Journal articles on the topic 'Deformable linear objects'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Deformable linear objects.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Koo, Kyongmo, Xin Jiang, Atsushi Konno, and Masaru Uchiyama. "Development of a Wire Harness Assembly Motion Planner for Redundant Multiple Manipulators." Journal of Robotics and Mechatronics 23, no. 6 (2011): 907–18. http://dx.doi.org/10.20965/jrm.2011.p0907.
Full textMoll, M., and L. E. Kavraki. "Path planning for deformable linear objects." IEEE Transactions on Robotics 22, no. 4 (2006): 625–36. http://dx.doi.org/10.1109/tro.2006.878933.
Full textSaha, M., and P. Isto. "Manipulation Planning for Deformable Linear Objects." IEEE Transactions on Robotics 23, no. 6 (2007): 1141–50. http://dx.doi.org/10.1109/tro.2007.907486.
Full textWakamatsu, Hidefumi, Eiji Arai, and Shinichi Hirai. "Knotting/Unknotting Manipulation of Deformable Linear Objects." International Journal of Robotics Research 25, no. 4 (2006): 371–95. http://dx.doi.org/10.1177/0278364906064819.
Full textAlmaghout, Karam, and Alexandr Klimchik. "Planar Shape Control of Deformable Linear Objects." IFAC-PapersOnLine 55, no. 10 (2022): 2469–74. http://dx.doi.org/10.1016/j.ifacol.2022.10.079.
Full textGarcía, Marcos, César Mendoza, Luis Pastor, and Angel Rodríguez. "Optimized linear FEM for modeling deformable objects." Computer Animation and Virtual Worlds 17, no. 3-4 (2006): 393–402. http://dx.doi.org/10.1002/cav.142.
Full textTabata, Kenta, Renato Miyagusuku, and Hiroaki Seki. "Motion Planning for Dynamic Three-Dimensional Manipulation for Unknown Flexible Linear Object." Journal of Robotics and Mechatronics 36, no. 4 (2024): 950–60. http://dx.doi.org/10.20965/jrm.2024.p0950.
Full textChang, Peng, and Taşkın Padır. "Model-Based Manipulation of Linear Flexible Objects: Task Automation in Simulation and Real World." Machines 8, no. 3 (2020): 46. http://dx.doi.org/10.3390/machines8030046.
Full textMa, Jiangtao, Jianhua Liu, Xiaoyu Ding, and Naijing Lv. "Motion Planning for Deformable Linear Objects Under Multiple Constraints." Robotica 38, no. 5 (2019): 819–30. http://dx.doi.org/10.1017/s0263574719001103.
Full textKhalifa, Alaa, and Gianluca Palli. "New model-based manipulation technique for reshaping deformable linear objects." International Journal of Advanced Manufacturing Technology 118, no. 11-12 (2021): 3575–83. http://dx.doi.org/10.1007/s00170-021-08107-x.
Full textZhu, Jihong, Benjamin Navarro, Robin Passama, Philippe Fraisse, Andre Crosnier, and Andrea Cherubini. "Robotic Manipulation Planning for Shaping Deformable Linear Objects WithEnvironmental Contacts." IEEE Robotics and Automation Letters 5, no. 1 (2020): 16–23. http://dx.doi.org/10.1109/lra.2019.2944304.
Full textYue, Shigang, and Dominik Henrich. "Manipulating Deformable Linear Objects: Fuzzy-Based Active Vibration Damping Skill." Journal of Intelligent and Robotic Systems 46, no. 3 (2006): 201–19. http://dx.doi.org/10.1007/s10846-006-9049-1.
Full textYue, Shigang, and Dominik Henrich. "Manipulating deformable linear objects: Attachable adjustment-motions for vibration reduction." Journal of Robotic Systems 18, no. 7 (2001): 375–89. http://dx.doi.org/10.1002/rob.1030.
Full textKAJIOKA, Daisuke, Hiromasa ONAKA, Zhang CHI, Yuichiro TODA, Takayuki MATUNO, and Mamoru MINAMI. "Recognition of linear deformable objects using point cloud data for various objects mixedly placed." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2021 (2021): 2P2—H09. http://dx.doi.org/10.1299/jsmermd.2021.2p2-h09.
Full textPopov, I. P., N. M. Filkin, O. Yu Moiseev, and V. V. Kharin. "Analysis and rationale of TOW units for tractors with massive towed objects." Vestnik IzhGTU imeni M.T. Kalashnikova 26, no. 1 (2023): 48–54. http://dx.doi.org/10.22213/2413-1172-2023-1-48-54.
Full textTang, Te, Changhao Wang, and Masayoshi Tomizuka. "A Framework for Manipulating Deformable Linear Objects by Coherent Point Drift." IEEE Robotics and Automation Letters 3, no. 4 (2018): 3426–33. http://dx.doi.org/10.1109/lra.2018.2852770.
Full textYan, Mengyuan, Yilin Zhu, Ning Jin, and Jeannette Bohg. "Self-Supervised Learning of State Estimation for Manipulating Deformable Linear Objects." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2372–79. http://dx.doi.org/10.1109/lra.2020.2969931.
Full textDirr, Jonas, Daniel Gebauer, Jiajun Yao, and Rüdiger Daub. "Automatic Image Generation Pipeline for Instance Segmentation of Deformable Linear Objects." Sensors 23, no. 6 (2023): 3013. http://dx.doi.org/10.3390/s23063013.
Full textDirr, Jonas, Daniel Gebauer, and Rüdiger Daub. "Localization and Grasp Planning for Bin Picking of Deformable Linear Objects." Procedia CIRP 118 (2023): 235–40. http://dx.doi.org/10.1016/j.procir.2023.06.041.
Full textCirillo, Andrea, Gianluca Laudante, and Salvatore Pirozzi. "Tactile Sensor Data Interpretation for Estimation of Wire Features." Electronics 10, no. 12 (2021): 1458. http://dx.doi.org/10.3390/electronics10121458.
Full textPUJOL, ORIOL, and PETIA RADEVA. "TEXTURE SEGMENTATION BY STATISTICAL DEFORMABLE MODELS." International Journal of Image and Graphics 04, no. 03 (2004): 433–52. http://dx.doi.org/10.1142/s021946780400149x.
Full textDing, Feng, Jian Huang, Yongji Wang, Takayuki Matsuno, and Toshio Fukuda. "Vibration damping in manipulation of deformable linear objects using sliding mode control." Advanced Robotics 28, no. 3 (2013): 157–72. http://dx.doi.org/10.1080/01691864.2013.861769.
Full textDirr, Jonas, Andre Siepmann, Daniel Gebauer, and Rüdiger Daub. "Evaluation metric for instance segmentation in robotic grasping of deformable linear objects." Procedia CIRP 120 (2023): 726–31. http://dx.doi.org/10.1016/j.procir.2023.09.066.
Full textEstevez, Julian, Jose M. Lopez-Guede, and Manuel Graña. "Particle Swarm Optimization Quadrotor Control for Cooperative Aerial Transportation of Deformable Linear Objects." Cybernetics and Systems 47, no. 1-2 (2016): 4–16. http://dx.doi.org/10.1080/01969722.2016.1128759.
Full textGarcía, Marcos, Oscar D. Robles, Luis Pastor, and Angel Rodríguez. "MSRS: A fast linear solver for the real-time simulation of deformable objects." Computers & Graphics 32, no. 3 (2008): 293–306. http://dx.doi.org/10.1016/j.cag.2008.01.008.
Full textShah, Ankit, Lotta Blumberg, and Julie Shah. "Planning for Manipulation of Interlinked Deformable Linear Objects With Applications to Aircraft Assembly." IEEE Transactions on Automation Science and Engineering 15, no. 4 (2018): 1823–38. http://dx.doi.org/10.1109/tase.2018.2811626.
Full textYue, Shigang, and Dominik Henrich. "Manipulating deformable linear objects: Sensor-based skills of adjustment motions for vibration reduction." Journal of Robotic Systems 22, no. 2 (2005): 67–85. http://dx.doi.org/10.1002/rob.20049.
Full textGao, Haipeng, and Yadong Teng. "Contrastive Prediction and Estimation of Deformable Objects based on Improved Resnet." Frontiers in Computing and Intelligent Systems 8, no. 3 (2024): 37–43. http://dx.doi.org/10.54097/hkzmv453.
Full textMatsuno, T., D. Tamaki, F. Arai, and T. Fukuda. "Manipulation of deformable linear objects using knot invariants to classify the object condition based on image sensor information." IEEE/ASME Transactions on Mechatronics 11, no. 4 (2006): 401–8. http://dx.doi.org/10.1109/tmech.2006.878557.
Full textEstevez, Julian, Manuel Graña, and Jose Manuel Lopez-Guede. "Online fuzzy modulated adaptive PD control for cooperative aerial transportation of deformable linear objects." Integrated Computer-Aided Engineering 24, no. 1 (2016): 41–55. http://dx.doi.org/10.3233/ica-160530.
Full textEstevez, Julian, Jose Manuel Lopez-Guede, Gorka Garate, and Manuel Graña. "Hybrid Modeling of Deformable Linear Objects for Their Cooperative Transportation by Teams of Quadrotors." Applied Sciences 12, no. 10 (2022): 5253. http://dx.doi.org/10.3390/app12105253.
Full textNguyen, Huong Giang, and Jörg Franke. "Deep learning-based optical inspection of rigid and deformable linear objects in wiring harnesses." Procedia CIRP 104 (2021): 1765–70. http://dx.doi.org/10.1016/j.procir.2021.11.297.
Full textShneor, Ran, and Sigal Berman. "Assembly Sequence Planning with Deformable Linear Objects in the Smart Factory: Dilemmas and Injections." IFAC-PapersOnLine 55, no. 10 (2022): 2457–62. http://dx.doi.org/10.1016/j.ifacol.2022.10.077.
Full textXie, Yinghong, Xiaosheng Yu, and Chengdong Wu. "Tracking objects using Grassmann manifold appearance modeling based on wireless multimedia sensor networks." International Journal of Distributed Sensor Networks 14, no. 3 (2018): 155014771876685. http://dx.doi.org/10.1177/1550147718766856.
Full textWakamatsu, Hidefumi, Akira Tsumaya, Eiji Arai, and Shinichi Hirai. "Topological Manipulation Planning for Knotting and Tightening of Deformable Linear Objects Based on Knot Theory." Journal of the Robotics Society of Japan 24, no. 4 (2006): 523–32. http://dx.doi.org/10.7210/jrsj.24.523.
Full textDucato, Antonino, Davide Campanella, Gianluca Buffa, and Livan Fratini. "Design of Numerical Simulations of Linear Friction Welding Processes: Issues and Difficulties." Key Engineering Materials 639 (March 2015): 451–58. http://dx.doi.org/10.4028/www.scientific.net/kem.639.451.
Full textGuo, Jiuming, Jiwen Zhang, Dan Wu, Yuhang Gai, and Ken Chen. "A local manipulation path replanning algorithm on deformable linear objects for collisions resulted from model deviation." Journal of Manufacturing Systems 65 (October 2022): 362–77. http://dx.doi.org/10.1016/j.jmsy.2022.09.015.
Full textHuo, Shengzeng, Anqing Duan, Chengxi Li, et al. "Keypoint-Based Planar Bimanual Shaping of Deformable Linear Objects Under Environmental Constraints With Hierarchical Action Framework." IEEE Robotics and Automation Letters 7, no. 2 (2022): 5222–29. http://dx.doi.org/10.1109/lra.2022.3154842.
Full textZhou, Peng, Pai Zheng, Jiaming Qi, et al. "Reactive human–robot collaborative manipulation of deformable linear objects using a new topological latent control model." Robotics and Computer-Integrated Manufacturing 88 (August 2024): 102727. http://dx.doi.org/10.1016/j.rcim.2024.102727.
Full textMalvido Fresnillo, Pablo, Saigopal Vasudevan, Wael M. Mohammed, Jose L. Martinez Lastra, and Jose A. Perez Garcia. "An approach based on machine vision for the identification and shape estimation of deformable linear objects." Mechatronics 96 (December 2023): 103085. http://dx.doi.org/10.1016/j.mechatronics.2023.103085.
Full textAspragathos, Nikos A. "Intelligent Robot Systems for Manipulation of Non-Rigid Objects." Solid State Phenomena 260 (July 2017): 20–29. http://dx.doi.org/10.4028/www.scientific.net/ssp.260.20.
Full textCirillo, Andrea, Gianluca Laudante, and Salvatore Pirozzi. "Proximity Sensor for Thin Wire Recognition and Manipulation." Machines 9, no. 9 (2021): 188. http://dx.doi.org/10.3390/machines9090188.
Full textSHOELE, KOUROSH, and QIANG ZHU. "Flow-induced vibrations of a deformable ring." Journal of Fluid Mechanics 650 (March 16, 2010): 343–62. http://dx.doi.org/10.1017/s0022112009993697.
Full textSrinivasan, M. A., and R. H. LaMotte. "Tactual discrimination of softness." Journal of Neurophysiology 73, no. 1 (1995): 88–101. http://dx.doi.org/10.1152/jn.1995.73.1.88.
Full textHsu, Jerry, Nghia Truong, Cem Yuksel, and Kui Wu. "A general two-stage initialization for sag-free deformable simulations." ACM Transactions on Graphics 41, no. 4 (2022): 1–13. http://dx.doi.org/10.1145/3528223.3530165.
Full textAggogeri, Francesco, Andrea Avanzini, Alberto Borboni, and Stefano Pandini. "A Robot Gripper in Polymeric Material for Solid Micro-Meso Parts." International Journal of Automation Technology 11, no. 2 (2017): 311–21. http://dx.doi.org/10.20965/ijat.2017.p0311.
Full textFurtak, Kazimierz, and Mariusz Hebda. "Damage to an overpass bridge from WBS prefab beams." MATEC Web of Conferences 284 (2019): 01002. http://dx.doi.org/10.1051/matecconf/201928401002.
Full textYau, Jeffrey M., Sung Soo Kim, Pramodsingh H. Thakur, and Sliman J. Bensmaia. "Feeling form: the neural basis of haptic shape perception." Journal of Neurophysiology 115, no. 2 (2016): 631–42. http://dx.doi.org/10.1152/jn.00598.2015.
Full textAlmaghout, K., and A. Klimchik. "Vision-Based Robotic Comanipulation for Deforming Cables." Nelineinaya Dinamika 18, no. 5 (2022): 0. http://dx.doi.org/10.20537/nd221213.
Full textLesser, Steve, Alexey Stomakhin, Gilles Daviet, et al. "Loki." ACM Transactions on Graphics 41, no. 4 (2022): 1–20. http://dx.doi.org/10.1145/3528223.3530058.
Full text