Academic literature on the topic 'Degummed soybean oil'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Degummed soybean oil.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Degummed soybean oil"

1

Myers, R. E., D. E. Deyton, and C. E. Sams. "Applying Soybean Oil to Dormant Peach Trees Alters Internal Atmosphere, Reduces Respiration, Delays Bloom, and Thins Flower Buds." Journal of the American Society for Horticultural Science 121, no. 1 (January 1996): 96–100. http://dx.doi.org/10.21273/jashs.121.1.96.

Full text
Abstract:
Dormant `Georgia Belle' peach [Prunus persica (L.) Batsch.] trees were sprayed in early February 1992 with single applications of 0%, 2.5%, 5.0%, 10.0%, or 20.0% (v/v) crude soybean oil. `Redhaven' trees were sprayed in February 1993 with single applications of 0%, 2.5%, 5.0%, 10.0%, or15% degummed soybean oil. Additional treatments of two applications of 2.5% or 5.0% oil were included each year. Both crude and degummed soybean oil treatments interfered with escape of respiratory CO2 from shoots and increased internal CO2 concentrations in shoots for up to 8 days compared to untreated trees. Respiration rates, relative to controls, were decreased for 8 days following treatment, indicating a feedback inhibition of respiration by the elevated CO2. Thus, an internal controlled atmosphere condition was created. Ethylene evolution was elevated for 28 days after treatment. Flower bud development was delayed by treating trees with 5% crude or degummed soybean oil. Trees treated with 10% crude or degummed soybean oil bloomed 6 days later than untreated trees. Repeated sprays of one half concentration delayed bloom an additional four days in 1992, but < 1 day in 1993 compared to a single spray of the same total concentration. Application of soybean oil caused bud damage and reduced flower bud density (number of flower buds/cm branch length) at anthesis. In a trial comparing petroleum oil and degummed soybean oil, yields of trees treated with 6% or 9% soybean oil were 17% greater than the untreated trees and 29%more than petroleum treated trees. These results suggest that applying soybean oil delays date of peach bloom and may be used as a bloom thinner.
APA, Harvard, Vancouver, ISO, and other styles
2

Myers, R. E., D. E. Deyton, and C. E. Sams. "190 EFFECTS OF DORMANT APPLICATION OF SOYBEAN OIL ON PEACH TREES." HortScience 29, no. 5 (May 1994): 456c—456. http://dx.doi.org/10.21273/hortsci.29.5.456c.

Full text
Abstract:
`Redhaven' peach trees at the Knoxville Experiment Station were sprayed to runoff on 3 February 1993 with single applications of 0, 2.5, 5.0, 10.0, or 15.0% (v/v) degummed soybean oil with 0.6% Latron AG 44M emulsifier. Treatments were arranged in a randomized complete block design with 6 single tree replications. The internal CO2 concentration of treated twigs was elevated the first day and continued to be significantly higher than the control through the fifth day following treatment. Respiration rates of soybean oil treated buds-twigs were lower than the control for the first eight days after treatment. Flower bud and bloom development were delayed by treatment of trees with 5.0 to 15.0% soybean oil. Treatment with 5.0% oil delayed bloom approximately 4 days. The greatest delay (approximately 6 days) occurred after treatment with 10.0 or 15.0% oil. Yield was reduced and fruit size increased as the concentration of soybean oil was increased. Optimum fruit size was achieved with the 5.0% soybean oil treatment.
APA, Harvard, Vancouver, ISO, and other styles
3

Pless, C. D., D. E. Deyton, and C. E. Sams. "Control of San Jose Scale, Terrapin Scale, and European Red Mite on Dormant Fruit Trees with Soybean Oil." HortScience 30, no. 1 (February 1995): 94–97. http://dx.doi.org/10.21273/hortsci.30.1.94.

Full text
Abstract:
Emulsions of degummed soybean (Glycine max L.) oil were compared to a petroleum oil emulsion for efficacy against winter populations of San Jose scale [Quadraspidiotus perniciosus (Comstock); Homoptera: Diaspididae] and European red mite [Panonychus ulmi (Koch); Acari: Tetranychidae] on dormant apple (Malus domestica Borkh.) trees and terrapin scale [Mesolecanium nigrofasciatum (Pergande); Homoptera: Coccidae] on dormant peach [Prunus persica (L.) Batsch.] trees. In laboratory tests, more than 94% of San Jose scale was killed on stems dipped for 1 second in 5.0% or 7.5% soybean oil or 5.0% petroleum oil. Mortality of terrapin scale exceeded 93% on peach stems dipped for 1 second in 7.5% soybean oil or 5.0% petroleum oil. No European red mite eggs survived on apple stems dipped for 1 second in 2.5%, 5.0%, or 7.5% soybean oil, or 5.0% petroleum oil. In field tests, >95% of San Jose scale died on apple trees sprayed with one application of 2.5% petroleum oil or 5.0% soybean oil; two applications of these treatments or 2.5% soybean oil killed all San Jose scales. One or two applications of 2.5% petroleum oil or 5.0% soybean oil killed 85% and 98%, respectively, of the terrapin scales on peach trees. Soybean oil shows promise as a substitute for petroleum oil for winter control of three very destructive fruit tree pests.
APA, Harvard, Vancouver, ISO, and other styles
4

Hix, Raymond L., Charles D. Pless, Dennis E. Deyton, and Carl E. Sams. "Management of San Jose Scale on Apple with Soybean-oil Dormant Sprays." HortScience 34, no. 1 (February 1999): 106–8. http://dx.doi.org/10.21273/hortsci.34.1.106.

Full text
Abstract:
The objective of this study was to examine efficacy of soybean oil dormant sprays to manage San Jose scale (Quadraspidiotus perniciosus Comstock) on apple (Malus ×domestica Borkh.). On 14 Feb. 1994 and again on 20 Feb. 1995, `Bounty' apple trees were: 1) left unsprayed (control) or sprayed to runoff with: 2) 3% (v/v) or 3) 6% degummed soybean oil with 0.6% (v/v) Latron B-1956 sticker spreader, or 4) 3% 6E Volck Supreme Spray petroleum oil. Crawler emergence occurred 17 May-28 June, 7 July-30 Aug., and 7 Sept.-24 Oct. 1994. First-generation crawler emergence had started by 8 May in 1995. Both 3% petroleum oil and 6% soybean oil sprays reduced the numbers of first- and second-generation crawlers by 93% in 1994 and first-generation crawlers by 98% in 1995. The 3% soybean oil treatment reduced first- and second-generation crawlers by 60% in 1994 and first-generation crawlers by 83% in 1995. In 1995, apple fruit infestations by first-generation scales on the 3% soybean-, 6% soybean-, and 3% petroleum oil-treated trees did not differ significantly, but all fruit were significantly less infested than the controls.
APA, Harvard, Vancouver, ISO, and other styles
5

Gomes, Maria Carolina Sérgi, Pedro Augusto Arroyo, and Nehemias Curvelo Pereira. "Biodiesel production from degummed soybean oil and glycerol removal using ceramic membrane." Journal of Membrane Science 378, no. 1-2 (August 2011): 453–61. http://dx.doi.org/10.1016/j.memsci.2011.05.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Yingying, Yiwen Yang, Qilong Ren, and Hailiang Jiang. "Quantification of Soybean Phospholipids in Soybean Degummed Oil Residue by HPLC with Evaporative Light Scattering Detection." Journal of Liquid Chromatography & Related Technologies 28, no. 9 (May 2005): 1333–43. http://dx.doi.org/10.1081/jlc-200054817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Manthey, Frank A., John D. Nalewaja, and Edward F. Szelezniak. "Herbicide-Oil-Water Emulsions." Weed Technology 3, no. 1 (March 1989): 13–19. http://dx.doi.org/10.1017/s0890037x00031237.

Full text
Abstract:
Oil-water emulsion stability was determined for crop origin and refinement of seed oils and their methyl esterified fatty acids (methylated seed oil) as influenced by emulsifiers and herbicides. Oil-in-water emulsion stability of one-refined, degummed, and crude seed oils was affected by the emulsifier. However, emulsion stability of methylated seed oil was not affected by the refinement of the seed oil used to produce the methylated seed oil or by the emulsifier. Oils without emulsifiers or emulsifiers alone added to formulated herbicide-water emulsions reduced emulsion stability depending upon the herbicide and emulsifier. Further, emulsion stability of formulated herbicides plus oil adjuvants was influenced by the oil type, the emulsifier in the oil adjuvant, and the herbicide. Oil-in-water emulsions improved or were not affected by increasing concentration of the emulsifier in the oil. However, T-Mulz-VO at a concentration greater than 10% with soybean oil or 5% with methylated soybean oil reduced emulsion stability with sethoxydim. Emulsion stability of herbicides with adjuvants depends upon the herbicide, the emulsifier, emulsifier concentration, and the crop origin, type, and refinement of oil.
APA, Harvard, Vancouver, ISO, and other styles
8

Watanabe, Yomi, Yuji Shimada, Akio Sugihara, and Yoshio Tominaga. "Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase." Journal of Molecular Catalysis B: Enzymatic 17, no. 3-5 (June 2002): 151–55. http://dx.doi.org/10.1016/s1381-1177(02)00022-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fornasero, M. L., R. N. Marenchino, and C. L. Pagliero. "Deacidification of Soybean Oil Combining Solvent Extraction and Membrane Technology." Advances in Materials Science and Engineering 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/646343.

Full text
Abstract:
The aim of this work was to study the removal of free fatty acids (FFAs) from soybean oil, combining solvent extraction (liquid-liquid) for the separation of FFAs from the oil and membrane technology to recover the solvent through nanofiltration (NF). Degummed soybean oil containing 1.05 ± 0.10% w/w FFAs was deacidified by extraction with ethanol. Results obtained in the experiences of FFAs extraction from oil show that the optimal operating conditions are the following: 1.8 : 1 w : w ethanol/oil ratio, 30 minutes extraction time and high speed of agitation and 30 minutes repose time after extraction at ambient temperature. As a result of these operations two phases are obtained: deacidified oil phase and ethanol phase (containing the FFAs). The oil from the first extraction is subjected to a second extraction under the same conditions, reducing the FFA concentration in oil to 0.09%. Solvent recovery from the ethanol phase is performed using nanofiltration technology with a commercially available polymeric NF membrane (NF-99-HF, Alfa Laval). From the analysis of the results we can conclude that the optimal operating conditions are pressure of 20 bar and temperature of 35°C, allowing better separation performance: permeate flux of 28.3 L/m2·h and FFA retention of 70%.
APA, Harvard, Vancouver, ISO, and other styles
10

Nalewaja, John D., and Grzegorz A. Skrzypczak. "Absorption and Translocation of Fluazifop with Additives." Weed Science 34, no. 4 (July 1986): 572–76. http://dx.doi.org/10.1017/s004317450006745x.

Full text
Abstract:
The influence of various additives on the absorption and translocation of fluazifop {(±)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid} butyl ester in oats (Avena sativaL. var. ‘Lyon’) was determined. Fluazifop absorption and translocation by oats 48 h after application were less when applied with safflower (Carthamus tinctoriusL.), sunflower (Helianthus annuusL.), soybean [Glycine max(L.) Merr.], linseed (Linum usitatissimumL.), and palm (Eleais quineeneisJacq.) oil than with petroleum oil. However, fluazifop absorption and translocation continued to increase for the 96-h duration of the experiment when applied with soybean oil but only for 24 h when applied with petroleum oil. The14C-fluazifop-label recovery was higher when applied with oils than when applied alone, which may have been due to reduced fluazifop volatility when it was emulsified with the oils. Absorption and translocation of fluazifop applied with glycerol or various emulsifiers were equal to or less than fluazifop absorption and translocation when applied with petroleum oils but were greater than fluazifop absorption and translocation when applied with seed oils 48 h after application. Fluazifop absorption and translocation were similar whether soybean or petroleum oil additives were applied with or without emulsifiers. Totally refined seed oils only slightly increased fluazifop absorption and translocation compared to fluazifop with once-refined or degummed seed oils.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Degummed soybean oil"

1

Bueno, Juliana Lisboa Biotto Carvalho. "Influência da adição de óleo de soja no perfil oxidativo de concentrado para bovino." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/74/74131/tde-23092013-104125/.

Full text
Abstract:
O objetivo deste trabalho foi estudar o perfil oxidativo de concentrados para bovinos adicionados de óleo de soja, refinado e degomado, em um período de armazenamento de 15 dias, sob as temperaturas de 25ºC e 40ºC. Foram formados cinco grupos de alimentos: controle (C) sem adição de óleo, tratamentos (T) 1, 2, 3 e 4 com adição de 2, 4, 6 e 8%, respectivamente, de óleo de soja refinado ou degomado. Para tal, foram avaliados os índices de peróxidos e de acidez. Com relação à influência da temperatura de estocagem, ao longo do período experimental à 25ºC, não houve alteração com relação aos valores de índice de peróxido quando se adicionou óleo de soja refinado aos concentrados, contudo, à 40ºC, houve aumento observando-se um valor máximo em torno de 0,9 mEq/kg de concentrado. O índice de acidez do óleo refinado extraído dos concentrados armazenados à 25ºC não foi alterado ao longo do período de armazenamento, e à 40ºC resultou em aumento de 19, 25, 44 e 44% para os respectivos T1, T2, T3 e T4 em relação ao controle. Quanto à influência do tipo de óleo processado na oxidação lipídica dos concentrados armazenados à 40ºC, a adição de óleo de soja refinado não alterou os índices de peróxidos dos concentrados ao longo dos 15 dias de experimento, e para o degomado observou-se um aumento no 3º dia de armazenamento em 57%, 44%, 123% e 93% para os respectivos T1, T2, T3 e T4, em relação ao controle. Também, o efeito da adição de óleo de soja degomado resultou em aumento do índice de acidez de 21%, 36%, 43% e 57% a partir do 5º dia de experimento, em relação ao 1º dia. Conclui-se que durante os 15 dias de armazenamento, houve diferença no perfil oxidativo dos concentrados adicionados de óleo de soja quando se comparou as temperaturas de 25ºC e 40ºC, mas se manteve inalterado quando se avaliou os tipos de óleo refinado e degomado em diferentes porcentagens. Assim, a adição de óleo de soja refinado ou degomado não altera o perfil oxidativo do concentrado para bovino sob as condições deste estudo.
The objective of this work was to study the oxidative profile of concentrates for cattle added soybean oil, refined and degummed in a storage period of 15 days, at temperatures of 25ºC and 40ºC. Were formed five food groups: control (C) without addition of oil, treatments (T) 1, 2, 3 and 4 with the addition of 2, 4, 6 and 8%, respectively, of refined or degummed soybean oil. For this purpose ware available index of peroxide and of acidic. Regarding the influence of storage temperature, the addition of refined soybean oil did not alter the values of the peroxide during the trial period at 25ºC, however, at 40ºC of storage of food alter this parameter and was shown a maximum value about 0.9 mEq/kg of concentrate. The acidity of refined oil extracted from concentrates stored at 25ºC was not changed during the storage period, and 40ºC resulted in an increase of 19, 25, 44 and 44% for the respective T1, T2, T3 and T4 compared the control. Regarding the influence of oil processed in lipid oxidation of concentrates stored at 40ºC, the addition of refined soybean oil did not alter the levels of peroxide concentrates over the 15 days of experiment, and the degummed observed an increase in 3rd day of storage in 57%, 44%, 123% and 93% for the respective T1, T2, T3 and T4, compared to control. Also, the effect of addition of crude soybean oil resulted in increased acid value of 21%, 36%, 43% and 57% from the 5th day of experiment, as compared to day 1. Thus, the addition of refined soybean oil or degummed not change profile for bovine oxidative concentrated under the conditions of this study.
APA, Harvard, Vancouver, ISO, and other styles
2

Ansolin, Marina 1987. "Determinação de dados experimentais de equilíbrio líquido-líquido de sistemas graxos com ênfase na distribuição de tocoferóis e tocotrienóis." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256194.

Full text
Abstract:
Orientador: Eduardo Augusto Caldas Batista
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-19T16:41:52Z (GMT). No. of bitstreams: 1 Ansolin_Marina_M.pdf: 2006299 bytes, checksum: 85ab382490105e2f51c9502c620b007a (MD5) Previous issue date: 2012
Resumo: Os óleos vegetais, em sua grande maioria, quando destinados ao consumo humano necessitam passar pelas etapas de refino, visando à retirada de substâncias indesejáveis. Das etapas do refino, a desacidificação ou retirada de ácidos graxos livres é a mais importante e normalmente é realizada pelo método químico ou físico. Uma alternativa para a desacidificação é a extração líquido-líquido ou refino com solvente. Nesse processo ocorrem reduções significativas de perda de óleo neutro, além de ser conduzida à temperatura ambiente e pressão atmosférica, reduzindo custos energéticos. O óleo vegetal resultante apresenta teores aceitáveis de ácidos graxos livres, sabor e odor brando e redução das perdas de compostos minoritários desejáveis como os tocoferóis e tocotrienóis (tocóis), que são antioxidantes naturais presentes nos óleos vegetais. Com base no exposto, o objetivo desse trabalho é a determinação de dados experimentais de equilíbrio líquido-líquido de sistemas graxos, com ênfase na distribuição de tocoferóis e tocotrienóis. Os sistemas graxos estudados foram óleo de soja degomado + ácido linoléico comercial + etanol anidro, óleo de soja degomado + ácido linoléico comercial + etanol + água, óleo de farelo de arroz + ácido oléico comercial + etanol anidro e óleo de farelo de arroz refinado + ácido oléico comercial + etanol + água. Os experimentos foram realizados nas temperaturas de 298,15 K, 313,15 K e 323,15 K. A partir dos resultados obtidos, verificou-se que a solubilidade mútua do óleo vegetal + solvente (etanol anidro ou etanol + água) e o coeficiente de distribuição dos tocóis foram afetados pela temperatura, concentração de ácidos graxos livres e presença de água. Quanto maior a temperatura e teor de ácidos graxos livres, maior o coeficiente de distribuição dos tocóis devido ao aumento da solubilidade entre os componentes do sistema. Em contrapartida, quando adicionado água ao etanol, o coeficiente de distribuição dos tocóis diminui, fazendo com que eles fiquem mais retidos na fase oleosa
Abstract: Vegetable oils, mostly, when for human consumption, need to be refined, with the objective of removal of undesirable substances. Deacidification or free fatty acid removal is the most important step and it is usually performed by physical or chemical method. An alternative to deacidification is the liquid-liquid extraction or solvent refining. In this process, significant reductions of loss of neutral oil occur, and it is conducted at room temperature and atmospheric pressure, reducing energy cost. The resulting vegetable oil has acceptable levels of free fatty acids, mild taste and odor and reduction in the losses of desirable minor compounds, such as tocopherols and tocotrienols (tocols), which are natural antioxidants present in vegetable oils. Based on the exposed, the objective of this study is the determination of experimental data for liquid-liquid equilibrium of fatty systems, with emphasis on the distribution of tocopherols and tocotrienols. The fatty systems studied were composed by degummed soybean oil + commercial linoleic acid + anhydrous ethanol, degummed soybean oil + commercial linoleic acid + ethanol + water, refined rice bran oil + commercial oleic acid + anhydrous ethanol and refined rice bran oil + commercial oleic acid + ethanol + water. The experiments were performed at temperatures of 298.15 K, 313.15 K and 323.15 K. From the results obtained, it was found that the mutual solubility between vegetable oil and solvent (ethanol or ethanol + water) and the distribution coefficients of the tocols were affected by temperature, concentration of free fatty acids and the water presence. The higher the temperature and free fatty acid content, higher the distribution coefficients of tocols, due to the increase of solubility among the components of the systems. In contrast, the distribution coefficients of tocols decrease when water is added to ethanol, which represents the increase in retention of tocols in the oil phase
Mestrado
Engenharia de Alimentos
Mestre em Engenharia de Alimentos
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Degummed soybean oil"

1

The 2006-2011 World Outlook for Soybean Oil Excluding Degummed Crude Soybean Oil. Icon Group International, Inc., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parker, Philip M. The 2007-2012 World Outlook for Soybean Oil Excluding Degummed Crude Soybean Oil. ICON Group International, Inc., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

The 2006-2011 World Outlook for Crude Soybean Oil Excluding Degummed Oil. Icon Group International, Inc., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parker, Philip M. The 2007-2012 World Outlook for Crude Soybean Oil Excluding Degummed Oil. ICON Group International, Inc., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

The 2006-2011 World Outlook for Degummed Crude Soybean Oil. Icon Group International, Inc., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Degummed soybean oil"

1

Woerfel, John B. "Handling, Storage, and Transport of Crude and Crude Degummed Soybean Oil." In Practical Handbook of Soybean Processing and Utilization, 161–73. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-935315-63-9.50013-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"minutes retention depending on the oil processed. Then, Synthetic silica hydrogels: Described in the immediately the oil is heated to 70°C, (158°F) to assist "breaking" the preceding section. emulsion and the mixture is passed through a primary (first) centrifuge. The general dosage of acid-activated bleaching earths is 0.3-0.6%, depending on the quality of the oil and bleach-In contrast, the short-mix process, developed in Europe, ing earth. Bleaching earths provide catalytic sites for de-is conducted at 90°C (84°F), uses a more highly concen-composition of oxidation products. Peroxide values (mea-trated caustic, and a mixing time and primary centrifuging sure of aldehydes) and p-anisidine values (precursors for time of less than 1 minute [135]. Less heat damage to the oxidative degradation) first rise and then decrease during oil and higher refining yield are claimed by advocates of bleaching. Bleaching processes used include atmospheric the long mix process. batch, vacuum batch, and continuous vacuum. Vacuum 4. Silica Absorption bleaching has the advantage of excluding air, partially by In traditional refining, oil from the primary centrifuge is vaporization of water in the earth, and is recommended. A washed with warm soft water to remove residual soap and typical vacuum bleaching process is 20-30 minimum at passed through a (secondary) centrifuge. The washed oil 100-110°C (212-230°F) and 50 mmHg absolute [135]. then is dried under vacuum. However, disposal of wash The reactions catalyzed during bleaching continue into water is increasingly becoming a problem, and the indus-the filter bed and are known as the "press bleaching ef-try is shifting to a modified caustic "waterless" refining fect." The reactive components of oil remain in the bleach-process. Soaps poison the adsorption sites of clays in later ing bed. Care should be taken to "blow" the filter press as bleaching operations and are removed by silica hydrogels. free of oil as possible and to wet the filter cake (which can The oil may be degummed with use of chelating acids, be very dusty) to prevent spontaneous combustion [137]. caustic neutralized, passed through a primary centrifuge, At this point, the product is RB ("refined, bleached") and may be partially vacuum-dried. Synthetic silica hy-oil. If the intended product is an oil, it can be sent to the de-drogels, effective in removing 7-25 times more phos-odorizer and become RBD. If solids are desired, the solids-phatides and soaps than clay on a solids basis, and for re-temperature profile of the oil may be modified by hydro-moving phosphorus and the major metal ions, is added genation, interesterification, or chill fractionation, alone or and mixed with the oil. By absorbing these contaminants in combination. first, the bleaching clay is spared for adsorbing chloro-6. Hydrogenation phyll and the oxidation-degradation products of oil Hydrogenation is the process of adding hydrogen to satu-[136-138]. rate carbon-to-carbon double bonds. It is used to raise try-5. Bleaching glyceride melting points and to increase stability as by jective of bleaching is to remove various contami-converting linolenic acid to linoleic in soybean oil [141]. A The ob lighter, "brush" hydrogenation is used for the latter pur-nants, pigments, metals, and oxidation products before the pose. oil is sent to the deodorizer. Removal of sulfur is especial-Most of the catalysts that assist hydrogenation are nick-ly important before hydrogenation of canola and rapeseed el-based, but a variety is available for special applications. oils. Flavor of the oil also is improved. As mentioned in the "Selectivity" refers to ability of the catalyst and process to preceding section, silica hydrogels will adsorb many of sequentially saturate fatty acids on the triglycerides in the these contaminants and spare the bleaching earth. Howev-order of most unsaturated to the fully saturated. For row er, earths are still used for these purposes in installations crop oils, perfect selectivity would be: that have not adopted hydrated silicas. Types of bleaching materials available include [136,139,140]: C18:3 C18:2 C18:1 Linolenic acid Linoleic acid Oleic acid Neutral earths: Basically hydrated aluminum silicates, sometimes called "natural clays" or "earths," and C18:0 fuller's earth, which vary in ability to absorb pigments. Stearic acid Acid-activated earths: Bentonites or montmorillonites, Although typical hydrogenation is not selective, it can be treated with hydrochloric or sulfuric acid to improve favored to a limited degree by selection of catalyst and by their absorption of pigments and other undesirable temperature and pressure of the process. Efficient hydro-components, are most commonly used. genation requires the cleanest possible feed stock (without Activated carbon: Expensive, more difficult to use, but of soaps, phosphatides, sulfur compounds, carbon monoxide, special interest for adsorbing polyaromatic hydrocar-nitrogen compounds, or oxygen-containing compounds) bons from coconut and fish oils. and the purest, driest hydrogen gas possible [140]." In Handbook of Cereal Science and Technology, Revised and Expanded, 361–73. CRC Press, 2000. http://dx.doi.org/10.1201/9781420027228-35.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Degummed soybean oil"

1

Bailley A Richardson and Kurt A Rosentrater. "Techno-Economic Modeling of a Degummed Soybean Oil Biorefinery in 2005 & 2012." In 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131592072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography