Dissertations / Theses on the topic 'Defects detection and classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Defects detection and classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Allanqawi, Khaled Kh S. Kh. "A framework for the classification and detection of design defects and software quality assurance." Thesis, Kingston University, 2015. http://eprints.kingston.ac.uk/34534/.
Full textNouri, Arash. "Correlation-Based Detection and Classification of Rail Wheel Defects using Air-coupled Ultrasonic Acoustic Emissions." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/78139.
Full textMaster of Science
Ngendangenzwa, Blaise. "Defect detection and classification on painted specular surfaces." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-146063.
Full textVolvokoncernens hyttfabrik i Umeå är en av Norrlands största verkstadsindustrier.Hyttfabriken tillverkar bara hytter för lastbilar och tillhör en av världens modernaste produktionsanläggningar. Trots ett hög automatiserat och datoriserat system bland många processer så är kvalitetsinspektionen av målade hytter fortfarande utförd manuellt. En smart och automatiserad kvalitetskontroll kan leda till lägre kostnader, högre kvalitet samt högre produktions effektivitet. Den här studien är ett steg framåt mot en automatiserad kvalitetskontroll. Två slagsproblem undersöktes närmare i den här studien nämligen defekt inspektion och defekt klassificering. Dessa problem åtgärdades genom att förse fyra statistiskametoder, support vector machine, random forests, k-nearest neighbors och neuralnetworks, med extraherade HOG egenskaper från tagna bilder. Resultaten visade att support vector machine och random forests presterade bättre än dess konkurrenter i förhållande till förmågan att både inspektera och klassificera defekter.
Yang, Xuezhi, and 楊學志. "Discriminative fabric defect detection and classification using adaptive wavelet." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29913408.
Full textRönnqvist, Johannes, and Johannes Sjölund. "A Deep Learning Approach to Detection and Classification of Small Defects on Painted Surfaces : A Study Made on Volvo GTO, Umeå." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160194.
Full textI den här rapporten visar vi att modeller av typen convolutional neural networks, tillsammans med phase-measuring deflektometri, kan hitta och klassificera defekter på målade ytor med hög precision, även jämfört med erfarna operatörer. Vidare visar vi vilka databehandlingsåtgärder som ökar modellernas prestanda. Vi ser att standardisering ökar modellernas klassificeringsförmåga. Vi visar att städning av data genom ommärkning och borttagning av felaktiga bilder förbättrar klassificeringsförmågan och särskilt modellernas förmåga att särskilja mellan olika typer av defekter. Vi visar att översampling kan vara en metod för att förbättra precisionen genom att öka och balansera datamängden genom att förändra och duplicera befintliga observationer. Slutligen finner vi att kombinera flera bilder med olika mönster ökar modellernas klassificeringsförmåga väsentligt. Vårt föreslagna tillvägagångssätt har visat sig fungera bra i realtid inom en produktionsmiljö. En automatiserad kvalitetskontroll av de målade ytorna på Volvos lastbilshytter kan ge stora fördelar med avseende på kostnad och kvalitet. Den automatiska kvalitetskontrollen kan ge data för en rotorsaksanalys och ett snabbt och effektivt alarmsystem. Detta kan väsentligt effektivisera produktionen och samtidigt minska kostnader och fel i produktionen. Korrigeringar och optimering av processerna kan göras i tidigare skeden och med högre precision än idag.
Carroll, L. Blair. "Investigation into the detection and classification of defect colonies using ACFM technolgy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0007/MQ42360.pdf.
Full textWu, Michael. "Transfer Learning Approach to Powder Bed Fusion Additive Manufacturing Defect Detection." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2324.
Full textMahendra, Adhiguna. "Methodology of surface defect detection using machine vision with magnetic particle inspection on tubular material." Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS051.
Full textIndustrial surface inspection of tubular material based on Magnetic Particle Inspection (MPI) is a challenging task. Magnetic Particle Inspection is a well known method for Non Destructive Testing with the goal to detect the presence of crack in the tubular surface. Currently Magnetic Particle Inspection for tubular material in Vallourec production site is stillbased on the human inspector judgment. It is time consuming and tedious job. In addition, itis prone to error due to human eye fatigue. In this thesis we propose a machine vision approach in order to detect the defect in the tubular surface MPI images automatically without human supervision with the best detection rate. We focused on crack like defects since they represent the major ones. In order to fulfill the objective, a methodology of machine vision techniques is developed step by step from image acquisition to defect classification. The proposed framework was developed according to industrial constraint and standard hence accuracy, computational speed and simplicity were very important. Based on Magnetic Particle Inspection principles, an acquisition system is developed and optimized, in order to acquire tubular material images for storage or processing. The characteristics of the crack-like defects with respect to its geometric model and curvature characteristics are used as priory knowledge for mathematical morphology and linear filtering. After the segmentation and binarization of the image, vast amount of defect candidates exist. Aside from geometrical and intensity features, Multi resolution Analysis wasperformed on the images to extract textural features. Finally classification is performed with Random Forest classifier due to its robustness and speed and compared with other classifiers such as with Support Vector Machine Classifier. The parameters for mathematical morphology, linear filtering and classification are analyzed and optimized with Design Of Experiments based on Taguchi approach and Genetic Algorithm. The most significant parameters obtained may be analyzed and tuned further. Experiments are performed ontubular materials and evaluated by its accuracy and robustness by comparing ground truth and processed images. This methodology can be replicated for different surface inspection application especially related with surface crack detection
Janošík, Zdeněk. "Klasifikace detekovaných vad." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221300.
Full textMahmood, Waqas, and Muhammad Faheem Akhtar. "Validation of Machine Learning and Visualization based Static Code Analysis Technique." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4347.
Full textSoftware trygghet har alltid varit en i efterhand inom mjukvaruutveckling som leder till osäker mjukvara. Företagen är beroende av penetrationstester för att upptäcka säkerhetsproblem i deras programvara. Att införliva säkerheten vid tidigt utvecklingsskede minskar kostnaderna och overhead. Statisk kod analys kan tillämpas vid genomförandet av mjukvaruutveckling livscykel. Tillämpa maskininlärning och visualisering för statisk kod är en ny idé. Teknik kan lära mönster av normaliserade kompressionständning avstånd NCD och klassificera källkoden till rätta eller felaktig användning på grundval av utbildning fall. Visualisering bidrar också till att klassificera code fragment utifrån deras associerade färger. En prototyp har utvecklats för att genomföra denna teknik som kallas Code Avstånd VISUALISERARE CDV. För att testa effektiviteten hos denna teknik empirisk validering krävs. I denna forskning vi bedriver serie experiment för att testa dess effektivitet. Vi använder verkliga livet öppen källkod som vår test ämnen. Vi har också samlats in fel från deras motsvarande felrapportering förråd samt fel och rätt version av källkoden. Vi utbildar CDV genom att markera rätt och fel version av koden fragment. På grundval av dessa träningar CDV klassificerar andra nummer fragment som korrekta eller felaktiga. Vi mätt sina fel upptäckt förhållandet falska negativa och falska positiva förhållandet. Resultatet visar att den här tekniken är effektiv i fel upptäckt och har låga antalet falsklarm.
waqasmah@gmail.com +46762316108
Sorosac, Nicole. "Etude d'un système d'inspection optique d'état de surface de bobines d'acier inoxydable laminées à froid." Grenoble 1, 1988. http://www.theses.fr/1988GRE10164.
Full textBengali, Umme Salma Yusuf. "Pixel classification of iris transillumination defects." Thesis, University of Iowa, 2012. https://ir.uiowa.edu/etd/3260.
Full textAuger, Marc. "Detection of laser-welding defects using neural networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2002. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ65599.pdf.
Full textKehoe, A. "Detection and evaluation of defects in industrial images." Thesis, University of Surrey, 1990. http://epubs.surrey.ac.uk/804357/.
Full textPriyosulistyo, Henricus. "Detection of defects in concrete structures using vibration technique." Thesis, University of Strathclyde, 1992. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21555.
Full textWang, Hui. "Software Defects Classification Prediction Based On Mining Software Repository." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-216554.
Full textWilson, Duncan John. "Classification of defects using uncertainty in industrial web inspection." Thesis, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286894.
Full textRogers, Stuart Craig. "Defect Detection Microscopy." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2256.
Full textMoshiri, Farzad, Bahareh Mobasher, and Issa Osama Talib. "Detection of defects in timber using dynamic excitation and vibration analysis." Thesis, Växjö University, School of Technology and Design, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-5444.
Full textThis thesis evaluates the possibility to detect natural defects, such as knots, in timber boards using dynamic excitation test and ABAQUS software. In the study the edgewise bending direction were compared with axial direction. Dynamic excitation and modal analysis were used to extract the natural frequencies of several sound and artificially defected boards with the help of Signalcalc. Mobylizer software. By using the first edgewise natural frequency, modulus of elasticity (MOE) was calculated. An ABAQUS 2D Finite Element model was utilized to model the board and to extract the frequencies for the six first mode shapes in both axial and edgewise directions. The extracted frequencies from the model were compared with the frequencies from the tests. The analytical and experimental results, from the homogeneous boards, in edgewise direction has similar frequency variations. The defects in the timber boards decreased the natural frequencies. The bending modes with more curvature at the location of the artificial defect displayed more frequency deviation in that mode. The variation in response frequencies for uniform and defected boards was more noticeable in edgewise bending modes than in longitudinal modes.
Chaiworawitkul, Sakda 1977. "Detection of surface defects in infrastructure using wavelets and neural networks." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/84310.
Full textIncludes bibliographical references (p. [225]-[228]).
by Sakda Chaiworawitkul.
M.Eng.
Wang, Xiaoting. "Transient thermography for detection of micro-defects in multilayer thin films." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/25174.
Full textHu, Yazhe. "Degenerate Near-planar Road Surface 3D Reconstruction and Automatic Defects Detection." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/98671.
Full textDoctor of Philosophy
Road is one of the key infrastructures for ground transportation. A good road surface condition can benefit mainly on three aspects: 1. Avoiding the potential traffic accident caused by road surface defects, such as potholes. 2. Reducing the damage to the vehicle initiated by the bad road surface condition. 3. Improving the driving and riding comfort on a healthy road surface. With all the benefits mentioned above, it is important to examine and check the road surface quality frequently and efficiently to make sure that the road surface is in a healthy condition. In order to detect any road surface defects on public road in time, this dissertation proposes three techniques to tackle the road surface defects detection problem: First, a near-planar road surface three-dimensional (3D) reconstruction technique is proposed. Unlike traditional 3D reconstruction technique, the proposed technique solves the degenerate issue for road surface 3D reconstruction from two images. The degenerate issue appears when the object reconstructed has near-planar surfaces. Second, after getting the accuracy-enhanced 3D road surface reconstruction, this dissertation proposes an automatic defects detection technique using both the 3D reconstructed road surface and the road surface image information. Although physics-based detection using 3D reconstruction and 2D images are reliable and explainable, it needs more time to process these data. To speed up the road surface defects detection task, the third contribution is a technique that proposes a self-supervised learning structure with data-driven Convolutional Neural Networks (CNN). Different from traditional neural network-based detection techniques, the proposed combines the 3D road information with the CNN output to jointly determine the road surface defects region. All the proposed techniques are evaluated using both the simulation and real-world experiments. Results show the efficacy and efficiency of the proposed techniques in this dissertation.
Oaker, Bradley. "The detection of defects in tubes and plates using guided waves." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/11182.
Full textNgan, Yuk-tung Henry, and 顏旭東. "Patterned Jacquard fabric defect detection." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30070880.
Full textTemko, Andriy. "Acoustic event detection and classification." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6880.
Full textsortides de diversos sistemes de classificació. Els sistemes de classificació d'events acústics
desenvolupats s'han testejat també mitjançant la participació en unes quantes avaluacions d'àmbit
internacional, entre els anys 2004 i 2006. La segona principal contribució d'aquest treball de tesi consisteix en el desenvolupament de sistemes de detecció d'events acústics. El problema de la detecció és més complex, ja que inclou tant la classificació dels sons com la determinació dels intervals temporals on tenen lloc. Es desenvolupen dues versions del sistema i es proven amb els conjunts de dades de les dues campanyes d'avaluació internacional CLEAR que van tenir lloc els anys 2006 i 2007, fent-se servir dos tipus de bases de dades: dues bases d'events acústics aïllats, i una base d'enregistraments de seminaris interactius, les quals contenen un nombre relativament elevat d'ocurrències dels events acústics especificats. Els sistemes desenvolupats, que consisteixen en l'ús de classificadors basats en SVM que operen dins
d'una finestra lliscant més un post-processament, van ser els únics presentats a les avaluacions
esmentades que no es basaven en models de Markov ocults (Hidden Markov Models) i cada un d'ells
va obtenir resultats competitius en la corresponent avaluació. La detecció d'activitat oral és un altre dels objectius d'aquest treball de tesi, pel fet de ser un cas particular de detecció d'events acústics especialment important. Es desenvolupa una tècnica de millora de l'entrenament dels SVM per fer front a la necessitat de reducció de l'enorme conjunt de dades existents. El sistema resultant, basat en SVM, és testejat amb uns quants conjunts de dades de l'avaluació NIST RT (Rich Transcription), on mostra puntuacions millors que les del sistema basat en GMM, malgrat que aquest darrer va quedar entre els primers en l'avaluació NIST RT de 2006.
Per acabar, val la pena esmentar alguns resultats col·laterals d'aquest treball de tesi. Com que s'ha dut a terme en l'entorn del projecte europeu CHIL, l'autor ha estat responsable de l'organització de les avaluacions internacionals de classificació i detecció d'events acústics abans esmentades, liderant l'especificació de les classes d'events, les bases de dades, els protocols d'avaluació i, especialment, proposant i implementant les diverses mètriques utilitzades. A més a més, els sistemes de detecció
s'han implementat en la sala intel·ligent de la UPC, on funcionen en temps real a efectes de test i demostració.
The human activity that takes place in meeting-rooms or class-rooms is reflected in a rich variety of acoustic events, either produced by the human body or by objects handled by humans, so the determination of both the identity of sounds and their position in time may help to detect and describe that human activity.
Additionally, detection of sounds other than speech may be useful to enhance the robustness of speech technologies like automatic speech recognition. Automatic detection and classification of acoustic events is the objective of this thesis work. It aims at processing the acoustic signals collected by distant microphones in meeting-room or classroom environments to convert them into symbolic descriptions corresponding to a listener's perception of the different sound events that are present in the signals and their sources. First of all, the task of acoustic event classification is faced using Support Vector Machine (SVM) classifiers, which are motivated by the scarcity of training data. A confusion-matrix-based variable-feature-set clustering scheme is developed for the multiclass recognition problem, and tested on the gathered database. With it, a higher classification rate than the GMM-based technique is obtained, arriving to a large relative average error reduction with respect to the best result from the conventional binary tree scheme. Moreover, several ways to extend SVMs to sequence processing are compared, in an attempt to avoid the drawback of SVMs when dealing with audio data, i.e. their restriction to work with fixed-length vectors, observing that the dynamic time warping kernels work well for sounds that show a temporal structure. Furthermore, concepts and tools from the fuzzy theory are used to investigate, first, the importance of and degree of interaction among features, and second, ways to fuse the outputs of several classification systems. The developed AEC systems are tested also by participating in several international evaluations from 2004 to 2006, and the results
are reported. The second main contribution of this thesis work is the development of systems for detection of acoustic events. The detection problem is more complex since it includes both classification and determination of the time intervals where the sound takes place. Two system versions are developed and tested on the datasets of the two CLEAR international evaluation campaigns in 2006 and 2007. Two kinds of databases are used: two databases of isolated acoustic events, and a database of interactive seminars containing a significant number of acoustic events of interest. Our developed systems, which consist of SVM-based classification within a sliding window plus post-processing, were the only submissions not using HMMs, and each of them obtained competitive results in the corresponding evaluation. Speech activity detection was also pursued in this thesis since, in fact, it is a -especially important - particular case of acoustic event detection. An enhanced SVM training approach for the speech activity detection task is developed, mainly to cope with the problem of dataset reduction. The resulting SVM-based system is tested with several NIST Rich Transcription (RT) evaluation datasets, and it shows better scores than our GMM-based system, which ranked among the best systems in the RT06 evaluation. Finally, it is worth mentioning a few side outcomes from this thesis work. As it has been carried out in the framework of the CHIL EU project, the author has been responsible for the organization of the above mentioned international evaluations in acoustic event classification and detection, taking a leading role in the specification of acoustic event classes, databases, and evaluation protocols, and, especially, in the proposal and implementation of the various metrics that have been used. Moreover, the detection systems have been implemented in the UPC's smart-room and work in real time for purposes of testing and demonstration.
Garcia, Luís Paulo Faina. "Noise detection in classification problems." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29112016-155215/.
Full textEm diversas áreas do conhecimento, um tempo considerável tem sido gasto na compreensão e tratamento de dados ruidosos. Trata-se de uma ocorrência comum quando nos referimos a coleta, a transmissão e ao armazenamento de informações. Esses dados ruidosos, quando utilizados na indução de classificadores por técnicas de Aprendizado de Maquina, aumentam a complexidade da hipótese obtida, bem como o aumento do seu tempo de indução, além de prejudicar sua acurácia preditiva. Trata-los na etapa de pré-processamento pode significar uma melhora da qualidade dos dados e um aumento na compreensão do problema estudado. Esta Tese investiga medidas de complexidade capazes de caracterizar a presença de ruídos em um conjunto de dados, desenvolve novos filtros que sejam mais eficientes em determinados nichos do problema de detecção e remoção de ruídos que as técnicas consideradas estado da arte e recomenda as mais apropriadas técnicas ou comitês de técnicas para um determinado conjunto de dados por meio de meta-aprendizado. As bases de dados utilizadas nos experimentos realizados neste trabalho são tanto artificiais quanto reais, coletadas de repositórios públicos e fornecidas por projetos de cooperação. A avaliação consiste tanto da adição de ruídos artificiais quanto da validação de um especialista. Experimentos realizados mostraram o potencial das propostas investigadas.
Gatti, Stefano. "Object Detection for Cell Classification." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22034/.
Full textHunt, Kevin. "Modelling the origin of defects in injection moulded ceramics." Thesis, Brunel University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280892.
Full textLonkar, Gajanan M. "Computer aided detection of defects in FRP bridge decks using infrared thermography." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4368.
Full textTitle from document title page. Document formatted into pages; contains xii, 129 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 120-123).
Gilday, R. T. "Inexpensive equipment for the detection of acquired and congenital colour-vision defects." Thesis, University of Sussex, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318605.
Full textAsani, Furaha Florence. "Detection of subtle immune defects in individuals at risk of pneumococcal disease." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/19508/.
Full textPratiwada, Chaitanya. "High Fidelity Detection of Defects in Polymer Films Using Surface-Modified Nanoparticles." University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1345586565.
Full textHonec, Peter. "Spolehlivé systémy zpracování obrazu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-233467.
Full textMalady, Amy Colleen. "Cyclostationarity Feature-Based Detection and Classification." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/32280.
Full textMaster of Science
Wu, Tsung-Lin, and 吳昌林. "A Computer Vision System for Detection and Classification of Defects." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/66308090046378263068.
Full textChuang, Fuji, and 莊富傑. "The Detection and Classification of Lead Frame Defects Using Neural Networks." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/44883327211863894990.
Full text中華大學
機械與航太工程研究所
87
As the pitch getting finer and the lead number getting higher, the inspection of IC lead frame using bare eyes becomes more difficult. To lessen the workload of human inspectors, an effective method for the detection and classification of defects is presented. First, the proposed method uses image-processing techniques such as image enhancement, image segmentation, edge detection, morphological operation, and labeling to locate defects. Next, feature extraction techniques are applied to measure such features as perimeter, moments, area, eccentricity, compactness, roughness, and standard deviation of gray level. Finally, by inputting the extracted features of each defect to a pre-trained feedforward backpropagation network, the defect can be classified into pinhole, scratch, or contamination. To automate the inspection process, image processing, feature extraction, artificial neural network, as well as stage and light source control techniques have been integrated into an effective defect detection and classification system. The experimental results show that on an average, the system can finish inspecting an image in 0.4 second and the recognition rate is 99.22%. In summary, the developed system not only can replace the convention inspection method, but also increase the accuracy and efficiency of lead frame inspection.
Fernandes, Pedro Miguel Pinto da Cunha. "Detection of production defects using Machine Learning based Image Classification Algorithms." Dissertação, 2020. https://hdl.handle.net/10216/129867.
Full textFernandes, Pedro Miguel Pinto da Cunha. "Detection of production defects using Machine Learning based Image Classification Algorithms." Master's thesis, 2020. https://hdl.handle.net/10216/129867.
Full textShehab-Eldeen, Tariq. "An automated system for detection, classification and rehabilitation of defects in sewer pipes." Thesis, 2001. http://spectrum.library.concordia.ca/1624/1/NQ68210.pdf.
Full textPhong-PhuLe and 黎楓富. "Ball-Grid-Array Chip Defects Detection and Classification Using Patch-based Modified YOLOv3." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/vyywa9.
Full textTseng, Yung-Chin, and 曾永進. "Defect detection and classification of printed art tiles." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/48281639136842937484.
Full text逢甲大學
資訊電機工程碩士在職專班
100
In the printing procedure in art tiles manufacturing process, the defects such as: the scratches, pattern missing, dirt, fly ink will influence the printing quality. The traditional manual inspection methods, because there are a variety of subjective and objective factors, can not complete the task of on-line detection. In this study, a machine vision technology for print defect detection is presented to discuss its feasibility in industrial role. The study was applied in the printed art tiles process. By using a digital image processing technology in the manufacturing process, the defect detection and classification can be successfully achieved. The methods include feature extraction, feature analysis, neural network classification, and grayscale co-occurrence matrix. Then the system can make a judgment as to whether each print pattern is good or bad. The accuracy of the system can reach 90%, and the detection speed is 2-3 sec for a 15x15cm print tile.
Silva, Afonso Luís Costa Barbosa da. "Detection of dish manufacturing defects using a deep learning-based approach." Master's thesis, 2020. http://hdl.handle.net/10071/21798.
Full textO controlo de qualidade é fundamental para assegurar o bom funcionamento de um processo industrial. Este trabalho propõe a utilização e adaptação de um algoritmo, baseado em aprendizagem profunda, como parte integrante de um sistema automático de controlo de qualidade numa fábrica de pratos de porcelana. Este sistema receberá imagens adquiridas em tempo real por câmaras fotográficas colocadas diretamente sobre a linha de produção. O algoritmo utilizado classificará os pratos presentes nas imagens como "defeituoso" ou "sem defeito". O objetivo do sistema será, portanto, a deteção de pratos defeituosos, fazendo com que menos pratos com defeito cheguem ao mercado, contribuindo assim para uma melhor reputação da fábrica. Este sistema é baseado na aplicação de uma rede neuronal convolucional. Este tipo de redes requer um elevado número de dados para ser treinado de modo a conseguir realizar a classificação de imagens. Uma vez que a pandemia de COVID-19 se fez sentir em maior escala em Portugal na altura do desenvolvimento deste trabalho, foi impossível a obtenção de imagens provenientes da fábrica. Devido a este contratempo, os dados utilizados neste trabalho foram gerados artificialmente. Ao fornecer imagens completas de pratos ao algoritmo, o mesmo atingiu uma taxa de acerto da deteção de defeitos de 92,7% com o primeiro conjunto de dados e 91,9% com o segundo. Ao fornecer ao algoritmo segmentos de 100x100 pixéis da imagem original, o mesmo atingiu 91,6% de taxa de acerto, o que se traduziu numa taxa de acerto de 52,0% na classificação das imagens completas de pratos.
Ze, Zhuang lang, and 莊揚擇. "Defect Detection and Classification for TFT-LCD Array Process." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/54194990244159495610.
Full text國立勤益科技大學
資訊工程系
102
The thesis integrates the Way of Quick Grabbing Defect and High-accuracy Defect Classification to examine TFT-LCD Array Manufacturing Process Defect Classification. First, we get defects through Crossing Comparative Method Of Neighborhood Blocks Image, and then divide the defects into five characters which finally are substituted into SVM to be trained and later get three categories such as Flock, Particle, and Manufacturing Process Defect etc. With the repeated feature of TFT-LCD Array Manufacturing Process, using Crossing Comparative Method Of Neighborhood Blocks Image can get defects quickly , and using SVM can get accurate classifying results. The experiment shows that the accuracy examined can be up to 97.8%.
Chang, Wei-Lun, and 張維倫. "Similarity Based ART 1 Model for Automatic Defect Detection and Classification." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/25670869861506264644.
Full text國立交通大學
電控工程研究所
102
In general, a reliable and automatic semiconductor fabrication processes is of great importance to product yield and cost reduction. In the past, we made use of human vision to do die defect detection and classification, which is hindered by the easy fatigue and fuzziness of human eyes and the decision difference between inspectors. In this thesis, we develop a vision-based automatic defect classification system. In our defect detection component, we apply the MAD method to align the test image with the reference image. To acquire the binary defect images, we subtract the test image from the reference image, then we convert the difference image into the binary image by setting a threshold. Moreover, we removed the scattering noises by setting a minimum number of connected noisy pixels required. Finally, we extract all defects in the test image in order to perform the defect classification. For defect classification, we revise the ART 1 model, which still can retain the stability and the plasticity dilemma. We have found that ART 1 exists an intolerable shortcoming: output is dependent on the ordering of input sequence applied. To remedy this disadvantage, we derive the similarity based ART 1 model which can obtain high classification accuracy and independent on the ordering of input patterns.
Tsai, Cia-Yang, and 蔡家揚. "Distance Based Vector Quantization Algorithm for Automatic Defect Detection and Classification." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/09298426281506536411.
Full text國立交通大學
電控工程研究所
103
In general, a reliable and automatic semiconductor fabrication processes is of great importance to product yield and cost reduction. In the past, we made use of human vision to do die defect detection and classification, which is hindered by the easy fatigue and fuzziness of human eyes and the decision difference between inspectors. In this thesis, we implement a vision-based automatic defect classification system. In our defect detection component, we have used the MAD method to align the test image to the reference image. To acquire the binary defect images, we subtract the test image from the reference image, and then we convert the difference image into the binary image by setting a threshold. Moreover, we removed the scattering noises by setting a minimum number of connected noisy pixels required. Finally, we extract all defects in the test image in order to perform the defect classification. For defect classification, we revise the Vector Quantization Algorithm with Kohonen learning rule. Because of the initial seeds have been selected randomly, it will lead to various clustering outcomes. We derive distance based vector quantization with first seed selection measure and it can obtain high classification accuracy and consistent classification result.
"Noise Resilient Image Segmentation and Classification Methods with Applications in Biomedical and Semiconductor Images." Doctoral diss., 2010. http://hdl.handle.net/2286/R.I.8607.
Full textDissertation/Thesis
Ph.D. Electrical Engineering 2010
Lin, Pei-Yao, and 林培堯. "Automatic morphological defect detection and classification in Li-ion battery radiographic images." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/95818160785479290762.
Full text國立陽明大學
生物醫學影像暨放射科學系暨研究所
100
In the industry, using non-destructive testing (NDT) by X-ray inspection is very common, which can be divided into off-line and in-line testing. The aim of this thesis is to implement automatic machine learning methods to do in-line testing mainly for lithium battery X-ray images in order to detect defects for classification. About lithium battery X-ray images, we focus eight areas to detect defect. There are two main steps in the study: feature extraction and classification. The aim on feature extraction is to find the position of defects and to outline the features of defects. Feature extraction method includes image processing, morphological analysis, edge detection, labeling, and projection curve observation. Two existing classification methods, support vector machine (SVM) and back-propagation neural network (BPN), were utilized as the classifier of our system. We also asked the experts to determine whether there is any defect in the objects. Finally, we verified the accuracy of feature extraction and classification. We use 200 lithium battery X-ray images to extract their characteristic features, randomly selected 70% of them as training data set and 30% as test data set. The results appear that our proposed system can detect the locations of the defects quickly and accurately. About classification, SVM and BPN obtained classification accuracy around 80% and 70%, respectively. Furthermore, we suggest that using SVM method to classify lithium battery defect detect.
Carroll, L. Blair. "Investigation into the detection and classification of defect colonies using ACFM Technology /." 1998.
Find full textCheng, Che-Fu, and 鄭喆夫. "Automatic Defect Detection and Classification System on Printed Circuit Board Inner Layer." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/twdr26.
Full text國立交通大學
電控工程研究所
101
In this thesis, we implement an automatic defect classification system that combines the detection and classification of the defect on a PCB inner layer. In defect detection part, at first, we have to use the MAD method to align the test images to the reference image which contains no defects. MAD method computes the mean absolute distortion of the two images overlapping area to find the displacement between these two images. Then we subtract the aligned test image from aligned reference images to obtain defects. Finally, there are some noises with small size in the subtracted image. Therefore, we remove these noises by setting a threshold. In defect classification part, we have to find the outer boundary of each defect and then we extract two features, “number of state transition,” and “boundary state,” from the outer boundary. Moreover, we also extract the “defect state” feature in the image subtraction process. By using these three different features, we can classify defects into the following eight types: “open,” “mouse bite,” “pinhole,” “missing conductor,” “short,” “spur,” “missing hole,” and “excess copper.”
Hsu, Ming-Chou, and 許名宙. "A Study of Defect Detection and Classification Technique for Compact Camera Lens Images." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/2k52dt.
Full text國立中興大學
資訊科學與工程學系
103
In the majority of optical related industry, the visual inspection process of the wafer surface depends on human experts. However, the inefficiencies of human visual inspection is has led to the development of image process to perform inspection tasks. Compact camera lenses consist of multiple lenses and manufacturing may create defects. The compact camera lenses module structure was multi-layer. When light passed through the compact camera lens module, it will cause a halo because of reflection and refraction. It led defect is difficult to be found. We propose a based inspection approach to defect in Compact Camera Lens Images. The first component mainly used Hough transform to detect circle and to segment region of interes. The polar transform process is used to mapping image into polar coordinate system. So that the image of the lens edge profile becomes horizontal cyclic feature edge. We use the Horizontal Sobel edge detection to solve the problem for the Camera Lens edge. Simple threshold method and morphology operations are used to detect candidate defect which contains defect The combination of the object mask and the result of watershed Alogorithms is able to segment the objects exactly. Then, support vector machine is used to classified defect.