Academic literature on the topic 'Degenerate equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Degenerate equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Degenerate equation"
Trudinger, Neil S. "On degenerate fully nonlinear elliptic equations in balls." Bulletin of the Australian Mathematical Society 35, no. 2 (1987): 299–307. http://dx.doi.org/10.1017/s0004972700013253.
Full textPERTHAME, BENOÎT, and ALEXANDRE POULAIN. "Relaxation of the Cahn–Hilliard equation with singular single-well potential and degenerate mobility." European Journal of Applied Mathematics 32, no. 1 (2020): 89–112. http://dx.doi.org/10.1017/s0956792520000054.
Full textAgosti, A. "Error analysis of a finite element approximation of a degenerate Cahn-Hilliard equation." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 3 (2018): 827–67. http://dx.doi.org/10.1051/m2an/2018018.
Full textOza, Priyank. "Fully nonlinear degenerate equations with applications to Grad equations." Electronic Journal of Qualitative Theory of Differential Equations, no. 26 (2024): 1–13. http://dx.doi.org/10.14232/ejqtde.2024.1.26.
Full textIgisinov, S. Zh, L. D. Zhumaliyeva, A. O. Suleimbekova, and Ye N. Bayandiyev. "Estimates of singular numbers (s-numbers) for a class of degenerate elliptic operators." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 107, no. 3 (2022): 51–58. http://dx.doi.org/10.31489/2022m3/51-58.
Full textMai, La-Su, and Suriguga. "Local well-posedness of 1D degenerate drift diffusion equation." Mathematics in Engineering 6, no. 1 (2024): 155–72. http://dx.doi.org/10.3934/mine.2024007.
Full textNazarova, K. "ON ONE METHOD FOR OBTAINING UNIQUE SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR AN INTEGRO-DIFFERENTIAL EQUATION." Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy), no. 1 (March 15, 2022): 42–54. http://dx.doi.org/10.47526/2022-2/2524-0080.04.
Full textPasichnyk, H. "SOLUTIONS OF SOME INTEGRAL EQUATIONS OF THE SECOND KIND." Bukovinian Mathematical Journal 12, no. 1 (2024): 84–93. http://dx.doi.org/10.31861/bmj2024.01.08.
Full textChristodoulou, Dimitris M., Eric Kehoe, and Qutaibeh D. Katatbeh. "Degenerate Canonical Forms of Ordinary Second-Order Linear Homogeneous Differential Equations." Axioms 10, no. 2 (2021): 94. http://dx.doi.org/10.3390/axioms10020094.
Full textShakhmurov, V. B., and Н. К. Musaev. "Nonlocal separable elliptic and parabolic equations and applications." Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, no. 1 (February 5, 2025): 66–92. https://doi.org/10.26907/0021-3446-2025-1-66-92.
Full textDissertations / Theses on the topic "Degenerate equation"
Tepoyan, L. "The mixed problem for a degenerate operator equation." Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2009/3033/.
Full textBrinkschulte, Judith. "The Cauchy-Riemann equation with support conditions in domains with Levi degenerate boundaries." [S.l.] : [s.n.], 2002. http://dochost.rz.hu-berlin.de/dissertationen/brinkschulte-judith-2002-04-19.
Full textPicard, Sebastien. "A priori estimates of the degenerate Monge-Ampère equation on compact Kähler manifolds." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119756.
Full textBrinkschulte, Judith. "The Cauchy-Riemann equation with support conditions on domains with Levi-degenerate boundaries." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14734.
Full textMattioli, Mauro. "Estimates on degenerate jump-diffusion processes and regularity of the related valuation equation." Doctoral thesis, Luiss Guido Carli, 2011. http://hdl.handle.net/11385/200886.
Full textWatling, K. D. "Formulae for solutions to (possibly degenerate) diffusion equations exhibiting semi-classical and small time asymptotics." Thesis, University of Warwick, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380277.
Full textROCCHETTI, DARIO. "Generation of analytic semigroups for a class of degenerate elliptic operators." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/749.
Full textRao, Arvind Satya. "Weak solutions to a Monge-Ampère type equation on Kähler surfaces." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/582.
Full textURBANI, CRISTINA. "Bilinear Control of Evolution Equations." Doctoral thesis, Gran Sasso Science Institute, 2020. http://hdl.handle.net/20.500.12571/10061.
Full textBoiger, Wolfgang Josef. "Stabilised finite element approximation for degenerate convex minimisation problems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16790.
Full textBooks on the topic "Degenerate equation"
Wakako, Hideaki. Exact WKB analysis for the degenerate third Painleve equation of type (Ds). Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2007.
Find full textLevendorskii, Serge. Degenerate Elliptic Equations. Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-1215-6.
Full textDiBenedetto, Emmanuele. Degenerate Parabolic Equations. Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0895-2.
Full textFavini, Angelo, and Gabriela Marinoschi. Degenerate Nonlinear Diffusion Equations. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28285-0.
Full textFavini, Angelo. Degenerate Nonlinear Diffusion Equations. Springer Berlin Heidelberg, 2012.
Find full textA, Dzhuraev. Degenerate and other problems. Longman Scientific and Technical, 1992.
Find full textAhmed, Zeriahi, ed. Degenerate complex Monge--Ampère equations. European Mathematical Society Publishing House, 2017.
Find full textFavini, A. Degenerate differential equations in Banach spaces. Marcel Dekker, 1999.
Find full textBook chapters on the topic "Degenerate equation"
Arrieta, José M., Rosa Pardo, and Aníbal Rodríguez-Bernal. "A Degenerate Parabolic Logistic Equation." In Advances in Differential Equations and Applications. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06953-1_1.
Full textGalaktionov, Victor A., and Sergey A. Posashkov. "On Some Monotonicity in Time Properties for a Quasilinear Parabolic Equation with Source." In Degenerate Diffusions. Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0885-3_5.
Full textWu, Lizhou, and Jianting Zhou. "Improved Linear and Nonlinear Iterative Methods for Rainfall Infiltration Simulation." In Rainfall Infiltration in Unsaturated Soil Slope Failure. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9737-2_4.
Full textEfendiev, Messoud. "Porous medium equation in homogeneous media: Long-time dynamics." In Attractors for Degenerate Parabolic Type Equations. American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/192/04.
Full textEfendiev, Messoud. "Porous medium equation in heterogeneous media: Long-time dynamics." In Attractors for Degenerate Parabolic Type Equations. American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/192/05.
Full textRodrigues, José Francisco, and Hugo Tavares. "Increasing Powers in a Degenerate Parabolic Logistic Equation." In Partial Differential Equations: Theory, Control and Approximation. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41401-5_15.
Full textKrejčí, Pavel. "Boundedness of Solutions to a Degenerate Diffusion Equation." In Springer INdAM Series. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64489-9_12.
Full textSlathia, Geetika, Rajneet Kaur, Kuldeep Singh, and Nareshpal Singh Saini. "Forced KdV Equation in Degenerate Relativistic Quantum Plasma." In Nonlinear Dynamics and Applications. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99792-2_2.
Full textFragnelli, Genni, and Dimitri Mugnai. "The Case of an Interior Degenerate/Singular Parabolic Equation." In SpringerBriefs in Mathematics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69349-7_5.
Full textFragnelli, Genni, and Dimitri Mugnai. "The Case of a Boundary Degenerate/Singular Parabolic Equation." In SpringerBriefs in Mathematics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69349-7_4.
Full textConference papers on the topic "Degenerate equation"
Sanchez, A. D., S. Chaitanya Kumar, and M. Ebrahim-Zadeh. "Mean-field equation for phase-modulation mode-locked optical parametric oscillator with dispersion control." In CLEO: Applications and Technology. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.180.
Full textXu, Ming, and Renjun Qiu. "Minimal-norm solution for Fredholm integral equation of the first kind with degenerate kernel implemented in finite steps." In 2024 14th International Conference on Information Technology in Medicine and Education (ITME). IEEE, 2024. https://doi.org/10.1109/itme63426.2024.00133.
Full textAllan, Douglas A., Anca Ostace, Andrew Lee, et al. "Jacobian-based Model Diagnostics and Application to Equation Oriented Modeling of a Carbon Capture System." In Foundations of Computer-Aided Process Design. PSE Press, 2024. http://dx.doi.org/10.69997/sct.160262.
Full textSong, Zeyuan, and Zheyu Jiang. "A Physics-based, Data-driven Numerical Framework for Anomalous Diffusion of Water in Soil." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.163304.
Full texta, Zeyu, and Zheyu Ji a. "A Novel Bayesian Framework for Inverse Problems in Precision Agriculture." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.113662.
Full textGoncerzewicz, Jan. "On the initial-boundary value problems for a degenerate parabolic equation." In Parabolic and Navier–Stokes equations. Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-13.
Full textBRESCH, DIDIER, and PIERRE-EMMANUEL JABIN. "QUANTITATIVE ESTIMATES FOR ADVECTIVE EQUATION WITH DEGENERATE ANELASTIC CONSTRAINT." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0134.
Full textButuzov, Valentin Fedorovich. "Singularly perturbed ODEs with multiple roots of the degenerate equation." In International Conference "Optimal Control and Differential Games" dedicated to the 110th anniversary of L. S. Pontryagin. Steklov Mathematical Institute, 2018. http://dx.doi.org/10.4213/proc22964.
Full text"Solvability of the quasilinear degenerate equation with Dzhrbashyan — Nersesyan derivative." In Уфимская осенняя математическая школа - 2022. 2 часть. Baskir State University, 2022. http://dx.doi.org/10.33184/mnkuomsh2t-2022-09-28.84.
Full textШуклина, Анна, and Марина Плеханова. "Mixed control of solutions to a degenerate nonlinear fractional equation." In International scientific conference "Ufa autumn mathematical school - 2021". Baskir State University, 2021. http://dx.doi.org/10.33184/mnkuomsh2t-2021-10-06.47.
Full textReports on the topic "Degenerate equation"
Fujisaki, Masatoshi. Normed Bellman Equation with Degenerate Diffusion Coefficients and Its Application to Differential Equations. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada190319.
Full textNohel, John A. A Class of One-Dimensional Degenerate Parabolic Equations. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada160962.
Full textGupta, V., B. H. J. McKellar, and D. D. Wu. The degeneracy of the free Dirac equation. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/6105369.
Full text