Academic literature on the topic 'Dehn surgery'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dehn surgery.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dehn surgery"

1

Qiu, Ruifeng, and Zhang Ying. "∂-reducible Dehn surgery and annular Dehn surgery." Topology and its Applications 92, no. 1 (March 1999): 79–84. http://dx.doi.org/10.1016/s0166-8641(97)00229-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Qiu, Ruifeng. "Reducible Dehn surgery and annular Dehn surgery." Pacific Journal of Mathematics 192, no. 2 (February 1, 2000): 357–68. http://dx.doi.org/10.2140/pjm.2000.192.357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Culler, Marc, C. McA Gordon, J. Luecke, and Peter B. Shalen. "Dehn Surgery on Knots." Annals of Mathematics 125, no. 2 (March 1987): 237. http://dx.doi.org/10.2307/1971311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boyer, Steven. "Dehn surgery on knots." Chaos, Solitons & Fractals 9, no. 4-5 (April 1998): 657–70. http://dx.doi.org/10.1016/s0960-0779(97)00098-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Culler, Marc, C. McA Gordon, J. Luecke, and Peter B. Shalen. "Dehn surgery on knots." Bulletin of the American Mathematical Society 13, no. 1 (July 1, 1985): 43–46. http://dx.doi.org/10.1090/s0273-0979-1985-15357-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lackenby, Marc. "Word hyperbolic Dehn surgery." Inventiones Mathematicae 140, no. 2 (May 1, 2000): 243–82. http://dx.doi.org/10.1007/s002220000047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Sungmo. "Hyperbolic tunnel-number-one knots with Seifert-fibered Dehn surgeries." Journal of Knot Theory and Its Ramifications 29, no. 11 (October 2020): 2050075. http://dx.doi.org/10.1142/s0218216520500753.

Full text
Abstract:
Suppose [Formula: see text] and [Formula: see text] are disjoint simple closed curves in the boundary of a genus two handlebody [Formula: see text] such that [Formula: see text] (i.e. a 2-handle addition along [Formula: see text]) embeds in [Formula: see text] as the exterior of a hyperbolic knot [Formula: see text] (thus, [Formula: see text] is a tunnel-number-one knot), and [Formula: see text] is Seifert in [Formula: see text] (i.e. a 2-handle addition [Formula: see text] is a Seifert-fibered space) and not the meridian of [Formula: see text]. Then for a slope [Formula: see text] of [Formula: see text] represented by [Formula: see text], [Formula: see text]-Dehn surgery [Formula: see text] is a Seifert-fibered space. Such a construction of Seifert-fibered Dehn surgeries generalizes that of Seifert-fibered Dehn surgeries arising from primtive/Seifert positions of a knot, which was introduced in [J. Dean, Small Seifert-fibered Dehn surgery on hyperbolic knots, Algebr. Geom. Topol. 3 (2003) 435–472.]. In this paper, we show that there exists a meridional curve [Formula: see text] of [Formula: see text] (or [Formula: see text]) in [Formula: see text] such that [Formula: see text] intersects [Formula: see text] transversely in exactly one point. It follows that such a construction of a Seifert-fibered Dehn surgery [Formula: see text] can arise from a primitive/Seifert position of [Formula: see text] with [Formula: see text] its surface-slope. This result supports partially the two conjectures: (1) any Seifert-fibered surgery on a hyperbolic knot in [Formula: see text] is integral, and (2) any Seifert-fibered surgery on a hyperbolic tunnel-number-one knot arises from a primitive/Seifert position whose surface slope corresponds to the surgery slope.
APA, Harvard, Vancouver, ISO, and other styles
8

Hayashi, Chuichiro. "Dehn surgery and essential annuli." Mathematical Proceedings of the Cambridge Philosophical Society 120, no. 1 (July 1996): 127–46. http://dx.doi.org/10.1017/s0305004100074727.

Full text
Abstract:
In this paper we consider Dehn surgery and essential annuli whose two boundary components are in distinct components of the boundary of a 3-manifold.Let Nl be an orientable 3-manifold with boundary, Kl a knot in Nl, and N2 the 3-manifold obtained by performing γ-Dehn surgery Kl. In detail, let Vl be a regular neighbourhood Kl, X = Nl − int Vl the exterior of Kl, T the toral component ∂Vl of ∂X, and γ a slope on T. Then we obtain the 3-manifold N2 by attaching a solid torus V2 to X so that γ bounds a disc in V2. Let K2 be the core of V2. Let π be the slope of a meridian loop of Kl, and Δ the distance between the slopes π and γ, i.e. the minimal number of intersection points of the two slopes on T. Suppose for i = 1 and 2 that Ni contains a proper annulus Ai such that the two components of ∂Ai are essential loops on distinct incompressible components of ∂Ni. Then note that Ai is essential, i.e. incompressible and ∂-incompressible in Ni.
APA, Harvard, Vancouver, ISO, and other styles
9

Boyer, S., and X. Zhang. "Finite Dehn surgery on knots." Journal of the American Mathematical Society 9, no. 4 (1996): 1005–50. http://dx.doi.org/10.1090/s0894-0347-96-00201-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saveliev, Nikolai. "Dehn surgery along torus knots." Topology and its Applications 83, no. 3 (March 1998): 193–202. http://dx.doi.org/10.1016/s0166-8641(97)00109-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Dehn surgery"

1

Zhang, Xingru. "Topics on Dehn surgery." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/32117.

Full text
Abstract:
Cyclic surgery on satellite knots in S³ is classified and a necessary condition is given for a knot in S³ to admit a nontrivial cyclic surgery with slope m/l, \m\ > 1. A complete classification of cyclic group actions on the Poincaré sphere with 1-dimensional fixed point sets is obtained. It is proved that the following knots have property I, i.e. the fundamental group of the manifold obtained by Dehn surgery on such a knot cannot be the binary icosahedral group I₁₂₀, the fundamental group of the Poincaré homology 3-sphere: nontrefoil torus knots, satellite knots, nontrefoil generalized double knots, periodic knots with some possible specific exceptions, amphicheiral strongly invertible knots, certain families of pretzel knots. Further the Poincaré sphere cannot be obtained by Dehn surgery on slice knots and a certain family of knots formed by band-connect sums. It is proved that if a nonsufficiently large hyperbolic knot in S³ admits two nontrivial cyclic Dehn surgeries then there is at least one nonintegral boundary slope for the knot. There are examples of such knots. Thus nonintegral boundary slopes exist.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
2

Lackenby, Marc. "Dehn surgery and unknotting operations." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gainullin, Fjodor. "Dehn surgery and Heegaard Floer homology." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/44069.

Full text
Abstract:
This thesis presents some new results on Dehn surgery. The overarching theme of the thesis is to find restrictions on obtaining a 3-manifold by a Dehn surgery on a knot in another 3-manifold (although we also find new examples in chapter 5) and most of these restrictions are obtained by exploring the consequences of the mapping cone formula in Heegaard Floer homology. In particular, we show that only finitely many alternating knots can yield a given 3-manifold by Dehn surgery and confirm the knot complement conjecture for many classes of knots.
APA, Harvard, Vancouver, ISO, and other styles
4

Gibbons, Julien Charles. "On the Heegaard Floer homology of Dehn surgery and unknotting number." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/39364.

Full text
Abstract:
In this thesis we generalise three theorems from the literature on Heegaard Floer homology and Dehn surgery: one by Ozsv ́ath and Szab ́o on deficiency symmetries in half-integral L -space surgeries, and two by Greene which use Donaldson’s diagonali- sation theorem as an obstruction to integral and half-integral L -space surgeries. Our generalisation is two-fold: first, we eliminate the L -space conditions, opening these techniques up for use with much more general 3-manifolds, and second, we unify the integral and half-integral surgery results into a broader theorem applicable to non- zero rational surgeries in S 3 which bound sharp, simply connected, negative-definite smooth 4-manifolds. Such 3-manifolds are quite common and include, for example, a huge number of Seifert fibred spaces. Over the course of the first three chapters, we begin by introducing background material on knots in 3-manifolds, the intersection form of a simply connected 4- manifold, Spin- and Spin c -structures on 3- and 4-manifolds, and Heegaard Floer ho- mology (including knot Floer homology). While none of the results in these chapters are original, all of them are necessary to make sense of what follows. In Chapter 4, we introduce and prove our main theorems, using arguments that are predominantly algebraic or combinatorial in nature. We then apply these new theorems to the study of unknotting number in Chapter 5, making considerable headway into the extremely difficult problem of classifying the 3-strand pretzel knots with unknotting number one. Finally, in Chapter 6, we present further applications of the main theorems, ranging from a plan of attack on the famous Seifert fibred space realisation problem to more biologically motivated problems concerning rational tangle replacement. An appendix on the implications of our theorems for DNA topology is provided at the end.
APA, Harvard, Vancouver, ISO, and other styles
5

Mauricio, Mauro. "Distance bounding and Heegaard Floer homology methods in reducible Dehn surgery." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/10226.

Full text
Abstract:
Motivated by the formation of certain link types during Hin-mediated DNA recombination experiments, we consider tangle equations where one of the products is a connect-sum of 2-bridge links. We are thus led to study Dehn surgeries on knots in lens spaces that yield connect-sums of lens spaces. Using 3-manifold methods, we prove, for certain classes of knot exteriors, a distance bound on Dehn surgery slopes. (This proof complements an algebraic-geometric proof of a more general statement due to Boyer and Zhang [6]). Analysing the known examples of connect-sums of lens spaces surgeries, together with some sample calculations, we conjecture that if surgery on a knot K [Symbol appears here. To view, please open pdf attachment] L(p, q), with p, q [Symbol appears here. To view, please open pdf attachment]1, 2, yields L(p, q)#L(t, 1), then the knot has reducible exterior. Using Heegaard Floer homology, we prove a special case of the conjecture, as well as some surgery obstructions. We then apply our results, in the spirit of the tangle model of Ernst and Sumners [67], to the problem of Hin-mediated DNA recombination, where we characterise its distributive recombination step.
APA, Harvard, Vancouver, ISO, and other styles
6

Crawford, Thomas. "A Stronger Gordon Conjecture and an Analysis of Free Bicuspid Manifolds with Small Cusps." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:107938.

Full text
Abstract:
Thesis advisor: Robert Meyerhoff
Thurston showed that for all but a finite number of Dehn Surgeries on a cusped hyperbolic 3-manifold, the resulting manifold admits a hyperbolic structure. Global bounds on this number have been set, and gradually improved upon, by a number of Mathematicians until Lackenby and Meyerhoff proved the sharp bound of 10, which is realized by the figure-eight knot exterior. We improve this result by proving a stronger version of Gordon’s conjecture: that excluding the figure-eight knot exterior, cusped hyperbolic 3-manifolds have at most 8 non-hyperbolic Dehn Surgeries. To do so we make use of the work of Gabai et. al. from a forthcoming paper which parameterizes measurements of the cusp, then uses a rigorous computer aided search of the space to classify all hyperbolic 3-manifolds up to a specified cusp size. Their approach hinges on the discreteness of manifold points in the parameter space, an assumption which cannot be made if the manifolds have infinite volume. In this paper we also show that infinite-volume manifolds, which must be Free Bicuspid, can have cusp volume as low as 3.159. As such, these manifolds are a concern for any future expansion of the approach of Gabai et. al
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
APA, Harvard, Vancouver, ISO, and other styles
7

Ackermann, Robert James. "Constructing Bitwisted Face Pairing 3-Manifolds." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/32655.

Full text
Abstract:
The bitwist construction, originally discovered by Cannon, Floyd, and Parry, gives us a new method for finding face pairing descriptions of 3-manifolds. In this paper, I will describe the construction in a way suitable for a more general audience than the original research papers. Along the way, I will describe Dehn Surgery and a set of moves which allows us to change the framings of a link without changing the topology of the manifold obtained by Dehn Surgery. Once the theory has been developed, I will apply it to find several bitwist representations of the Poincaré Sphere and 3-Torus. Finally, I discuss how one might attempt to find a set of moves that can take one bitwist representation of a manifold to any other bitwist representation of the same manifold.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
8

Lambert, Lee R. "A Toolkit for the Construction and Understanding of 3-Manifolds." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2188.

Full text
Abstract:
Since our world is experienced locally in three-dimensional space, students of mathematics struggle to visualize and understand objects which do not fit into three-dimensional space. 3-manifolds are locally three-dimensional, but do not fit into 3-dimensional space and can be very complicated. Twist and bitwist are simple constructions that provide an easy path to both creating and understanding closed, orientable 3-manifolds. By starting with simple face pairings on a 3-ball, a myriad of 3-manifolds can be easily constructed. In fact, all closed, connected, orientable 3-manifolds can be developed in this manner. We call this work a tool kit to emphasize the ease with which 3-manifolds can be developed and understood applying the tools of twist and bitwist construction. We also show how two other methods for developing 3-manifolds–Dehn surgery and Heegaard splitting–are related to the twist and bitwist construction, and how one can transfer from one method to the others. One interesting result is that a simple bitwist construction on a 3-ball produces a group of manifolds called generalized Sieradski manifolds which are shown to be a cyclic branched cover of S^3 over the 2-braid, with the number twists determined by the hemisphere subdivisions. A slight change from bitwist to twist causes the knot to become a generalized figure-eight knot.
APA, Harvard, Vancouver, ISO, and other styles
9

Acosta, Miguel. "Chirurgies de Dehn sur des variétés CR-sphériques et variétés de caractères pour les formes réelles de SL(n,C)." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066368/document.

Full text
Abstract:
Dans cette thèse, on s'intéresse à la construction et à la déformation de structures CR-sphériques sur des variétés de dimension 3. Pour le faire, on étudie en détail l'espace hyperbolique complexe, son groupe d'isométries et des objets géométriques liés à cet espace. On montre un théorème de chirurgie qui permet de construire des structures CR-sphériques sur des chirurgies de Dehn d'une variété à pointe portant une structure CR-sphérique : il s'applique aux structures de Deraux-Falbel sur le complémentaire du noeud de huit et à celles de Schwartz et de Parker-Will sur le complémentaire de l'entrelacs de Whitehead. On définit aussi les variétés de caractères de groupes de type fini pour les formes réelles de SL(n,C) comme des sous-ensembles de la variété des caractères SL(n,C) fixes par des involutions anti-holomorphes. Ces variétés de caractères, dont on étudie en détail l'exemple du groupe Z/3Z*Z/3Z, fournissent des espaces de déformation pour des représentations d'holonomie de structures CR-sphériques. À l'aide de ces espaces de déformations, et des outils liés aux sphères visuelles dans CP^2, on construit une déformation explicite du domaine de Ford construit par Parker et Will et qui donne une uniformisation CR-sphérique sur le complémentaire de l'entrelacs de Whitehead. Cette déformation fournit une infinité d'uniformisations CR-sphériques sur une chirurgie de Dehn particulière de cette variété, et des uniformisations CR-sphériques sur une infinité de chirurgies de Dehn sur le complémentaire de l'entrelacs de Whitehead
In this thesis, we study the construction and deformation of spherical-CR structures on three dimensional manifolds. In order to do it, we give a detailed description of the complex hyperbolic plane, its group of isometries and some geometric objects attached to this space such as bisectors and extors. We show a surgery theorem which allows to construct spherical-CR on Dehn surgeries of a cusped spherical-CR manifold : this theorem can be applied for the Deraux-Falbel structure on the figure eight knot complement and for Schwartz's and Parker-Will structures on the Whitehead link complement. We also define the character varieties for a real form of SL(n,C) for finitely generated groups as some subsets of the SL(n,C)-character variety invariant under an anti-holomorphic involution. We study in detail the example of the group Z/3Z*Z/3Z. These character varieties give deformation spaces for the holonomy representations of spherical-CR structures. With these deformation spaces and tools related to the visual spheres of a point in CP^2, we construct an explicit deformation of the Ford domain constructed by Parker and Will, which gives a spherical-CR uniformisation of the Whitehead link complement. This deformation provides infinitely many spherical-CR uniformisations of a particular Dehn surgery of the manifold, and spherical-CR unifomisations for infinitely many Dehn surgeries of the Whitehead link complement
APA, Harvard, Vancouver, ISO, and other styles
10

Krishna, Siddhi. "Taut foliations, positive braids, and the L-space conjecture:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108731.

Full text
Abstract:
Thesis advisor: Joshua E. Greene
We construct taut foliations in every closed 3-manifold obtained by r-framed Dehn surgery along a positive 3-braid knot K in S^3, where r < 2g(K)-1 and g(K) denotes the Seifert genus of K. This confirms a prediction of the L--space conjecture. For instance, we produce taut foliations in every non-L-space obtained by surgery along the pretzel knot P(-2,3,7), and indeed along every pretzel knot P(-2,3,q), for q a positive odd integer. This is the first construction of taut foliations for every non-L-space obtained by surgery along an infinite family of hyperbolic L-space knots. We adapt our techniques to construct taut foliations in every closed 3-manifold obtained along r-framed Dehn surgery along a positive 1-bridge braid, and indeed, along any positive braid knot, in S^3, where r < g(K)-1. These are the only examples of theorems producing taut foliations in surgeries along hyperbolic knots where the interval of surgery slopes is in terms of g(K)
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Dehn surgery"

1

Spherical CR geometry and Dehn surgery. Princeton: Princeton University Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1956-, Wu Ying-Qing, ed. Toroidal Dehn fillings on hyperbolic 3-manifolds. Providence, R.I: American Mathematical Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krukemeyer, Manfred. Endoprothetik: Ein leitfaden für den praktiker. 2nd ed. Berlin: De Gruyter, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stoll, Johann Conrad. Abhandlung über den Grauen Staar und dessen Heilung. Bonn: D. & L. Koch Verlag, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ornish, Dean. Dr Dean Ornish's Program For: The Only System Scientifically Proven To Reverse Heart Disease Without Drugs Or Surgery. S.l: Ballantine, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ornish, Dean. Dr. Dean Ornish'sprogramme for reversing heart disease: The only system scientifically proven to reverse heart disease without drugs or surgery. London: Century, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ornish, Dean. Dr. Dean Ornish's program for reversing heart disease: The only system scientifically proven to reverse heart disease without drugs or surgery. New York: Random House, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ornish, Dean. Dr. Dean Ornish's program for reversing heart disease: The only system scientifically proven to reverse heart disease without drugs or surgery. New York, NY: Ballantine Books, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ornish, Dean. Dr. Dean Ornish's program for reversing heart disease: The only system scientifically proven to reverse heart disease without drugs or surgery. New York: Ivy Books, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kober, George M. Frontier surgeon and Georgetown Medical School dean: Reminiscences of George Martin Kober M.D., LL.D (1850-1931). Reno, NV: Greasewood, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Dehn surgery"

1

Ozbagci, Burak, and András I. Stipsicz. "Contact Dehn Surgery." In Bolyai Society Mathematical Studies, 179–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10167-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gordon, Cameron. "Dehn surgery and 3-manifolds." In IAS/Park City Mathematics Series, 21–71. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/pcms/015/03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Floer, A. "Instanton homology and Dehn surgery." In The Floer Memorial Volume, 77–97. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9217-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luecke, John. "Dehn Surgery on Knots in the 3-Sphere." In Proceedings of the International Congress of Mathematicians, 585–94. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9078-6_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kiefer, H., U. Schmerwitz, and D. Langemeyer. "Kinematische Computernavigation für den Kniegelenkersatz." In Computer Assisted Orthopedic Surgery, 99–104. Heidelberg: Steinkopff, 2002. http://dx.doi.org/10.1007/978-3-642-57527-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

BOYER, S. "Dehn Surgery on Knots." In Handbook of Geometric Topology, 165–218. Elsevier, 2001. http://dx.doi.org/10.1016/b978-044482432-5/50005-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Lecture 2. Dehn surgery." In Lectures on the Topology of 3-Manifolds. Berlin, Boston: DE GRUYTER, 2011. http://dx.doi.org/10.1515/9783110250367.32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

GORDON, C. MCA. "COMBINATORIAL METHODS IN DEHN SURGERY." In Lectures at Knots '96, 263–90. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789812796097_0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"4. The Dehn Surgery Formula." In An Extension of Casson's Invariant. (AM-126), 81–94. Princeton: Princeton University Press, 1992. http://dx.doi.org/10.1515/9781400882465-005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"6. Consequences of the Dehn Surgery Formula." In An Extension of Casson's Invariant. (AM-126), 108–12. Princeton: Princeton University Press, 1992. http://dx.doi.org/10.1515/9781400882465-007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dehn surgery"

1

Aitchison, Iain R., and J. Hyam Rubinstein. "Combinatorial Dehn surgery on cubed and Haken 3–manifolds." In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rouev, P. "Labyrinthine fistula by cholesteatoma surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hartmann, M., D. Beutner, A. Olthoff, and P. Ströbel. "Laryngoscopy before thyroid surgery - routine diagnostics?" In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lazak, J., J. Plzak, and Z. Fik. "Skull base reconstruction after the vestibular schwannoma surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kobakhidze, A., and A. Merculava. "Nasal septal swell body: minimal invasive laser surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sudhoff, H., I. Todt, Lars-Uwe Scholtz, and N. Ay. "A Novel Technique for Patulous Eustachian Tube Surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schinz, K., S. Müller, L. Steigerwald, K. Mantsopoulos, and H. Iro. "Postoperative use of non-opioid analgesics after sinonasal surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Windfuhr, J. "Are there regional differences in postoperative bleeding after tonsil surgery?" In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1710803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sommer, F., M. Martin, T. Hoffmann, P. Deiss, and Marie-Nicole Theodoraki. "The inverted papilloma as an incidential finding in sinus surgery." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guderian, D., S. Helbig, S. Kramer, I. Burck, T. Stöver, and M. Diensthuber. "Diagnostics prior cochlear implant surgery in children with consanguineous parents." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography