Journal articles on the topic 'Degenerate parabolic systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Degenerate parabolic systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kačur, J., and S. Luckhaus. "Approximation of degenerate parabolic systems by nondegenerate elliptic and parabolic systems." Applied Numerical Mathematics 26, no. 3 (1998): 307–26. http://dx.doi.org/10.1016/s0168-9274(97)00073-1.
Full textLIANG, FENG, and MAOAN HAN. "DEGENERATE HOPF BIFURCATION IN NONSMOOTH PLANAR SYSTEMS." International Journal of Bifurcation and Chaos 22, no. 03 (2012): 1250057. http://dx.doi.org/10.1142/s0218127412500575.
Full textXingming, Guo. "Degenerate parabolic equation and unilateral constraint systems." Applied Mathematics and Mechanics 17, no. 10 (1996): 987–92. http://dx.doi.org/10.1007/bf00147136.
Full textDemetriou, M. A., and I. G. Rosen. "Adaptive Parameter Estimation for Degenerate Parabolic Systems." Journal of Mathematical Analysis and Applications 189, no. 3 (1995): 815–47. http://dx.doi.org/10.1006/jmaa.1995.1053.
Full textSchwarzacher, Sebastian. "Hölder–Zygmund estimates for degenerate parabolic systems." Journal of Differential Equations 256, no. 7 (2014): 2423–48. http://dx.doi.org/10.1016/j.jde.2014.01.009.
Full textQi, Yuan-Wei, and H. A. Levine. "The critical exponent of degenerate parabolic systems." ZAMP Zeitschrift f�r angewandte Mathematik und Physik 44, no. 2 (1993): 249–65. http://dx.doi.org/10.1007/bf00914283.
Full textWei, Na, Xiangyu Ge, Yonghong Wu, and Leina Zhao. "Lp Estimates for Weak Solutions to Nonlinear Degenerate Parabolic Systems." Discrete Dynamics in Nature and Society 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/2741326.
Full textL. Hollingsworth, Brooke, and R. E. Showalter. "Semilinear degenerate parabolic systems and distributed capacitance models." Discrete & Continuous Dynamical Systems - A 1, no. 1 (1995): 59–76. http://dx.doi.org/10.3934/dcds.1995.1.59.
Full textKačur, Jozef. "Solution of degenerate parabolic systems by relaxation schemes." Nonlinear Analysis: Theory, Methods & Applications 30, no. 7 (1997): 4629–36. http://dx.doi.org/10.1016/s0362-546x(97)00463-x.
Full textMurakawa, H. "Reaction–diffusion system approximation to degenerate parabolic systems." Nonlinearity 20, no. 10 (2007): 2319–32. http://dx.doi.org/10.1088/0951-7715/20/10/003.
Full textLi, Yuxiang, Weibing Deng, and Chunhong Xie. "Global existence and nonexistence for degenerate parabolic systems." Proceedings of the American Mathematical Society 130, no. 12 (2002): 3661–70. http://dx.doi.org/10.1090/s0002-9939-02-06630-3.
Full textSHELUKHIN, V. V., and C. I. KONDO. "Non-local parabolic systems: applications in the three-phase capillary fluid filtration." European Journal of Applied Mathematics 16, no. 4 (2005): 493–517. http://dx.doi.org/10.1017/s0956792505006364.
Full textWu, Bin, Qun Chen, Tingchun Wang, and Zewen Wang. "Null controllability of a coupled degenerate system with the first and zero order terms by a single control." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 107. http://dx.doi.org/10.1051/cocv/2020042.
Full textAmar, Micol, Daniele Andreucci, Roberto Gianni, and Claudia Timofte. "A degenerate pseudo-parabolic equation with memory." Communications in Applied and Industrial Mathematics 10, no. 1 (2019): 71–77. http://dx.doi.org/10.2478/caim-2019-0013.
Full textKim, Sunghoon, and Ki-Ahm Lee. "Local continuity and asymptotic behaviour of degenerate parabolic systems." Nonlinear Analysis 192 (March 2020): 111702. http://dx.doi.org/10.1016/j.na.2019.111702.
Full textSango, M. "Local boundedness for doubly degenerate quasi-linear parabolic systems." Applied Mathematics Letters 16, no. 4 (2003): 465–68. http://dx.doi.org/10.1016/s0893-9659(03)00021-1.
Full textBögelein, Verena, Frank Duzaar, and Giuseppe Mingione. "The regularity of general parabolic systems with degenerate diffusion." Memoirs of the American Mathematical Society 221, no. 1041 (2012): 1. http://dx.doi.org/10.1090/s0065-9266-2012-00664-2.
Full textAregba-Driollet, D., R. Natalini, and S. Tang. "Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems." Mathematics of Computation 73, no. 245 (2003): 63–94. http://dx.doi.org/10.1090/s0025-5718-03-01549-7.
Full textLitovchenko, V. A., and E. B. Nastasiĭ. "Degenerate parabolic systems of vector order Kolmogorov-type equations." Siberian Mathematical Journal 53, no. 1 (2012): 119–33. http://dx.doi.org/10.1134/s0037446612010107.
Full textIvanov, A. V. "Hölder estimates for second-order quasilinear degenerate parabolic systems." Journal of Soviet Mathematics 49, no. 5 (1990): 1148–59. http://dx.doi.org/10.1007/bf02208711.
Full textMalytska, H. P., and I. V. Burtnyak. "Degenerate Parabolic Systems of the Diffusion Type with Inertia." Journal of Mathematical Sciences 249, no. 3 (2020): 355–68. http://dx.doi.org/10.1007/s10958-020-04947-2.
Full textNambu, Takao. "Stabilization of parabolic systems via a degenerate nonnegative feedback." Journal of Dynamics and Differential Equations 3, no. 3 (1991): 399–422. http://dx.doi.org/10.1007/bf01049739.
Full textJun Choe, Hi. "Hölder continuity for solutions of certain degenerate parabolic systems." Nonlinear Analysis: Theory, Methods & Applications 18, no. 3 (1992): 235–43. http://dx.doi.org/10.1016/0362-546x(92)90061-i.
Full textMatiichuk, M. I. "Cauchy problem for a class of degenerate parabolic systems." Ukrainian Mathematical Journal 36, no. 3 (1985): 288–93. http://dx.doi.org/10.1007/bf01077463.
Full textBolsinov, Alexey, Lorenzo Guglielmi, and Elena Kudryavtseva. "Symplectic invariants for parabolic orbits and cusp singularities of integrable systems." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2131 (2018): 20170424. http://dx.doi.org/10.1098/rsta.2017.0424.
Full textCannarsa, P., P. Martinez, and J. Vancostenoble. "The cost of controlling strongly degenerate parabolic equations." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 2. http://dx.doi.org/10.1051/cocv/2018007.
Full textHashira, Takahiro, Sachiko Ishida, and Tomomi Yokota. "Finite-time blow-up for quasilinear degenerate Keller–Segel systems of parabolic–parabolic type." Journal of Differential Equations 264, no. 10 (2018): 6459–85. http://dx.doi.org/10.1016/j.jde.2018.01.038.
Full textFavini, A., A. Lorenzi, and H. Tanabe. "First-Order Regular and Degenerate Identification Differential Problems." Abstract and Applied Analysis 2015 (2015): 1–42. http://dx.doi.org/10.1155/2015/393624.
Full textLe, Dung. "Higher integrability for gradients of solutions to degenerate parabolic systems." Discrete & Continuous Dynamical Systems - A 26, no. 2 (2010): 597–608. http://dx.doi.org/10.3934/dcds.2010.26.597.
Full textWang, Mingxin. "Some degenerate and quasilinear parabolic systems not in divergence form." Journal of Mathematical Analysis and Applications 274, no. 1 (2002): 424–36. http://dx.doi.org/10.1016/s0022-247x(02)00347-5.
Full textWang, Shu. "Doubly Nonlinear Degenerate Parabolic Systems with Coupled Nonlinear Boundary Conditions." Journal of Differential Equations 182, no. 2 (2002): 431–69. http://dx.doi.org/10.1006/jdeq.2001.4101.
Full textTory, Elmer M., Kenneth H. Karlsen, Raimund Bürger, and Stefan Berres. "Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression." SIAM Journal on Applied Mathematics 64, no. 1 (2003): 41–80. http://dx.doi.org/10.1137/s0036139902408163.
Full textFrehse, Jens, and Sebastian Schwarzacher. "On Regularity of the Time Derivative for Degenerate Parabolic Systems." SIAM Journal on Mathematical Analysis 47, no. 5 (2015): 3917–43. http://dx.doi.org/10.1137/141000725.
Full textLuong, Vu Trong, Duc Hiep Pham, and Hien Anh Vu Thi. "Liouville type theorems for degenerate parabolic systems with advection terms." Journal of Elliptic and Parabolic Equations 6, no. 2 (2020): 871–82. http://dx.doi.org/10.1007/s41808-020-00086-6.
Full textAmann, Herbert. "Global existence for a class of highly degenerate parabolic systems." Japan Journal of Industrial and Applied Mathematics 8, no. 1 (1991): 143–51. http://dx.doi.org/10.1007/bf03167189.
Full textIshida, Sachiko, and Tomomi Yokota. "Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type." Journal of Differential Equations 252, no. 2 (2012): 1421–40. http://dx.doi.org/10.1016/j.jde.2011.02.012.
Full textFloridia, G., C. Nitsch, and C. Trombetti. "Multiplicative controllability for nonlinear degenerate parabolic equations between sign-changing states." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 18. http://dx.doi.org/10.1051/cocv/2019066.
Full textDeng, Weibing, Li Yuxiang, and Xie Chunhong. "Global existence and nonexistence for a class of degenerate parabolic systems." Nonlinear Analysis: Theory, Methods & Applications 55, no. 3 (2003): 233–44. http://dx.doi.org/10.1016/s0362-546x(03)00226-8.
Full textDung, Le. "Ultimately uniform boundedness of solutions and gradients for degenerate parabolic systems." Nonlinear Analysis: Theory, Methods & Applications 39, no. 2 (2000): 157–71. http://dx.doi.org/10.1016/s0362-546x(98)00172-2.
Full textBögelein, Verena, and Qifan Li. "Very weak solutions of degenerate parabolic systems with non-standard -growth." Nonlinear Analysis: Theory, Methods & Applications 98 (March 2014): 190–225. http://dx.doi.org/10.1016/j.na.2013.12.009.
Full textDuan, Zhi-wen, and Li Zhou. "Global and blow-up solutions for non-linear degenerate parabolic systems." Mathematical Methods in the Applied Sciences 26, no. 7 (2003): 557–87. http://dx.doi.org/10.1002/mma.367.
Full textFuchs, M. "Existence of solutions of nonlinear degenerate systems of parabolic variational inequalities." Journal of Mathematical Sciences 87, no. 2 (1997): 3434–40. http://dx.doi.org/10.1007/bf02355594.
Full textChen, Shaohua. "Global existence and nonexistence for some degenerate and quasilinear parabolic systems." Journal of Differential Equations 245, no. 4 (2008): 1112–36. http://dx.doi.org/10.1016/j.jde.2007.11.008.
Full textANTONTSEV, S. N., and J. I. DÍAZ. "NEW L1-GRADIENT TYPE ESTIMATES OF SOLUTIONS TO ONE-DIMENSIONAL QUASILINEAR PARABOLIC SYSTEMS." Communications in Contemporary Mathematics 12, no. 01 (2010): 85–106. http://dx.doi.org/10.1142/s0219199710003725.
Full textVasil'eva, Adelaida B., and Leonid V. Kalachev. "Singularly perturbed periodic parabolic equations with alternating boundary layer type solutions." Abstract and Applied Analysis 2006 (2006): 1–21. http://dx.doi.org/10.1155/aaa/2006/52856.
Full textBögelein, V., and F. Duzaar. "Higher integrability for parabolic systems with non-standard growth and degenerate diffusions." Publicacions Matemàtiques 55 (January 1, 2011): 201–50. http://dx.doi.org/10.5565/publmat_55111_10.
Full textDong, Yan. "Hölder regularity for weak solutions to divergence form degenerate quasilinear parabolic systems." Journal of Mathematical Analysis and Applications 410, no. 1 (2014): 375–90. http://dx.doi.org/10.1016/j.jmaa.2013.08.027.
Full textLiu, Bingchen, and Changcheng Zhang. "Blow-up analysis in degenerate parabolic systems coupled via norm-type reactions." Applicable Analysis 95, no. 3 (2015): 668–89. http://dx.doi.org/10.1080/00036811.2015.1026810.
Full textCaristi, Gabriella. "Existence and nonexistence of global solutions of degenerate and singular parabolic systems." Abstract and Applied Analysis 5, no. 4 (2000): 265–84. http://dx.doi.org/10.1155/s1085337501000380.
Full textSamusenko, P. F. "Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations." Journal of Mathematical Sciences 189, no. 5 (2013): 834–47. http://dx.doi.org/10.1007/s10958-013-1223-y.
Full text