Journal articles on the topic 'Deformation mechanism maps'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Deformation mechanism maps.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Greenwood, G. W. "Deformation mechanism maps and microstructural influences." Materials Science and Engineering: A 410-411 (November 2005): 12–15. http://dx.doi.org/10.1016/j.msea.2005.08.098.
Full textRybacki, Erik, and Georg Dresen. "Deformation mechanism maps for feldspar rocks." Tectonophysics 382, no. 3-4 (April 2004): 173–87. http://dx.doi.org/10.1016/j.tecto.2004.01.006.
Full textHou, Qing Yu, and Jing Tao Wang. "Deformation Mechanism in the Mg-Gd-Y Alloys Predicted by Deformation Mechanism Maps." Advanced Materials Research 146-147 (October 2010): 225–32. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.225.
Full textKim, W. J., and H. T. Jeong. "Construction of processing maps combined with deformation mechanism maps using creep deformation equations." Journal of Materials Research and Technology 9, no. 6 (November 2020): 13434–49. http://dx.doi.org/10.1016/j.jmrt.2020.09.023.
Full textMisra, A., M. Verdier, H. Kung, J. D. Embury, and J. P. Hirth. "Deformation mechanism maps for polycrystalline metallic multiplayers." Scripta Materialia 41, no. 9 (October 1999): 973–79. http://dx.doi.org/10.1016/s1359-6462(99)00239-0.
Full textLee, I. G., and A. K. Ghosh. "High Temperature Deformation Mechanism Maps of NiAl." Materials Science Forum 449-452 (March 2004): 57–60. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.57.
Full textMisra, A., M. Verdier, H. Kung, J. D. Embury, and J. P. Hirth. "Erratum deformation mechanism maps for polycrystalline metallic multilayers." Scripta Materialia 42, no. 2 (December 1999): 219. http://dx.doi.org/10.1016/s1359-6462(99)00413-3.
Full textLangdon, Terence G. "Deformation mechanism maps for applications at high temperatures." Ceramics International 11, no. 4 (October 1985): 141. http://dx.doi.org/10.1016/0272-8842(85)90165-8.
Full textWang, Jian N., and T. G. Nieh. "Incorporation of peierls stress into deformation mechanism maps." Scripta Metallurgica et Materialia 33, no. 4 (August 1995): 633–38. http://dx.doi.org/10.1016/0956-716x(95)00230-s.
Full textXie, De-Gang, Rong-Rong Zhang, Zhi-Yu Nie, Jing Li, Evan Ma, Ju Li, and Zhi-Wei Shan. "Deformation mechanism maps for sub-micron sized aluminum." Acta Materialia 188 (April 2020): 570–78. http://dx.doi.org/10.1016/j.actamat.2020.02.013.
Full textZhou, Ge, Lijia Chen, Lirong Liu, Haijian Liu, Heli Peng, and Yiping Zhong. "Low-Temperature Superplasticity and Deformation Mechanism of Ti-6Al-4V Alloy." Materials 11, no. 7 (July 13, 2018): 1212. http://dx.doi.org/10.3390/ma11071212.
Full textMonteiro, Sergio Neves, Frederico Muylaert Margem, Lucas Tedesco Bolzan, George Lobo Nobre Fernandes, and Verônica Scarpini Cândido. "Special Effects in Deformation Mechanism Maps for Austenitic Stainless Steels." Materials Science Forum 869 (August 2016): 543–49. http://dx.doi.org/10.4028/www.scientific.net/msf.869.543.
Full textCheng, Bin, and Jason R. Trelewicz. "Design of crystalline-amorphous nanolaminates using deformation mechanism maps." Acta Materialia 153 (July 2018): 314–26. http://dx.doi.org/10.1016/j.actamat.2018.05.006.
Full textLiu, Chao, Ge Zhou, Xin Wang, Jiajing Liu, Jianlin Li, Haoyu Zhang, and Lijia Chen. "Rheological Law and Mechanism for Superplastic Deformation of Ti–6Al–4V." Materials 12, no. 21 (October 26, 2019): 3520. http://dx.doi.org/10.3390/ma12213520.
Full textLi, M., and SJ Zinkle. "Deformation Mechanism Maps of Unirradiated and Irradiated V-4Cr-4Ti." Journal of ASTM International 2, no. 10 (2005): 12462. http://dx.doi.org/10.1520/jai12462.
Full textKoleshko, V. M., and I. V. Kiryushin. "Deformation mechanism maps and gettering diagrams for single-crystal silicon." Physica Status Solidi (a) 109, no. 1 (September 16, 1988): 161–69. http://dx.doi.org/10.1002/pssa.2211090116.
Full textTill, J. L., and Bruce Moskowitz. "Magnetite deformation mechanism maps for better prediction of strain partitioning." Geophysical Research Letters 40, no. 4 (February 27, 2013): 697–702. http://dx.doi.org/10.1002/grl.50170.
Full textBecker, Hanka, and Wolfgang Pantleon. "Work-hardening stages and deformation mechanism maps during tensile deformation of commercially pure titanium." Computational Materials Science 76 (August 2013): 52–59. http://dx.doi.org/10.1016/j.commatsci.2013.03.028.
Full textFreeman, Brett, and Colin C. Ferguson. "Deformation mechanism maps and micromechanics of rocks with distributed grain sizes." Journal of Geophysical Research: Solid Earth 91, B3 (March 10, 1986): 3849–60. http://dx.doi.org/10.1029/jb091ib03p03849.
Full textRobi, P. S., Sanjib Banerjee, and A. Srinivasan. "Deformation Mechanism Maps for Al-Cu-Mg Alloys Micro-Alloyed with Tin." Advanced Materials Research 410 (November 2011): 283–86. http://dx.doi.org/10.4028/www.scientific.net/amr.410.283.
Full textCao, Furong. "Incorporating dislocation variables into Mohamed's and Kawasaki–Langdon's deformation mechanism maps containing superplasticity mechanism regimes." Materials Science and Engineering: A 643 (September 2015): 169–74. http://dx.doi.org/10.1016/j.msea.2015.07.042.
Full textKawasaki, Megumi, and Terence G. Langdon. "Evaluating the Flow Properties of Ultrafine-Grained Materials." Advanced Materials Research 829 (November 2013): 3–9. http://dx.doi.org/10.4028/www.scientific.net/amr.829.3.
Full textMohamed, Farghalli A. "Deformation mechanism maps for micro-grained, ultrafine-grained, and nano-grained materials." Materials Science and Engineering: A 528, no. 3 (January 2011): 1431–35. http://dx.doi.org/10.1016/j.msea.2010.10.048.
Full textUllmann, Madlen, Matthias Schmidtchen, Kristina Kittner, Thorsten Henseler, Rudolf Kawalla, and Ulrich Prahl. "Hot Deformation Behaviour and Processing Maps of an as-Cast Mg-6.8Y-2.5Zn-0.4Zr Alloy." Materials Science Forum 949 (March 2019): 57–65. http://dx.doi.org/10.4028/www.scientific.net/msf.949.57.
Full textJeong, H. T., and W. J. Kim. "Calculation and construction of deformation mechanism maps and processing maps for CoCrFeMnNi and Al0.5CoCrFeMnNi high-entropy alloys." Journal of Alloys and Compounds 869 (July 2021): 159256. http://dx.doi.org/10.1016/j.jallcom.2021.159256.
Full textKawasaki, Megumi, and Terence G. Langdon. "Description of the Superplastic Flow Process by Deformation Mechanism Maps in Ultrafine-Grained Materials." Materials Science Forum 838-839 (January 2016): 51–58. http://dx.doi.org/10.4028/www.scientific.net/msf.838-839.51.
Full textKawasaki, Megumi, Roberto B. Figueiredo, and Terence G. Langdon. "The Development of Superplasticity and Deformation Mechanism Maps in an Ultrafine-Grained Magnesium Alloy." Materials Science Forum 879 (November 2016): 48–53. http://dx.doi.org/10.4028/www.scientific.net/msf.879.48.
Full textYang, Zhijun, Weixin Yu, Shaoting Lang, Junyi Wei, Guanglong Wang, and Peng Ding. "Hot Deformation Behavior and Processing Maps of a New Ti-6Al-2Nb-2Zr-0.4B Titanium Alloy." Materials 14, no. 9 (May 9, 2021): 2456. http://dx.doi.org/10.3390/ma14092456.
Full textZhou, Ge, Jianlin Li, Chao Liu, Haoyu Zhang, Xin Che, Xiaofei Zhu, and Lijia Chen. "Theoretical predication of dislocation-included high-temperature deformation mechanism maps for GH4742 alloy." Philosophical Magazine Letters 100, no. 8 (June 10, 2020): 386–91. http://dx.doi.org/10.1080/09500839.2020.1774933.
Full textKawasaki, Megumi, and Terence G. Langdon. "Using deformation mechanism maps to depict flow processes in superplastic ultrafine-grained materials." Journal of Materials Science 47, no. 22 (April 21, 2012): 7726–34. http://dx.doi.org/10.1007/s10853-012-6487-y.
Full textMeike, A. "Dislocation enhanced selective dissolution: an examination of mechanical aspects using deformation-mechanism maps." Journal of Structural Geology 12, no. 5-6 (January 1990): 785–94. http://dx.doi.org/10.1016/0191-8141(90)90089-h.
Full textPrasad, Y. V. R. K., and K. P. Rao. "Effect of Oxygen Content on the Processing Maps for Hot Deformation of OFHC Copper." Journal of Engineering Materials and Technology 128, no. 2 (October 19, 2005): 158–62. http://dx.doi.org/10.1115/1.2172275.
Full textXue, Yong, Zhi Min Zhang, and Yao Jin Wu. "A Study on Processing Map and Flow Stress Model of AZ80 Magnesium Alloy Forming at Elevated Temperature." Applied Mechanics and Materials 121-126 (October 2011): 3–9. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.3.
Full textLi, Hui, Zhanglong Zhao, Yongquan Ning, Hongzhen Guo, and Zekun Yao. "Characterization of Microstructural Evolution for a Near-α Titanium Alloy with Different Initial Lamellar Microstructures." Metals 8, no. 12 (December 10, 2018): 1045. http://dx.doi.org/10.3390/met8121045.
Full textYang, Junzhou, and Jianjun Wu. "Grain Rotation Accommodated GBS Mechanism for the Ti-6Al-4V Alloy during Superplastic Deformation." Crystals 11, no. 8 (August 20, 2021): 991. http://dx.doi.org/10.3390/cryst11080991.
Full textLuo, Lei, Zhiyi Liu, Song Bai, Juangang Zhao, Diping Zeng, Jian Wang, Jing Cao, and Yangcheng Hu. "Hot Deformation Behavior Considering Strain Effects and Recrystallization Mechanism of an Al-Zn-Mg-Cu Alloy." Materials 13, no. 7 (April 9, 2020): 1743. http://dx.doi.org/10.3390/ma13071743.
Full textLiao, Bin, Lingfei Cao, Xiaodong Wu, Yan Zou, Guangjie Huang, Paul Rometsch, Malcolm Couper, and Qing Liu. "Effect of Heat Treatment Condition on the Flow Behavior and Recrystallization Mechanisms of Aluminum Alloy 7055." Materials 12, no. 2 (January 20, 2019): 311. http://dx.doi.org/10.3390/ma12020311.
Full textLypchanskyi, Oleksandr, Tomasz Śleboda, Aneta Łukaszek-Sołek, Krystian Zyguła, and Marek Wojtaszek. "Application of the Strain Compensation Model and Processing Maps for Description of Hot Deformation Behavior of Metastable β Titanium Alloy." Materials 14, no. 8 (April 17, 2021): 2021. http://dx.doi.org/10.3390/ma14082021.
Full textWang, Xiaoguo, Jian Qin, Hiromi Nagaumi, Ruirui Wu, and Qiushu Li. "The Effect of α-Al(MnCr)Si Dispersoids on Activation Energy and Workability of Al-Mg-Si-Cu Alloys during Hot Deformation." Advances in Materials Science and Engineering 2020 (May 20, 2020): 1–12. http://dx.doi.org/10.1155/2020/3471410.
Full textGuo, Yuhang, Yaodong Xuanyuan, Chunnan Lia, and Sen Yang. "Characterization of Hot Deformation Behavior and Processing Maps of Mg-3Sn-2Al-1Zn-5Li Magnesium Alloy." Metals 9, no. 12 (November 26, 2019): 1262. http://dx.doi.org/10.3390/met9121262.
Full textNie, Kaibo, Zhihao Zhu, Kunkun Deng, Ting Wang, and Jungang Han. "Hot Deformation Behavior and Processing Maps of SiC Nanoparticles and Second Phase Synergistically Reinforced Magnesium Matrix Composites." Nanomaterials 9, no. 1 (January 3, 2019): 57. http://dx.doi.org/10.3390/nano9010057.
Full textChen, Liquan, Chaoying Zhao, Ya Kang, Hengyi Chen, Chengsheng Yang, Bin Li, Yuanyuan Liu, and Aiguo Xing. "Pre-Event Deformation and Failure Mechanism Analysis of the Pusa Landslide, China with Multi-Sensor SAR Imagery." Remote Sensing 12, no. 5 (March 6, 2020): 856. http://dx.doi.org/10.3390/rs12050856.
Full textKim, W. J., S. W. Chung, C. S. Chung, and D. Kum. "Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures." Acta Materialia 49, no. 16 (September 2001): 3337–45. http://dx.doi.org/10.1016/s1359-6454(01)00008-8.
Full textKim, Su Hyeon, Jung Moo Lee, Young Hee Cho, Yeong Hwa Kim, and Hwa Jung Kim. "Hot Working and Processing Maps of TiCp Reinforced Aluminum Alloy Matrix Composite." Key Engineering Materials 535-536 (January 2013): 296–99. http://dx.doi.org/10.4028/www.scientific.net/kem.535-536.296.
Full textViernstein, Bernhard, and Ernst Kozeschnik. "Integrated Physical-Constitutive Computational Framework for Plastic Deformation Modeling." Metals 10, no. 7 (June 30, 2020): 869. http://dx.doi.org/10.3390/met10070869.
Full textLiu, Guangming, Jinbin Wang, Yafeng Ji, Runyuan Hao, Huaying Li, Yugui Li, and Zhengyi Jiang. "Hot Deformation Behavior and Microstructure Evolution of Fe–5Mn–3Al–0.1C High-Strength Lightweight Steel for Automobiles." Materials 14, no. 10 (May 11, 2021): 2478. http://dx.doi.org/10.3390/ma14102478.
Full textJosell, D., T. P. Weihs, and H. Gao. "Diffusional Creep: Stresses and Strain Rates in Thin Films and Multilayers." MRS Bulletin 27, no. 1 (January 2002): 39–44. http://dx.doi.org/10.1557/mrs2002.18.
Full textThouless, M. D., J. Gupta, and J. M. E. Harper. "Stress development and relaxation in copper films during thermal cycling." Journal of Materials Research 8, no. 8 (August 1993): 1845–52. http://dx.doi.org/10.1557/jmr.1993.1845.
Full textDavydok, Anton, Thomas Cornelius, Zhe Ren, Cedric Leclere, Gilbert Chahine, Tobias Schülli, Florian Lauraux, Gunther Richter, and Olivier Thomas. "In Situ Coherent X-ray Diffraction during Three-Point Bending of a Au Nanowire: Visualization and Quantification." Quantum Beam Science 2, no. 4 (November 13, 2018): 24. http://dx.doi.org/10.3390/qubs2040024.
Full textLin, Guo Qing. "Characterization of Hot Deformation Behavior of Zr-4 Alloy in Material Application Area." Advanced Materials Research 578 (October 2012): 202–5. http://dx.doi.org/10.4028/www.scientific.net/amr.578.202.
Full text