Academic literature on the topic 'Dehn surgery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dehn surgery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dehn surgery"
Qiu, Ruifeng, and Zhang Ying. "∂-reducible Dehn surgery and annular Dehn surgery." Topology and its Applications 92, no. 1 (March 1999): 79–84. http://dx.doi.org/10.1016/s0166-8641(97)00229-0.
Full textQiu, Ruifeng. "Reducible Dehn surgery and annular Dehn surgery." Pacific Journal of Mathematics 192, no. 2 (February 1, 2000): 357–68. http://dx.doi.org/10.2140/pjm.2000.192.357.
Full textCuller, Marc, C. McA Gordon, J. Luecke, and Peter B. Shalen. "Dehn Surgery on Knots." Annals of Mathematics 125, no. 2 (March 1987): 237. http://dx.doi.org/10.2307/1971311.
Full textBoyer, Steven. "Dehn surgery on knots." Chaos, Solitons & Fractals 9, no. 4-5 (April 1998): 657–70. http://dx.doi.org/10.1016/s0960-0779(97)00098-2.
Full textCuller, Marc, C. McA Gordon, J. Luecke, and Peter B. Shalen. "Dehn surgery on knots." Bulletin of the American Mathematical Society 13, no. 1 (July 1, 1985): 43–46. http://dx.doi.org/10.1090/s0273-0979-1985-15357-1.
Full textLackenby, Marc. "Word hyperbolic Dehn surgery." Inventiones Mathematicae 140, no. 2 (May 1, 2000): 243–82. http://dx.doi.org/10.1007/s002220000047.
Full textKang, Sungmo. "Hyperbolic tunnel-number-one knots with Seifert-fibered Dehn surgeries." Journal of Knot Theory and Its Ramifications 29, no. 11 (October 2020): 2050075. http://dx.doi.org/10.1142/s0218216520500753.
Full textHayashi, Chuichiro. "Dehn surgery and essential annuli." Mathematical Proceedings of the Cambridge Philosophical Society 120, no. 1 (July 1996): 127–46. http://dx.doi.org/10.1017/s0305004100074727.
Full textBoyer, S., and X. Zhang. "Finite Dehn surgery on knots." Journal of the American Mathematical Society 9, no. 4 (1996): 1005–50. http://dx.doi.org/10.1090/s0894-0347-96-00201-9.
Full textSaveliev, Nikolai. "Dehn surgery along torus knots." Topology and its Applications 83, no. 3 (March 1998): 193–202. http://dx.doi.org/10.1016/s0166-8641(97)00109-0.
Full textDissertations / Theses on the topic "Dehn surgery"
Zhang, Xingru. "Topics on Dehn surgery." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/32117.
Full textScience, Faculty of
Mathematics, Department of
Graduate
Lackenby, Marc. "Dehn surgery and unknotting operations." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627303.
Full textGainullin, Fjodor. "Dehn surgery and Heegaard Floer homology." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/44069.
Full textGibbons, Julien Charles. "On the Heegaard Floer homology of Dehn surgery and unknotting number." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/39364.
Full textMauricio, Mauro. "Distance bounding and Heegaard Floer homology methods in reducible Dehn surgery." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/10226.
Full textCrawford, Thomas. "A Stronger Gordon Conjecture and an Analysis of Free Bicuspid Manifolds with Small Cusps." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:107938.
Full textThurston showed that for all but a finite number of Dehn Surgeries on a cusped hyperbolic 3-manifold, the resulting manifold admits a hyperbolic structure. Global bounds on this number have been set, and gradually improved upon, by a number of Mathematicians until Lackenby and Meyerhoff proved the sharp bound of 10, which is realized by the figure-eight knot exterior. We improve this result by proving a stronger version of Gordon’s conjecture: that excluding the figure-eight knot exterior, cusped hyperbolic 3-manifolds have at most 8 non-hyperbolic Dehn Surgeries. To do so we make use of the work of Gabai et. al. from a forthcoming paper which parameterizes measurements of the cusp, then uses a rigorous computer aided search of the space to classify all hyperbolic 3-manifolds up to a specified cusp size. Their approach hinges on the discreteness of manifold points in the parameter space, an assumption which cannot be made if the manifolds have infinite volume. In this paper we also show that infinite-volume manifolds, which must be Free Bicuspid, can have cusp volume as low as 3.159. As such, these manifolds are a concern for any future expansion of the approach of Gabai et. al
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Ackermann, Robert James. "Constructing Bitwisted Face Pairing 3-Manifolds." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/32655.
Full textMaster of Science
Lambert, Lee R. "A Toolkit for the Construction and Understanding of 3-Manifolds." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2188.
Full textAcosta, Miguel. "Chirurgies de Dehn sur des variétés CR-sphériques et variétés de caractères pour les formes réelles de SL(n,C)." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066368/document.
Full textIn this thesis, we study the construction and deformation of spherical-CR structures on three dimensional manifolds. In order to do it, we give a detailed description of the complex hyperbolic plane, its group of isometries and some geometric objects attached to this space such as bisectors and extors. We show a surgery theorem which allows to construct spherical-CR on Dehn surgeries of a cusped spherical-CR manifold : this theorem can be applied for the Deraux-Falbel structure on the figure eight knot complement and for Schwartz's and Parker-Will structures on the Whitehead link complement. We also define the character varieties for a real form of SL(n,C) for finitely generated groups as some subsets of the SL(n,C)-character variety invariant under an anti-holomorphic involution. We study in detail the example of the group Z/3Z*Z/3Z. These character varieties give deformation spaces for the holonomy representations of spherical-CR structures. With these deformation spaces and tools related to the visual spheres of a point in CP^2, we construct an explicit deformation of the Ford domain constructed by Parker and Will, which gives a spherical-CR uniformisation of the Whitehead link complement. This deformation provides infinitely many spherical-CR uniformisations of a particular Dehn surgery of the manifold, and spherical-CR unifomisations for infinitely many Dehn surgeries of the Whitehead link complement
Krishna, Siddhi. "Taut foliations, positive braids, and the L-space conjecture:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108731.
Full textWe construct taut foliations in every closed 3-manifold obtained by r-framed Dehn surgery along a positive 3-braid knot K in S^3, where r < 2g(K)-1 and g(K) denotes the Seifert genus of K. This confirms a prediction of the L--space conjecture. For instance, we produce taut foliations in every non-L-space obtained by surgery along the pretzel knot P(-2,3,7), and indeed along every pretzel knot P(-2,3,q), for q a positive odd integer. This is the first construction of taut foliations for every non-L-space obtained by surgery along an infinite family of hyperbolic L-space knots. We adapt our techniques to construct taut foliations in every closed 3-manifold obtained along r-framed Dehn surgery along a positive 1-bridge braid, and indeed, along any positive braid knot, in S^3, where r < g(K)-1. These are the only examples of theorems producing taut foliations in surgeries along hyperbolic knots where the interval of surgery slopes is in terms of g(K)
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Books on the topic "Dehn surgery"
Spherical CR geometry and Dehn surgery. Princeton: Princeton University Press, 2007.
Find full text1956-, Wu Ying-Qing, ed. Toroidal Dehn fillings on hyperbolic 3-manifolds. Providence, R.I: American Mathematical Society, 2008.
Find full textKrukemeyer, Manfred. Endoprothetik: Ein leitfaden für den praktiker. 2nd ed. Berlin: De Gruyter, 2012.
Find full textStoll, Johann Conrad. Abhandlung über den Grauen Staar und dessen Heilung. Bonn: D. & L. Koch Verlag, 2013.
Find full textOrnish, Dean. Dr Dean Ornish's Program For: The Only System Scientifically Proven To Reverse Heart Disease Without Drugs Or Surgery. S.l: Ballantine, 2007.
Find full textOrnish, Dean. Dr. Dean Ornish'sprogramme for reversing heart disease: The only system scientifically proven to reverse heart disease without drugs or surgery. London: Century, 1991.
Find full textOrnish, Dean. Dr. Dean Ornish's program for reversing heart disease: The only system scientifically proven to reverse heart disease without drugs or surgery. New York: Random House, 1990.
Find full textOrnish, Dean. Dr. Dean Ornish's program for reversing heart disease: The only system scientifically proven to reverse heart disease without drugs or surgery. New York, NY: Ballantine Books, 1991.
Find full textOrnish, Dean. Dr. Dean Ornish's program for reversing heart disease: The only system scientifically proven to reverse heart disease without drugs or surgery. New York: Ivy Books, 1996.
Find full textKober, George M. Frontier surgeon and Georgetown Medical School dean: Reminiscences of George Martin Kober M.D., LL.D (1850-1931). Reno, NV: Greasewood, 2006.
Find full textBook chapters on the topic "Dehn surgery"
Ozbagci, Burak, and András I. Stipsicz. "Contact Dehn Surgery." In Bolyai Society Mathematical Studies, 179–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10167-4_11.
Full textGordon, Cameron. "Dehn surgery and 3-manifolds." In IAS/Park City Mathematics Series, 21–71. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/pcms/015/03.
Full textFloer, A. "Instanton homology and Dehn surgery." In The Floer Memorial Volume, 77–97. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9217-9_4.
Full textLuecke, John. "Dehn Surgery on Knots in the 3-Sphere." In Proceedings of the International Congress of Mathematicians, 585–94. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9078-6_52.
Full textKiefer, H., U. Schmerwitz, and D. Langemeyer. "Kinematische Computernavigation für den Kniegelenkersatz." In Computer Assisted Orthopedic Surgery, 99–104. Heidelberg: Steinkopff, 2002. http://dx.doi.org/10.1007/978-3-642-57527-3_13.
Full textBOYER, S. "Dehn Surgery on Knots." In Handbook of Geometric Topology, 165–218. Elsevier, 2001. http://dx.doi.org/10.1016/b978-044482432-5/50005-6.
Full text"Lecture 2. Dehn surgery." In Lectures on the Topology of 3-Manifolds. Berlin, Boston: DE GRUYTER, 2011. http://dx.doi.org/10.1515/9783110250367.32.
Full textGORDON, C. MCA. "COMBINATORIAL METHODS IN DEHN SURGERY." In Lectures at Knots '96, 263–90. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789812796097_0010.
Full text"4. The Dehn Surgery Formula." In An Extension of Casson's Invariant. (AM-126), 81–94. Princeton: Princeton University Press, 1992. http://dx.doi.org/10.1515/9781400882465-005.
Full text"6. Consequences of the Dehn Surgery Formula." In An Extension of Casson's Invariant. (AM-126), 108–12. Princeton: Princeton University Press, 1992. http://dx.doi.org/10.1515/9781400882465-007.
Full textConference papers on the topic "Dehn surgery"
Aitchison, Iain R., and J. Hyam Rubinstein. "Combinatorial Dehn surgery on cubed and Haken 3–manifolds." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.1.
Full textRouev, P. "Labyrinthine fistula by cholesteatoma surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711291.
Full textHartmann, M., D. Beutner, A. Olthoff, and P. Ströbel. "Laryngoscopy before thyroid surgery - routine diagnostics?" In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711456.
Full textLazak, J., J. Plzak, and Z. Fik. "Skull base reconstruction after the vestibular schwannoma surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711308.
Full textKobakhidze, A., and A. Merculava. "Nasal septal swell body: minimal invasive laser surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711388.
Full textSudhoff, H., I. Todt, Lars-Uwe Scholtz, and N. Ay. "A Novel Technique for Patulous Eustachian Tube Surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711069.
Full textSchinz, K., S. Müller, L. Steigerwald, K. Mantsopoulos, and H. Iro. "Postoperative use of non-opioid analgesics after sinonasal surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711367.
Full textWindfuhr, J. "Are there regional differences in postoperative bleeding after tonsil surgery?" In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1710803.
Full textSommer, F., M. Martin, T. Hoffmann, P. Deiss, and Marie-Nicole Theodoraki. "The inverted papilloma as an incidential finding in sinus surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711370.
Full textGuderian, D., S. Helbig, S. Kramer, I. Burck, T. Stöver, and M. Diensthuber. "Diagnostics prior cochlear implant surgery in children with consanguineous parents." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711099.
Full text