Journal articles on the topic 'Degranulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Degranulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dvorak, A. M., R. A. Monahan-Earley, H. F. Dvorak, and S. J. Galli. "Ultrastructural cytochemical and autoradiographic demonstration of nonspecific esterase(s) in guinea pig basophils." Journal of Histochemistry & Cytochemistry 35, no. 3 (1987): 351–60. http://dx.doi.org/10.1177/35.3.3819377.
Full textGan, Xiaoliang, Dandan Xing, Guangjie Su, et al. "Propofol Attenuates Small Intestinal Ischemia Reperfusion Injury through Inhibiting NADPH Oxidase Mediated Mast Cell Activation." Oxidative Medicine and Cellular Longevity 2015 (2015): 1–15. http://dx.doi.org/10.1155/2015/167014.
Full textLi, Wen-Wu, Tian-Zhi Guo, De-yong Liang, Yuan Sun, Wade S. Kingery, and J. David Clark. "Substance P Signaling Controls Mast Cell Activation, Degranulation, and Nociceptive Sensitization in a Rat Fracture Model of Complex Regional Pain Syndrome." Anesthesiology 116, no. 4 (2012): 882–95. http://dx.doi.org/10.1097/aln.0b013e31824bb303.
Full textMarshall, J. S., R. H. Stead, C. McSharry, L. Nielsen, and J. Bienenstock. "The role of mast cell degranulation products in mast cell hyperplasia. I. Mechanism of action of nerve growth factor." Journal of Immunology 144, no. 5 (1990): 1886–92. http://dx.doi.org/10.4049/jimmunol.144.5.1886.
Full textBhakta, Suhani B., Stefan M. Lundgren, Bethany N. Sesti, et al. "Neutrophil-like cells derived from the HL-60 cell-line as a genetically-tractable model for neutrophil degranulation." PLOS ONE 19, no. 2 (2024): e0297758. http://dx.doi.org/10.1371/journal.pone.0297758.
Full textKilinc, E., Y. Dagistan, B. Kotan, and A. Cetinkaya. "Effects of Nigella sativa seeds and certain species of fungi extracts on number and activation of dural mast cells in rats." Physiology International 104, no. 1 (2017): 15–24. http://dx.doi.org/10.1556/2060.104.2017.1.8.
Full textAntymys, O. V., О. Y. Zhurakivska, V. A. Міskiv, U. M. Dutchak, and N. T. Sahan. "MORPHOFUNCTIONAL STUDY OF TISSUE BASOPHILS ACTIVITY WITH GENERAL DEEP HYPOTHERMIA." INTERNATIONAL MEDICAL HERALD 1, no. 1(1) (2025): 6–10. https://doi.org/10.64108/imh.2025.1.1.6.
Full textBaehner, Robert L., and Morris J. Karnovsky. "Degranulation deconstructed." Journal of Clinical Investigation 122, no. 5 (2012): 1596–97. http://dx.doi.org/10.1172/jci62990.
Full textSolomkin, Joseph S. "Degranulation Inhibition." Archives of Surgery 121, no. 1 (1986): 77. http://dx.doi.org/10.1001/archsurg.1986.01400010083011.
Full textBansal, Geetanjali, Zhihui Xie, and Kirk Druey. "Rgs13 inhibits IgE-mediated allergic responses (37.5)." Journal of Immunology 178, no. 1_Supplement (2007): S19. http://dx.doi.org/10.4049/jimmunol.178.supp.37.5.
Full textKaur, Gunjanpreet, Nirmal Singh, and Amteshwar Singh Jaggi. "Mast cells in neuropathic pain: an increasing spectrum of their involvement in pathophysiology." Reviews in the Neurosciences 28, no. 7 (2017): 759–66. http://dx.doi.org/10.1515/revneuro-2017-0007.
Full textAbe, Nozomu, Hiroaki Toyama, Yutaka Ejima та ін. "α1-Adrenergic Receptor Blockade by Prazosin Synergistically Stabilizes Rat Peritoneal Mast Cells". BioMed Research International 2020 (13 травня 2020): 1–12. http://dx.doi.org/10.1155/2020/3214186.
Full textCaruso, Rosario, Valerio Caruso, and Luciana Rigoli. "Ultrastructural Evidence of Interactions Between Eosinophils and Mast Cells in Gastric Cancer: Considerations in AllergoOncology Research." Gastrointestinal Disorders 7, no. 3 (2025): 41. https://doi.org/10.3390/gidisord7030041.
Full textHuang, Yuyou, Fangfang Li, Zhongyun Chen, et al. "Predictive Value of Degranulating Factors of Neutrophils in Massive Cerebral Infarction." Cell Transplantation 30 (January 1, 2021): 096368972110040. http://dx.doi.org/10.1177/09636897211004089.
Full textKazama, Itsuro, Hiroyuki Sonobe, and Junko Shida. "Magnesium and Zinc Dose-Dependently Stabilize Rat Peritoneal Mast Cells and Enhance the Effects of Adrenaline." Cellular Physiology and Biochemistry 59, no. 4 (2025): 465–77. https://doi.org/10.33594/000000793.
Full textLevy, Dan, Shahaf Edut, Renana Baraz-Goldstein, et al. "Responses of dural mast cells in concussive and blast models of mild traumatic brain injury in mice: Potential implications for post-traumatic headache." Cephalalgia 36, no. 10 (2016): 915–23. http://dx.doi.org/10.1177/0333102415617412.
Full textHadjaj, B., Y. Cherruault, and J. Sainte Laudy. "Basophil degranulation control." International Journal of Bio-Medical Computing 31, no. 2 (1992): 89–97. http://dx.doi.org/10.1016/0020-7101(92)90065-z.
Full textKannan, Subburaj. "Neutrophil degranulation: therapeutic targets in [NTP]O mediated neutrophil degranulation." Medical Hypotheses 63, no. 2 (2004): 325–27. http://dx.doi.org/10.1016/j.mehy.2002.05.001.
Full textAnikeeva, Nadia, Maria Steblyanko, Leticia Kuri-Cervantes, Marcus Buggert, Michael R. Betts, and Yuri Sykulev. "Functional anomaly of CD8 T cells at earlier differentiation stages during HIV infection as established by analysis of synaptic interface and degranulation pattern." Journal of Immunology 204, no. 1_Supplement (2020): 86.46. http://dx.doi.org/10.4049/jimmunol.204.supp.86.46.
Full textBudnevskiy, A. V., S. N. Avdeev, E. S. Ovsyannikov, et al. "Certain Aspects of Mast Cell Carboxypeptidase A3 Involvement in the Pathogenesis of COVID-19." Tuberculosis and Lung Diseases 102, no. 1 (2024): 26–33. http://dx.doi.org/10.58838/2075-1230-2024-102-1-26-33.
Full textMendoza, Ryan P., Colin C. Anderson, James R. Roede, and Jared M. Brown. "Comparing mast cell immunometabolism shifts induced by IgE mediated and non-IgE mediated degranulation." Journal of Immunology 202, no. 1_Supplement (2019): 54.14. http://dx.doi.org/10.4049/jimmunol.202.supp.54.14.
Full textKurimoto, Y., A. L. de Weck, and C. A. Dahinden. "Interleukin 3-dependent mediator release in basophils triggered by C5a." Journal of Experimental Medicine 170, no. 2 (1989): 467–79. http://dx.doi.org/10.1084/jem.170.2.467.
Full textAndreone, Sara, Francesca Spadaro, Carla Buccione, et al. "IL-33 Promotes CD11b/CD18-Mediated Adhesion of Eosinophils to Cancer Cells and Synapse-Polarized Degranulation Leading to Tumor Cell Killing." Cancers 11, no. 11 (2019): 1664. http://dx.doi.org/10.3390/cancers11111664.
Full textO'Flaherty, J. T., and J. Nishihira. "Arachidonate metabolites, platelet-activating factor, and the mobilization of protein kinase C in human polymorphonuclear neutrophils." Journal of Immunology 138, no. 6 (1987): 1889–95. http://dx.doi.org/10.4049/jimmunol.138.6.1889.
Full textGwalani, Lavesh A., and Jordan S. Orange. "Four-dimensional correlation between frequency of degranulation and Natural Killer (NK) cell cytotoxicity." Journal of Immunology 198, no. 1_Supplement (2017): 138.5. http://dx.doi.org/10.4049/jimmunol.198.supp.138.5.
Full textOka, Tatsuya, Masatoshi Hori, Akane Tanaka, Hiroshi Matsuda, Hideaki Karaki, and Hiroshi Ozaki. "IgE alone-induced actin assembly modifies calcium signaling and degranulation in RBL-2H3 mast cells." American Journal of Physiology-Cell Physiology 286, no. 2 (2004): C256—C263. http://dx.doi.org/10.1152/ajpcell.00197.2003.
Full textBryceson, Yenan T., Daniela Pende, Andrea Maul-Pavicic, et al. "A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes." Blood 119, no. 12 (2012): 2754–63. http://dx.doi.org/10.1182/blood-2011-08-374199.
Full textSakuma, Megumi, Yasuhito Shirai, Ken-ichi Yoshino та ін. "Novel PKCα-mediated phosphorylation site(s) on cofilin and their potential role in terminating histamine release". Molecular Biology of the Cell 23, № 18 (2012): 3707–21. http://dx.doi.org/10.1091/mbc.e12-01-0053.
Full textKinlough-Rathbone, R. L., D. W. Perry, M. A. Guccione, M. L. Rand, and M. A. Packham. "Degranulation of Human Platelets by the Thrombin Receptor Peptide SFLLRN: Comparison with Degranulation by Thrombin." Thrombosis and Haemostasis 70, no. 06 (1993): 1019–23. http://dx.doi.org/10.1055/s-0038-1649718.
Full textChieffi Baccari, Gabriella, Sara Falvo, Antonia Lanni, Maria Maddalena Di Fiore, Federica Cioffi, and Alessandra Santillo. "Mast Cell Population and Histamine Content in Hypothyroid Rat Tissues." Animals 12, no. 14 (2022): 1840. http://dx.doi.org/10.3390/ani12141840.
Full textHorie, S., and H. Kita. "CD11b/CD18 (Mac-1) is required for degranulation of human eosinophils induced by human recombinant granulocyte-macrophage colony-stimulating factor and platelet-activating factor." Journal of Immunology 152, no. 11 (1994): 5457–67. http://dx.doi.org/10.4049/jimmunol.152.11.5457.
Full textTuma, Rabiya S. "The degranulation two-step." Journal of Cell Biology 170, no. 1 (2005): 9. http://dx.doi.org/10.1083/jcb1701iti5.
Full textHadjaj, B., Y. Cherruault, and J. Sainte Laudy. "Control of basophil degranulation." International Journal of Bio-Medical Computing 32, no. 2 (1993): 151–59. http://dx.doi.org/10.1016/0020-7101(93)90053-9.
Full textOHASHI, HIROSHI, MASAHARU ISHIKAWA, JUNKO ITO, et al. "Sulochrin Inhibits Eosinophil Degranulation." Journal of Antibiotics 50, no. 11 (1997): 972–74. http://dx.doi.org/10.7164/antibiotics.50.972.
Full textGrigorieva, D. V., I. V. Gorudko, A. V. Sokolov, et al. "Myeloperoxidase Stimulates Neutrophil Degranulation." Bulletin of Experimental Biology and Medicine 161, no. 4 (2016): 495–500. http://dx.doi.org/10.1007/s10517-016-3446-7.
Full textAbu-Ghazaleh, R. I., T. Fujisawa, J. Mestecky, R. A. Kyle, and G. J. Gleich. "IgA-induced eosinophil degranulation." Journal of Immunology 142, no. 7 (1989): 2393–400. http://dx.doi.org/10.4049/jimmunol.142.7.2393.
Full textMichael John Dochniak and Cherie Annette Benson. "Allergo oncology: Targeted degranulation." Open Access Research Journal of Science and Technology 8, no. 1 (2023): 011–13. http://dx.doi.org/10.53022/oarjst.2023.8.1.0026.
Full textFettrelet, Timothée, Lea Gigon, Alexander Karaulov, Shida Yousefi, and Hans-Uwe Simon. "The Enigma of Eosinophil Degranulation." International Journal of Molecular Sciences 22, no. 13 (2021): 7091. http://dx.doi.org/10.3390/ijms22137091.
Full textCervantes Villagrana, Rodolfo, Silvia Cruz та Claudia González Espinosa. "Anandamide inhibits FcϵRI-dependent degranulation through a mechanism involving receptor-operated, but not store-operated calcium entry in mast cells (151.7)". Journal of Immunology 186, № 1_Supplement (2011): 151.7. http://dx.doi.org/10.4049/jimmunol.186.supp.151.7.
Full textArmengot, Miguel, Luis Garín, and Carmen Carda. "Eosinophil Degranulation Patterns in Nasal Polyposis: An Ultrastructural Study." American Journal of Rhinology & Allergy 23, no. 5 (2009): 466–70. http://dx.doi.org/10.2500/ajra.2009.23.3357.
Full textPedersen, Sara Hougaard, Roshni Ramachandran, Dipak Vasantrao Amrutkar, Steffen Petersen, Jes Olesen, and Inger Jansen-Olesen. "Mechanisms of glyceryl trinitrate provoked mast cell degranulation." Cephalalgia 35, no. 14 (2015): 1287–97. http://dx.doi.org/10.1177/0333102415574846.
Full textMendoza, Ryan P., Colin C. Anderson, James R. Roede, and Jared M. Brown. "Potential role of thioredoxin-interacting protein in non-IgE mast cell degranulation." Journal of Immunology 204, no. 1_Supplement (2020): 148.27. http://dx.doi.org/10.4049/jimmunol.204.supp.148.27.
Full textMurugin, Vladimir V., Irina N. Zuikova, Nina E. Murugina, Andrey E. Shulzhenko, Boris V. Pinegin, and Mikhail V. Pashenkov. "Reduced Degranulation of NK Cells in Patients with Frequently Recurring Herpes." Clinical and Vaccine Immunology 18, no. 9 (2011): 1410–15. http://dx.doi.org/10.1128/cvi.05084-11.
Full textYamasaki, Sho, Eri Ishikawa, Masayuki Kohno та Takashi Saito. "The quantity and duration of FcRγ signals determine mast cell degranulation and survival". Blood 103, № 8 (2004): 3093–101. http://dx.doi.org/10.1182/blood-2003-08-2944.
Full textChoi, Kyoung-seong, Dennis J. Grab, and J. Stephen Dumler. "Anaplasma phagocytophilum Infection Induces Protracted Neutrophil Degranulation." Infection and Immunity 72, no. 6 (2004): 3680–83. http://dx.doi.org/10.1128/iai.72.6.3680-3683.2004.
Full textMaharani, Intan, Cahya Yustisia Hasan, Bambang Dwirahardjo, and Tri Wahyu Pangestiningsih. "Effect of low-intensity pulsed ultrasound on mast cell degranulation and fibroblast expression on type 2 diabetes mellitus rats wound healing process." Majalah Kedokteran Gigi Indonesia 7, no. 2 (2022): 60. http://dx.doi.org/10.22146/majkedgiind.59132.
Full textGolden, H. W., G. L. Crean, D. A. Iacuzio, and I. G. Otterness. "Effect of disodium cromoglycate on cutaneous basophil anaphylaxis." Journal of Immunology 137, no. 5 (1986): 1495–503. http://dx.doi.org/10.4049/jimmunol.137.5.1495.
Full textMisawa, Ryosuke, Kazuhito Takemoto, Masaki Iji, Hao Luo, Akari Koresawa та Hiroyuki Watanabe. "Utility of mast cell P815 for evaluating FcεRI-dependent and FcεRI-independent allergic effects". Allergologia et Immunopathologia 52, № 4 (2025): 119–27. https://doi.org/10.15586/aei.v53i4.1264.
Full textBryceson, Yenan T., Michael E. March, Domingo F. Barber, Hans-Gustaf Ljunggren, and Eric O. Long. "Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells." Journal of Experimental Medicine 202, no. 7 (2005): 1001–12. http://dx.doi.org/10.1084/jem.20051143.
Full textTakeyama, Kiyoshi, Carlos Agustí, Iris Ueki, James Lausier, Lars Olaf Cardell, and Jay A. Nadel. "Neutrophil-dependent goblet cell degranulation: role of membrane-bound elastase and adhesion molecules." American Journal of Physiology-Lung Cellular and Molecular Physiology 275, no. 2 (1998): L294—L302. http://dx.doi.org/10.1152/ajplung.1998.275.2.l294.
Full text