Journal articles on the topic 'Degenerate equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Degenerate equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Trudinger, Neil S. "On degenerate fully nonlinear elliptic equations in balls." Bulletin of the Australian Mathematical Society 35, no. 2 (1987): 299–307. http://dx.doi.org/10.1017/s0004972700013253.
Full textPERTHAME, BENOÎT, and ALEXANDRE POULAIN. "Relaxation of the Cahn–Hilliard equation with singular single-well potential and degenerate mobility." European Journal of Applied Mathematics 32, no. 1 (2020): 89–112. http://dx.doi.org/10.1017/s0956792520000054.
Full textAgosti, A. "Error analysis of a finite element approximation of a degenerate Cahn-Hilliard equation." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 3 (2018): 827–67. http://dx.doi.org/10.1051/m2an/2018018.
Full textOza, Priyank. "Fully nonlinear degenerate equations with applications to Grad equations." Electronic Journal of Qualitative Theory of Differential Equations, no. 26 (2024): 1–13. http://dx.doi.org/10.14232/ejqtde.2024.1.26.
Full textIgisinov, S. Zh, L. D. Zhumaliyeva, A. O. Suleimbekova, and Ye N. Bayandiyev. "Estimates of singular numbers (s-numbers) for a class of degenerate elliptic operators." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 107, no. 3 (2022): 51–58. http://dx.doi.org/10.31489/2022m3/51-58.
Full textMai, La-Su, and Suriguga. "Local well-posedness of 1D degenerate drift diffusion equation." Mathematics in Engineering 6, no. 1 (2024): 155–72. http://dx.doi.org/10.3934/mine.2024007.
Full textNazarova, K. "ON ONE METHOD FOR OBTAINING UNIQUE SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR AN INTEGRO-DIFFERENTIAL EQUATION." Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy), no. 1 (March 15, 2022): 42–54. http://dx.doi.org/10.47526/2022-2/2524-0080.04.
Full textPasichnyk, H. "SOLUTIONS OF SOME INTEGRAL EQUATIONS OF THE SECOND KIND." Bukovinian Mathematical Journal 12, no. 1 (2024): 84–93. http://dx.doi.org/10.31861/bmj2024.01.08.
Full textChristodoulou, Dimitris M., Eric Kehoe, and Qutaibeh D. Katatbeh. "Degenerate Canonical Forms of Ordinary Second-Order Linear Homogeneous Differential Equations." Axioms 10, no. 2 (2021): 94. http://dx.doi.org/10.3390/axioms10020094.
Full textShakhmurov, V. B., and Н. К. Musaev. "Nonlocal separable elliptic and parabolic equations and applications." Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, no. 1 (February 5, 2025): 66–92. https://doi.org/10.26907/0021-3446-2025-1-66-92.
Full textRyoo, Cheon-Seoung, and Jung-Yoog Kang. "Some Identities Involving Degenerate q-Hermite Polynomials Arising from Differential Equations and Distribution of Their Zeros." Symmetry 14, no. 4 (2022): 706. http://dx.doi.org/10.3390/sym14040706.
Full textKoilyshov, U. K., K. A. Beisenbaeva, and S. D. Zhapparova. "A priori estimate of the solution of the Cauchy problem in the Sobolev classes for discontinuous coefficients of degenerate heat equations." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 107, no. 3 (2022): 59–69. http://dx.doi.org/10.31489/2022m3/59-69.
Full textBaleanu, Dumitru, Vladimir E. Fedorov, Dmitriy M. Gordievskikh, and Kenan Taş. "Approximate Controllability of Infinite-Dimensional Degenerate Fractional Order Systems in the Sectorial Case." Mathematics 7, no. 8 (2019): 735. http://dx.doi.org/10.3390/math7080735.
Full textRocca, Elisabetta, and Riccarda Rossi. "A degenerating PDE system for phase transitions and damage." Mathematical Models and Methods in Applied Sciences 24, no. 07 (2014): 1265–341. http://dx.doi.org/10.1142/s021820251450002x.
Full textYimamu, Yilihamujiang. "Determining the Volatility in Option Pricing From Degenerate Parabolic Equation." WSEAS TRANSACTIONS ON MATHEMATICS 21 (September 13, 2022): 629–34. http://dx.doi.org/10.37394/23206.2022.21.73.
Full textFUCHS, F., and F. POUPAUD. "ASYMPTOTICAL AND NUMERICAL ANALYSIS OF DEGENERACY EFFECTS ON THE DRIFT-DIFFUSION EQUATIONS FOR SEMICONDUCTORS." Mathematical Models and Methods in Applied Sciences 05, no. 08 (1995): 1093–111. http://dx.doi.org/10.1142/s0218202595000577.
Full textSánchez-Garduño, Faustino, and Judith Pérez-Velázquez. "Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations." Scientific World Journal 2016 (2016): 1–21. http://dx.doi.org/10.1155/2016/5620839.
Full textGutlyanskiĭ, V., O. Martio, T. Sugawa, and M. Vuorinen. "On the degenerate Beltrami equation." Transactions of the American Mathematical Society 357, no. 3 (2004): 875–900. http://dx.doi.org/10.1090/s0002-9947-04-03708-0.
Full textHenriques, Eurica, and Vincenzo Vespri. "On the double degenerate equation." Nonlinear Analysis: Theory, Methods & Applications 75, no. 4 (2012): 2304–25. http://dx.doi.org/10.1016/j.na.2011.10.030.
Full textRubinstein, Yanir A., and Jake P. Solomon. "The degenerate special Lagrangian equation." Advances in Mathematics 310 (April 2017): 889–939. http://dx.doi.org/10.1016/j.aim.2017.02.008.
Full textXu, Xiangsheng. "A nonlinear degenerate parabolic equation." Nonlinear Analysis: Theory, Methods & Applications 14, no. 2 (1990): 141–57. http://dx.doi.org/10.1016/0362-546x(90)90020-h.
Full textAngelopoulos, Yannis, Stefanos Aretakis, and Dejan Gajic. "A Non-degenerate Scattering Theory for the Wave Equation on Extremal Reissner–Nordström." Communications in Mathematical Physics 380, no. 1 (2020): 323–408. http://dx.doi.org/10.1007/s00220-020-03857-3.
Full textWu, Bin, Qun Chen, Tingchun Wang, and Zewen Wang. "Null controllability of a coupled degenerate system with the first and zero order terms by a single control." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 107. http://dx.doi.org/10.1051/cocv/2020042.
Full textSuleimbekova, A. O., and B. M. Musilimov. "On the existence and coercive estimates of solutions to the Dirichlet problem for a class of third-order differential equations." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 114, no. 2 (2024): 178–85. http://dx.doi.org/10.31489/2024m2/178-185.
Full textZhan, Huashui. "On the Weak Characteristic Function Method for a Degenerate Parabolic Equation." Journal of Function Spaces 2019 (August 26, 2019): 1–11. http://dx.doi.org/10.1155/2019/9040284.
Full textPOP, IULIU SORIN, and BEN SCHWEIZER. "REGULARIZATION SCHEMES FOR DEGENERATE RICHARDS EQUATIONS AND OUTFLOW CONDITIONS." Mathematical Models and Methods in Applied Sciences 21, no. 08 (2011): 1685–712. http://dx.doi.org/10.1142/s0218202511005532.
Full textGutlyanskii, Vladimir, Vladimir Ryazanov, Evgeny Sevost’yanov, and Eduard Yakubov. "BMO and Asymptotic Homogeneity." Axioms 11, no. 4 (2022): 171. http://dx.doi.org/10.3390/axioms11040171.
Full textVikulov, A. G. "REGULARIZATION OF THE SOLUTION OF DEGENERATE SYSTEMS OF ALGEBRAIC EQUATIONS BY THE EXAMPLE OF IDENTIFICATION OF THE VIRIAL EQUATION OF STATE OF A REAL GAS." Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki 64, no. 7 (2024): 1112–27. https://doi.org/10.31857/s0044466924070024.
Full textLe, Nam Q. "On the Harnack inequality for degenerate and singular elliptic equations with unbounded lower order terms via sliding paraboloids." Communications in Contemporary Mathematics 20, no. 01 (2017): 1750012. http://dx.doi.org/10.1142/s0219199717500122.
Full textBalkizov, G. A. "Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation." REPORTS ADYGE (CIRCASSIAN) INTERNATIONAL ACADEMY OF SCIENCES 20, no. 3 (2020): 6–13. http://dx.doi.org/10.47928/1726-9946-2020-20-3-6-13.
Full textFloridia, G., C. Nitsch, and C. Trombetti. "Multiplicative controllability for nonlinear degenerate parabolic equations between sign-changing states." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 18. http://dx.doi.org/10.1051/cocv/2019066.
Full textHolzegel, Gustav, Jonathan Luk, Jacques Smulevici, and Claude Warnick. "Asymptotic Properties of Linear Field Equations in Anti-de Sitter Space." Communications in Mathematical Physics 374, no. 2 (2019): 1125–78. http://dx.doi.org/10.1007/s00220-019-03601-6.
Full textKrasovitskii, T. I. "Degenerate elliptic equations and nonuniqueness of solutions to the Kolmogorov equation." Доклады Академии наук 487, no. 4 (2019): 361–64. http://dx.doi.org/10.31857/s0869-56524874361-364.
Full textPyo, Sung-Soo, Taekyun Kim, and Seog-Hoon Rim. "Degenerate Daehee Numbers of the Third Kind." Mathematics 6, no. 11 (2018): 239. http://dx.doi.org/10.3390/math6110239.
Full textOtarova, J. A. "A boundary value problem for the fourth-order degenerate equation of the mixed type." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 113, no. 1 (2024): 140–48. http://dx.doi.org/10.31489/2024m1/140-148.
Full textABDELSALAM, U. M., and M. M. SELIM. "Ion-acoustic waves in a degenerate multicomponent magnetoplasma." Journal of Plasma Physics 79, no. 2 (2012): 163–68. http://dx.doi.org/10.1017/s0022377812000803.
Full textKbiri Alaoui, Mohammed. "On Degenerate Parabolic Equations." International Journal of Mathematics and Mathematical Sciences 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/506857.
Full textSCHULZ, RAPHAEL. "Degenerate equations in a diffusion–precipitation model for clogging porous media." European Journal of Applied Mathematics 31, no. 6 (2019): 1050–69. http://dx.doi.org/10.1017/s0956792519000391.
Full textRani, Neelam, and Manikant Yadav. "The Nonlinear Magnetosonic Waves in Magnetized Dense Plasma for Quantum Effects of Degenerate Electrons." 4, no. 4 (December 10, 2021): 180–88. http://dx.doi.org/10.26565/2312-4334-2021-4-24.
Full textSarıaydın-Filibelioğlu, Ayşe, Bülent Karasözen, and Murat Uzunca. "Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn–Hilliard Equation." International Journal of Nonlinear Sciences and Numerical Simulation 18, no. 5 (2017): 303–14. http://dx.doi.org/10.1515/ijnsns-2016-0024.
Full textBednarczuk, Ewa, Olga Brezhneva, Krzysztof Leśniewski, Agnieszka Prusińska, and Alexey A. Tret’yakov. "Towards Nonlinearity: The p-Regularity Theory." Entropy 27, no. 5 (2025): 518. https://doi.org/10.3390/e27050518.
Full textBandyopadhyay, Saugata, Bernard Dacorogna, and Olivier Kneuss. "The Pullback equation for degenerate forms." Discrete & Continuous Dynamical Systems - A 27, no. 2 (2010): 657–91. http://dx.doi.org/10.3934/dcds.2010.27.657.
Full textHirosawa, Fumihiko. "Degenerate Kirchhoff equation in ultradifferentiable class." Nonlinear Analysis: Theory, Methods & Applications 48, no. 1 (2002): 77–94. http://dx.doi.org/10.1016/s0362-546x(00)00174-7.
Full textAndreu, F., V. Caselles, and J. M. Mazón. "A strongly degenerate quasilinear elliptic equation." Nonlinear Analysis: Theory, Methods & Applications 61, no. 4 (2005): 637–69. http://dx.doi.org/10.1016/j.na.2004.11.020.
Full textXinhua, JI. "Möbius transformation and degenerate hyperbolic equation." Advances in Applied Clifford Algebras 11, S2 (2001): 155–75. http://dx.doi.org/10.1007/bf03219129.
Full textFujisaki, Masatoshi. "Degenerate Bellman equation and its applications." Stochastic Processes and their Applications 26 (1987): 195. http://dx.doi.org/10.1016/0304-4149(87)90089-5.
Full textBetancourt, F., R. Bürger, and K. H. Karlsen. "A strongly degenerate parabolic aggregation equation." Communications in Mathematical Sciences 9, no. 3 (2011): 711–42. http://dx.doi.org/10.4310/cms.2011.v9.n3.a4.
Full textGaillard, Pierre. "From Algebro Geometric Solutions of the Toda Equation to Sato Formulas." AppliedMath 4, no. 3 (2024): 856–67. http://dx.doi.org/10.3390/appliedmath4030046.
Full textAbdullaev, A. A., N. M. Safarbayeva, and B. Z. Usmonov. "On the unique solvability of a nonlocal boundary value problem with the poincaré condition." E3S Web of Conferences 401 (2023): 03048. http://dx.doi.org/10.1051/e3sconf/202340103048.
Full textAkil, Mohammad, Genni Fragnelli, and Amine Sbai. "Exponential Stability for a Degenerate/Singular Beam-Type Equation in Non-Divergence Form." Axioms 14, no. 3 (2025): 159. https://doi.org/10.3390/axioms14030159.
Full text