroll kan leda till lägre kostnader, högre kvalitet samt högre produktions effektivitet. Den här studien är ett steg framåt mot en automatiserad kvalitetskontroll. Två slagsproblem undersöktes närmare i den här studien nämligen defekt inspektion och defekt klassificering. Dessa problem åtgärdades genom att förse fyra statistiskametoder, support vector machine, random forests, k-nearest neighbors och neuralnetworks, med extraherade HOG egenskaper från tagna bilder. Resultaten visade att support vector machine och random forests presterade bättre än dess konkurrenter i förhållande till förmågan att både inspektera och klassificera defekter.
Yang, Xuezhi, and 楊學志. "Discriminative fabric defect detection and classification using adaptive wavelet." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29913408.
Full textRönnqvist, Johannes, and Johannes Sjölund. "A Deep Learning Approach to Detection and Classification of Small Defects on Painted Surfaces : A Study Made on Volvo GTO, Umeå." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160194.
Full textI den här rapporten visar vi att modeller av typen convolutional neural networks, tillsammans med phase-measuring deflektometri, kan hitta och klassificera defekter på målade ytor med hög precision, även jämfört med erfarna operatörer. Vidare visar vi vilka databehandlingsåtgärder som ökar modellernas prestanda. Vi ser att standardisering ökar modellernas klassificeringsförmåga. Vi visar att städning av data genom ommärkning och borttagning av felaktiga bilder förbättrar klassificeringsförmågan och särskilt modellernas förmåga att särskilja mellan olika typer av defekter. Vi visar att översampling kan vara en metod för att förbättra precisionen genom att öka och balansera datamängden genom att förändra och duplicera befintliga observationer. Slutligen finner vi att kombinera flera bilder med olika mönster ökar modellernas klassificeringsförmåga väsentligt. Vårt föreslagna tillvägagångssätt har visat sig fungera bra i realtid inom en produktionsmiljö. En automatiserad kvalitetskontroll av de målade ytorna på Volvos lastbilshytter kan ge stora fördelar med avseende på kostnad och kvalitet. Den automatiska kvalitetskontrollen kan ge data för en rotorsaksanalys och ett snabbt och effektivt alarmsystem. Detta kan väsentligt effektivisera produktionen och samtidigt minska kostnader och fel i produktionen. Korrigeringar och optimering av processerna kan göras i tidigare skeden och med högre precision än idag.
Carroll, L. Blair. "Investigation into the detection and classification of defect colonies using ACFM technolgy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0007/MQ42360.pdf.
Full textWu, Michael. "Transfer Learning Approach to Powder Bed Fusion Additive Manufacturing Defect Detection." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2324.
Full textMahendra, Adhiguna. "Methodology of surface defect detection using machine vision with magnetic particle inspection on tubular material." Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS051.
Full textIndustrial surface inspection of tubular material based on Magnetic Particle Inspection (MPI) is a challenging task. Magnetic Particle Inspection is a well known method for Non Destructive Testing with the goal to detect the presence of crack in the tubular surface. Currently Magnetic Particle Inspection for tubular material in Vallourec production site is stillbased on the human inspector judgment. It is time consuming and tedious job. In addition, itis prone to error due to human eye fatigue. In this thesis we propose a machine vision approach in order to detect the defect in the tubular surface MPI images automatically without human supervision with the best detection rate. We focused on crack like defects since they represent the major ones. In order to fulfill the objective, a methodology of machine vision techniques is developed step by step from image acquisition to defect classification. The proposed framework was developed according to industrial constraint and standard hence accuracy, computational speed and simplicity were very important. Based on Magnetic Particle Inspection principles, an acquisition system is developed and optimized, in order to acquire tubular material images for storage or processing. The characteristics of the crack-like defects with respect to its geometric model and curvature characteristics are used as priory knowledge for mathematical morphology and linear filtering. After the segmentation and binarization of the image, vast amount of defect candidates exist. Aside from geometrical and intensity features, Multi resolution Analysis wasperformed on the images to extract textural features. Finally classification is performed with Random Forest classifier due to its robustness and speed and compared with other classifiers such as with Support Vector Machine Classifier. The parameters for mathematical morphology, linear filtering and classification are analyzed and optimized with Design Of Experiments based on Taguchi approach and Genetic Algorithm. The most significant parameters obtained may be analyzed and tuned further. Experiments are performed ontubular materials and evaluated by its accuracy and robustness by comparing ground truth and processed images. This methodology can be replicated for different surface inspection application especially related with surface crack detection
Janošík, Zdeněk. "Klasifikace detekovaných vad." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221300.
Full textMahmood, Waqas, and Muhammad Faheem Akhtar. "Validation of Machine Learning and Visualization based Static Code Analysis Technique." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4347.
Full textSoftware trygghet har alltid varit en i efterhand inom mjukvaruutveckling som leder till osäker mjukvara. Företagen är beroende av penetrationstester för att upptäcka säkerhetsproblem i deras programvara. Att införliva säkerheten vid tidigt utvecklingsskede minskar kostnaderna och overhead. Statisk kod analys kan tillämpas vid genomförandet av mjukvaruutveckling livscykel. Tillämpa maskininlärning och visualisering för statisk kod är en ny idé. Teknik kan lära mönster av normaliserade kompressionständning avstånd NCD och klassificera källkoden till rätta eller felaktig användning på grundval av utbildning fall. Visualisering bidrar också till att klassificera code fragment utifrån deras associerade färger. En prototyp har utvecklats för att genomföra denna teknik som kallas Code Avstånd VISUALISERARE CDV. För att testa effektiviteten hos denna teknik empirisk validering krävs. I denna forskning vi bedriver serie experiment för att testa dess effektivitet. Vi använder verkliga livet öppen källkod som vår test ämnen. Vi har också samlats in fel från deras motsvarande felrapportering förråd samt fel och rätt version av källkoden. Vi utbildar CDV genom att markera rätt och fel version av koden fragment. På grundval av dessa träningar CDV klassificerar andra nummer fragment som korrekta eller felaktiga. Vi mätt sina fel upptäckt förhållandet falska negativa och falska positiva förhållandet. Resultatet visar att den här tekniken är effektiv i fel upptäckt och har låga antalet falsklarm.
waqasmah@gmail.com +46762316108
Books on the topic "Defects detection and classification"
W, Currie Brian, and Haykin S. S. 1931-, eds. Detection and classification of ice. Letchworth: Research Studies, 1987.
Find full textW, Currie Brian, and Haykin Simon S. 1931-, eds. Detection and classification of ice. Letchworth, Hertfordshire, England: Research Studies Press, 1987.
Find full textSimon, Léa M. Fault detection: Theory, methods and systems. New York: Nova Science Publishers, 2011.
Find full textGini, Fulvio. Knowledge based radar detection, tracking, and classification. Hoboken, NJ: Wiley, 2008.
Find full textGini, Fulvio. Knowledge based radar detection, tracking, and classification. Hoboken, NJ: Wiley, 2008.
Find full textMilioris, Dimitrios. Topic Detection and Classification in Social Networks. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-66414-9.
Full textGini, Fulvio, and Muralidhar Rangaswamy, eds. Knowledge-Based Radar Detection, Tracking, and Classification. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470283158.
Full textJanssen, Thomas J. Explosive materials: Classification, composition, and properties. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textGoldstein, Robert V., and Gerard A. Maugin, eds. Surface Waves in Anisotropic and Laminated Bodies and Defects Detection. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-2387-1.
Full textHyperspectral imaging: Techniques for spectral detection and classification. New York: Kluwer Academic/Plenum Publishers, 2003.
Find full textBook chapters on the topic "Defects detection and classification"
Krautkrämer, Josef, and Herbert Krautkrämer. "Detection and Classification of Defects." In Ultrasonic Testing of Materials, 312–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-10680-8_20.
Full textMahouachi, Rim, Marouane Kessentini, and Khaled Ghedira. "A New Design Defects Classification: Marrying Detection and Correction." In Fundamental Approaches to Software Engineering, 455–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28872-2_31.
Full textLouban, Roman. "Adaptive Edge and Defect Detection as a basis for Automated Lumber Classification and Optimisation." In Image Processing of Edge and Surface Defects, 99–128. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00683-8_7.
Full textChristodoulou, Symeon E., Georgios M. Hadjidemetriou, and Charalambos Kyriakou. "Pavement Defects Detection and Classification Using Smartphone-Based Vibration and Video Signals." In Advanced Computing Strategies for Engineering, 125–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91635-4_7.
Full textOchoa-Zezatti, Alberto, Oliverio Cruz-Mejía, Jose Mejia, and Hazael Ceron-Monroy. "Image Classification Applied to the Detection of Leather Defects for Smart Manufacturing." In Computer Science and Health Engineering in Health Services, 52–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69839-3_4.
Full textMonno, Shota, Yoshifumi Kamada, Hiroyoshi Miwa, Koji Ashida, and Tadaaki Kaneko. "Detection of Defects on SiC Substrate by SEM and Classification Using Deep Learning." In Advances in Intelligent Networking and Collaborative Systems, 47–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98557-2_5.
Full textYu, Zhibin, Qiqin Liao, and Shuangmao Yang. "Detection and Classification of Transmission Line Insulator Defects with Res-SSD Optimization Method." In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 333–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70665-4_39.
Full textGebhardt, Wolfgang, and Friedhelm Walte. "Crack Detection and Defect Classification Using the LLT-Technique." In Review of Progress in Quantitative Nondestructive Evaluation, 591–98. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0817-1_74.
Full textLopez, Jose J., Emanuel Aguilera, and Maximo Cobos. "Defect Detection and Classification in Citrus Using Computer Vision." In Neural Information Processing, 11–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10684-2_2.
Full textDudek, Grzegorz, and Sebastian Dudzik. "Classification Tree for Material Defect Detection Using Active Thermography." In Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017, 118–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67220-5_11.
Full textConference papers on the topic "Defects detection and classification"
Mu, Hongbo, Li Li, Lei Yu, Mingming Zhang, and Dawei Qi. "Detection and Classification of Wood Defects by ANN." In 2006 International Conference on Mechatronics and Automation. IEEE, 2006. http://dx.doi.org/10.1109/icma.2006.257659.
Full textSilva, Jeronimo A., Cassiano P. Pais, Jose C. A. Freitas, Fernando D. Carvalho, and Fernando C. Rodrigues. "Detection and automatic classification of defects in ceramic products." In International Conference on Manufacturing Automation, edited by Anand K. Asundi and S. T. Tan. SPIE, 1993. http://dx.doi.org/10.1117/12.138502.
Full textAdachi, Kazune, Takahiro Natori, and Naoyuki Aikawa. "Detection and classification of painting defects using deep learning." In 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). IEEE, 2021. http://dx.doi.org/10.1109/itc-cscc52171.2021.9524736.
Full textLUO, Changhao, Kai ZHAO, Xiaoxia Sun, Min MIAO, and Zhensong LI. "Detection and Classification of Typical Defects in TSV and RDL." In 2019 20th International Conference on Electronic Packaging Technology(ICEPT). IEEE, 2019. http://dx.doi.org/10.1109/icept47577.2019.245135.
Full textJiang, Jiabin, Xiang Xiao, Guohua Feng, Zichen Lu, and Yongying Yang. "Detection and classification of glass defects based on machine vision." In Applied Optical Metrology III, edited by Erik Novak and James D. Trolinger. SPIE, 2019. http://dx.doi.org/10.1117/12.2528654.
Full textLiu, Luye, Bahador Bahramimianrood, Han Zou, and Suixian Yang. "Welding Defects Detection and Classification by Using Eddy Current Thermography." In 2017 Far East NDT New Technology & Application Forum (FENDT). IEEE, 2017. http://dx.doi.org/10.1109/fendt.2017.8584572.
Full textDat, Duong Tan, Nguyen Dao Xuan Hai, and Nguyen Truong Thinh. "Detection and Classification Defects on Exported Banana Leaves by Computer Vision." In 2019 International Conference on System Science and Engineering (ICSSE). IEEE, 2019. http://dx.doi.org/10.1109/icsse.2019.8823097.
Full textHittawe, Mohamad Mazen, Satya M. Muddamsetty, Desire Sidibe, and Fabrice Meriaudeau. "Multiple features extraction for timber defects detection and classification using SVM." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7350834.
Full textPastor-Lopez, Iker, Igor Santos, Jorge de-la-Pena-Sordo, Mikel Salazar, Aitor Santamaria-Ibirika, and Pablo G. Bringas. "Collective classification for the detection of surface defects in automotive castings." In 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA 2013). IEEE, 2013. http://dx.doi.org/10.1109/iciea.2013.6566502.
Full textChen, Aris, Victor Huang, Sophie Chen, C. J. Tsai, Kenneth Wu, Haiping Zhang, Kevin Sun, et al. "Advanced inspection methodologies for detection and classification of killer substrate defects." In SPIE Lithography Asia - Taiwan, edited by Alek C. Chen, Burn Lin, and Anthony Yen. SPIE, 2008. http://dx.doi.org/10.1117/12.804558.
Full textReports on the topic "Defects detection and classification"
Cheadle, Nancy, Dennis Tackett, Robert Pierce, and Raymond de Lacaze. Automatic Detection of Radar Signature Defects,. Fort Belvoir, VA: Defense Technical Information Center, May 1999. http://dx.doi.org/10.21236/ada364069.
Full textDr. Gabe V. Garcia. Automated Diagnosis and Classification of Steam Generator Tube Defects. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/833464.
Full textHouston, Brian H., Tim Yoder, and Larry Carin. Harbor Threat Detection, Classification, and Identification. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada612415.
Full textHouston, Brian H., and Larry Carin. Harbor Threat Detection, Classification, and Identification. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada541163.
Full textBower, James M., Linda Buck, William Goddard, Wilson III, Lewis Denise, and Nathan S. Understanding Olfaction: From Detection to Classification. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada428676.
Full textMellinger, David K. Detection, Classification, and Localization Workshop 2011. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada598568.
Full textLohrenz, M. C., M. L. Gendron, and G. J. Layne. Automic Change Detection and Classification (ACDC) System. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada494240.
Full textAuthor, Not Given. A sequential detection algorithm for color printed pattern defects. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/10129734.
Full textBirch, Gabriel Carisle, John Clark Griffin, and Matthew Kelly Erdman. UAS Detection Classification and Neutralization: Market Survey 2015. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1222445.
Full textMellinger, David K. Detection, Classification, and Density Estimation of Marine Mammals. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada579344.
Full text