Journal articles on the topic 'Dehydration of fructose to HMF'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dehydration of fructose to HMF.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Hu, and Song Yang. "Catalytic Transformation of Fructose and Sucrose to HMF with Proline-Derived Ionic Liquids under Mild Conditions." International Journal of Chemical Engineering 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/978708.
Full textTesta, Maria Luisa, Gianmarco Miroddi, Marco Russo, Valeria La Parola, and Giuseppe Marcì. "Dehydration of Fructose to 5-HMF over Acidic TiO2 Catalysts." Materials 13, no. 5 (March 6, 2020): 1178. http://dx.doi.org/10.3390/ma13051178.
Full textYe, Boyong, Wenyang Zhang, Ruru Zhou, Yuanyuan Jiang, Zixin Zhong, and Zhaoyin Hou. "Dehydration of fructose to 5-hydroxymethylfurfural over a mesoporous sulfonated high-crosslinked polymer in different solvents." New Journal of Chemistry 46, no. 14 (2022): 6756–64. http://dx.doi.org/10.1039/d2nj00142j.
Full textLin, Changqu, Chaoqun Chai, Yuanzhang Li, Jiao Chen, Yanyu Lu, Hongli Wu, Lili Zhao, et al. "CaCl2 molten salt hydrate-promoted conversion of carbohydrates to 5-hydroxymethylfurfural: an experimental and theoretical study." Green Chemistry 23, no. 5 (2021): 2058–68. http://dx.doi.org/10.1039/d0gc04356g.
Full textGarcía-López, Elisa I., Francesca Rita Pomilla, Bartolomeo Megna, Maria Luisa Testa, Leonarda Francesca Liotta, and Giuseppe Marcì. "Catalytic Dehydration of Fructose to 5-Hydroxymethylfurfural in Aqueous Medium over Nb2O5-Based Catalysts." Nanomaterials 11, no. 7 (July 13, 2021): 1821. http://dx.doi.org/10.3390/nano11071821.
Full textGimbernat, Alexandra, Marie Guehl, Nicolas Lopes Ferreira, Egon Heuson, Pascal Dhulster, Mickael Capron, Franck Dumeignil, Damien Delcroix, Jean Girardon, and Rénato Froidevaux. "From a Sequential Chemo-Enzymatic Approach to a Continuous Process for HMF Production from Glucose." Catalysts 8, no. 8 (August 17, 2018): 335. http://dx.doi.org/10.3390/catal8080335.
Full textLiu, Shuqing, Xing Fu, Jinhang Dai, Zhongbao Liu, Liangfang Zhu, and Changwei Hu. "One-Pot Synthesis of 2,5-Diformylfuran from Fructose by Bifunctional Polyaniline-Supported Heteropolyacid Hybrid Catalysts." Catalysts 9, no. 5 (May 13, 2019): 445. http://dx.doi.org/10.3390/catal9050445.
Full textMa, Yubo, Lei Wang, Hongyi Li, Tianfu Wang, and Ronghui Zhang. "Selective Dehydration of Glucose into 5-Hydroxymethylfurfural by Ionic Liquid-ZrOCl2 in Isopropanol." Catalysts 8, no. 10 (October 18, 2018): 467. http://dx.doi.org/10.3390/catal8100467.
Full textRajmohan, Rajamani, Subramaniyan Gayathri, and Pothiappan Vairaprakash. "Facile synthesis of 5-hydroxymethylfurfural: a sustainable raw material for the synthesis of key intermediates toward 21,23-dioxaporphyrins." RSC Adv. 5, no. 121 (2015): 100401–7. http://dx.doi.org/10.1039/c5ra19400h.
Full textWhitaker, Mariah R., Aamena Parulkar, and Nicholas A. Brunelli. "Selective production of 5-hydroxymethylfurfural from fructose in the presence of an acid-functionalized SBA-15 catalyst modified with a sulfoxide polymer." Molecular Systems Design & Engineering 5, no. 1 (2020): 257–68. http://dx.doi.org/10.1039/c9me00093c.
Full textQu, Yong Shui, Yan Lei Song, Chong Pin Huang, Jie Zhang, and Biao Hua Chen. "Dehydration of Fructose to 5-Hydroxymethylfurfural Catalyzed by Alkaline Ionic Liquid." Advanced Materials Research 287-290 (July 2011): 1585–90. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.1585.
Full textXu, Daozhu, Qi Li, Jiacheng Ni, Yucai He, and Cuiluan Ma. "Significant Enhancement of 5-Hydroxymethylfural Productivity from D-Fructose with SG(SiO2) in Betaine:Glycerol–Water for Efficient Synthesis of Biobased 5-(Hydroxymethyl)furfurylamine." Molecules 27, no. 18 (September 6, 2022): 5748. http://dx.doi.org/10.3390/molecules27185748.
Full textMa, Yubo, Shaojun Qing, Lei Wang, Nurali Islam, Shuzhe Guan, Zhixian Gao, Xamxikamar Mamat, Hongyi Li, Wumanjiang Eli, and Tianfu Wang. "Production of 5-hydroxymethylfurfural from fructose by a thermo-regulated and recyclable Brønsted acidic ionic liquid catalyst." RSC Advances 5, no. 59 (2015): 47377–83. http://dx.doi.org/10.1039/c5ra08107f.
Full textTschirner, Sarah, Eric Weingart, Linda Teevs, and Ulf Prüße. "Catalytic Dehydration of Fructose to 5-Hydroxymethylfurfural (HMF) in Low-Boiling Solvent Hexafluoroisopropanol (HFIP)." Molecules 23, no. 8 (July 26, 2018): 1866. http://dx.doi.org/10.3390/molecules23081866.
Full textHan, Miaomiao, Xiao Liu, Guangcheng Huang, Yadong Liu, and Shengxiang Ji. "Phosphoric acid doped polybenzimidazole as an heterogeneous catalyst for selective and efficient dehydration of saccharides to 5-hydroxymethylfurfural." RSC Advances 6, no. 53 (2016): 47890–96. http://dx.doi.org/10.1039/c6ra00473c.
Full textLiu, Yi, and Francesca M. Kerton. "Mechanistic studies on the formation of 5-hydroxymethylfurfural from the sugars fructose and glucose." Pure and Applied Chemistry 93, no. 4 (March 31, 2021): 463–78. http://dx.doi.org/10.1515/pac-2020-1108.
Full textTang, Hao, Ning Li, Fang Chen, Guangyi Li, Aiqin Wang, Yu Cong, Xiaodong Wang, and Tao Zhang. "Highly efficient synthesis of 5-hydroxymethylfurfural with carbohydrates over renewable cyclopentanone-based acidic resin." Green Chemistry 19, no. 8 (2017): 1855–60. http://dx.doi.org/10.1039/c7gc00673j.
Full textRaveendra, G., M. Surendar, and P. S. Sai Prasad. "Selective conversion of fructose to 5-hydroxymethylfurfural over WO3/SnO2 catalysts." New Journal of Chemistry 41, no. 16 (2017): 8520–29. http://dx.doi.org/10.1039/c7nj00725f.
Full textPawar, Hitesh, and Arvind Lali. "Microwave assisted organocatalytic synthesis of 5-hydroxymethyl furfural in a monophasic green solvent system." RSC Adv. 4, no. 51 (2014): 26714–20. http://dx.doi.org/10.1039/c4ra03137g.
Full textRuby, Marc-Philipp, and Ferdi Schüth. "Synthesis of N-alkyl-4-vinylpyridinium-based cross-linked polymers and their catalytic performance for the conversion of fructose into 5-hydroxymethylfurfural." Green Chemistry 18, no. 11 (2016): 3422–29. http://dx.doi.org/10.1039/c5gc02949j.
Full textLu, Ye-Min, Hu Li, Jian He, Yan-Xiu Liu, Zhi-Bing Wu, De-Yu Hu, and Song Yang. "Efficient conversion of glucose to 5-hydroxymethylfurfural using bifunctional partially hydroxylated AlF3." RSC Advances 6, no. 16 (2016): 12782–87. http://dx.doi.org/10.1039/c5ra24013a.
Full textZheng, Baohui, Zhijie Fang, Jie Cheng, and Yuhua Jiang. "Microwave-assisted Conversion of Carbohydrates into 5-Hydroxymethylfurfural Catalyzed by ZnCl2." Zeitschrift für Naturforschung B 65, no. 2 (February 1, 2010): 168–72. http://dx.doi.org/10.1515/znb-2010-0212.
Full textMa, Hao, Zhenzhen Li, Lili Chen, and Junjiang Teng. "LiCl-promoted-dehydration of fructose-based carbohydrates into 5-hydroxymethylfurfural in isopropanol." RSC Advances 11, no. 3 (2021): 1404–10. http://dx.doi.org/10.1039/d0ra08737h.
Full textKörner, Paul, Dennis Jung, and Andrea Kruse. "The effect of different Brønsted acids on the hydrothermal conversion of fructose to HMF." Green Chemistry 20, no. 10 (2018): 2231–41. http://dx.doi.org/10.1039/c8gc00435h.
Full textCatrinck, Mariana N., Sebastiano Campisi, Paolo Carniti, Reinaldo F. Teófilo, Filippo Bossola, and Antonella Gervasini. "Phosphate Enrichment of Niobium-Based Catalytic Surfaces in Relation to Reactions of Carbohydrate Biomass Conversion: The Case Studies of Inulin Hydrolysis and Fructose Dehydration." Catalysts 11, no. 9 (September 7, 2021): 1077. http://dx.doi.org/10.3390/catal11091077.
Full textFu, Guangxia, Francisco G. Cirujano, Andraž Krajnc, Gregor Mali, Mickaël Henrion, Simon Smolders, and Dirk E. De Vos. "Unexpected linker-dependent Brønsted acidity in the (Zr)UiO-66 metal organic framework and application to biomass valorization." Catalysis Science & Technology 10, no. 12 (2020): 4002–9. http://dx.doi.org/10.1039/d0cy00638f.
Full textDai, Jinhang, Liangfang Zhu, Dianyong Tang, Xing Fu, Jinqiang Tang, Xiawei Guo, and Changwei Hu. "Sulfonated polyaniline as a solid organocatalyst for dehydration of fructose into 5-hydroxymethylfurfural." Green Chemistry 19, no. 8 (2017): 1932–39. http://dx.doi.org/10.1039/c6gc03604j.
Full textJiao, Lutong, Siyu Sun, Xianling Meng, and Peijun Ji. "Sn-Based Porous Coordination Polymer Synthesized with Two Ligands for Tandem Catalysis Producing 5-Hydroxymethylfurfural." Catalysts 9, no. 9 (August 31, 2019): 739. http://dx.doi.org/10.3390/catal9090739.
Full textGao, Da-Ming, Bohan Zhao, Haichao Liu, Kei Morisato, Kazuyoshi Kanamori, Zhiyong He, Maomao Zeng, Huaping Wu, Jie Chen, and Kazuki Nakanishi. "Synthesis of a hierarchically porous niobium phosphate monolith by a sol–gel method for fructose dehydration to 5-hydroxymethylfurfural." Catalysis Science & Technology 8, no. 14 (2018): 3675–85. http://dx.doi.org/10.1039/c8cy00803e.
Full textCheng, Ziwei, Konstantinos A. Goulas, Natalia Quiroz Rodriguez, Basudeb Saha, and Dionisios G. Vlachos. "Growth kinetics of humins studied via X-ray scattering." Green Chemistry 22, no. 7 (2020): 2301–9. http://dx.doi.org/10.1039/c9gc03961a.
Full textSongo, Morongwa, Richard Moutloali, and Suprakas Ray. "Development of TiO2-Carbon Composite Acid Catalyst for Dehydration of Fructose to 5-Hydroxymethylfurfural." Catalysts 9, no. 2 (January 31, 2019): 126. http://dx.doi.org/10.3390/catal9020126.
Full textNajafi Chermahini, Alireza, Fereshte Shahangi, Hossein A. Dabbagh, and Mohammad Saraji. "Production of 5-hydroxymethylfurfural from fructose using a spherically fibrous KCC-1 silica catalyst." RSC Advances 6, no. 40 (2016): 33804–10. http://dx.doi.org/10.1039/c6ra03382b.
Full textZheng, Rui Yuan, Ning Liu, Wan Yi Liu, Jing Xin Ma, and Bing Li. "Conversion of Fructose to 5-hydroxymethylfurfural Catalyzed by Coaled Carbon-Based Solid Acid." Advanced Materials Research 724-725 (August 2013): 226–30. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.226.
Full textTomer, Richa, and Prakash Biswas. "Dehydration of glucose/fructose to 5-hydroxymethylfurfural (5-HMF) over an easily recyclable sulfated titania (SO42−/TiO2) catalyst." New Journal of Chemistry 44, no. 47 (2020): 20734–50. http://dx.doi.org/10.1039/d0nj04151c.
Full textSaenluang, Kachaporn, Anawat Thivasasith, Pannida Dugkhuntod, Peerapol Pornsetmetakul, Saros Salakhum, Supawadee Namuangruk, and Chularat Wattanakit. "In Situ Synthesis of Sn-Beta Zeolite Nanocrystals for Glucose to Hydroxymethylfurfural (HMF)." Catalysts 10, no. 11 (October 28, 2020): 1249. http://dx.doi.org/10.3390/catal10111249.
Full textSebati, Wilhemina, Suprakas Sinha Ray, and Richard Moutloali. "Synthesis of Porous Organic Polymer-Based Solid-Acid Catalysts for 5-Hydroxymethylfurfural Production from Fructose." Catalysts 9, no. 8 (July 31, 2019): 656. http://dx.doi.org/10.3390/catal9080656.
Full textRocha, Sebastián, Teresita Marzialetti, Matías Kopp, and Mara Cea. "Reaction Mechanism of the Microwave-Assisted Synthesis of 5-Hydroxymethylfurfural from Sucrose in Sugar Beet Molasses." Catalysts 11, no. 12 (November 29, 2021): 1458. http://dx.doi.org/10.3390/catal11121458.
Full textHou, Qidong, Weizun Li, Meiting Ju, Le Liu, Yu Chen, and Qian Yang. "One-pot synthesis of sulfonated graphene oxide for efficient conversion of fructose into HMF." RSC Advances 6, no. 106 (2016): 104016–24. http://dx.doi.org/10.1039/c6ra23420h.
Full textZhang, Qiuyun, Xiaofang Liu, Tingting Yang, Quanlin Pu, Caiyan Yue, Shuya Zhang, and Yutao Zhang. "Catalytic Transfer of Fructose to 5-Hydroxymethylfurfural over Bimetal Oxide Catalysts." International Journal of Chemical Engineering 2019 (April 1, 2019): 1–6. http://dx.doi.org/10.1155/2019/3890298.
Full textGavrila, Adina Ionuta, Ioana Asofiei, and Petre Chipurici. "Factorial Design for Optimization of Microwave Assisted Synthesis of 5-Hydroxymethylfurfural." Revista de Chimie 68, no. 4 (May 15, 2017): 639–41. http://dx.doi.org/10.37358/rc.17.4.5521.
Full textMayer, Sergio Federico, Horacio Falcón, María Teresa Fernández-Díaz, José Miguel Campos-Martín, and José Antonio Alonso. "Structure–properties relationship in the hydronium-containing pyrochlores (H3O)1+pSb1+pTe1−pO6 with catalytic activity in the fructose dehydration reaction." Dalton Transactions 49, no. 33 (2020): 11657–67. http://dx.doi.org/10.1039/d0dt01770a.
Full textWang, Qiufeng, Jiaqi Hao, and Zhenbo Zhao. "Microwave-Assisted Conversion of Fructose to 5-Hydroxymethylfurfural Using Sulfonated Porous Carbon Derived from Biomass." Australian Journal of Chemistry 71, no. 1 (2018): 24. http://dx.doi.org/10.1071/ch17154.
Full textLee, Kyung Won, Jin Ku Cho, Chulhwan Park, and Baek-Jin Kim. "Step-by-Step Hybrid Conversion of Glucose to 5-acetoxymethyl-2-furfural Using Immobilized Enzymes and Cation Exchange Resin." Processes 10, no. 10 (October 14, 2022): 2086. http://dx.doi.org/10.3390/pr10102086.
Full textQiu, Guo, Xincheng Wang, Chongpin Huang, Yingxia Li, and Biaohua Chen. "Niobium phosphotungstates: excellent solid acid catalysts for the dehydration of fructose to 5-hydroxymethylfurfural under mild conditions." RSC Advances 8, no. 57 (2018): 32423–33. http://dx.doi.org/10.1039/c8ra05940c.
Full textVilla, A., M. Schiavoni, P. F. Fulvio, S. M. Mahurin, S. Dai, R. T. Mayes, G. M. Veith, and L. Prati. "Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF." Journal of Energy Chemistry 22, no. 2 (March 2013): 305–11. http://dx.doi.org/10.1016/s2095-4956(13)60037-6.
Full textToftgaard Pedersen, Asbjørn, Rolf Ringborg, Thomas Grotkjær, Sven Pedersen, and John M. Woodley. "Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose–fructose mixtures." Chemical Engineering Journal 273 (August 2015): 455–64. http://dx.doi.org/10.1016/j.cej.2015.03.094.
Full textYi, Xiaohu, Irina Delidovich, Zhong Sun, Shengtian Wang, Xiaohong Wang, and Regina Palkovits. "A heteropoly acid ionic crystal containing Cr as an active catalyst for dehydration of monosaccharides to produce 5-HMF in water." Catalysis Science & Technology 5, no. 4 (2015): 2496–502. http://dx.doi.org/10.1039/c4cy01555j.
Full textGomes, F. N. D. C., L. R. Pereira, N. F. P. Ribeiro, and M. M. V. M. Souza. "PRODUCTION OF 5-HYDROXYMETHYLFURFURAL (HMF) VIA FRUCTOSE DEHYDRATION: EFFECT OF SOLVENT AND SALTING-OUT." Brazilian Journal of Chemical Engineering 32, no. 1 (March 2015): 119–26. http://dx.doi.org/10.1590/0104-6632.20150321s00002914.
Full textWang, Jiangang, Liwei Zhu, Yong Wang, Hongyou Cui, Yunyun Zhang, and Yuan Zhang. "Fructose dehydration to 5-HMF over three sulfonated carbons: effect of different pore structures." Journal of Chemical Technology & Biotechnology 92, no. 6 (December 20, 2016): 1454–63. http://dx.doi.org/10.1002/jctb.5144.
Full textZhang, Shuang, Xiaohui Han, Yanjie Liu, Ling Liu, Jiajun Yang, and Long Zhang. "Preparation of acicular mesoporous char sulfonic acid and its application for conversion of fructose to 5-hydroxymethylfurfural." BioResources 16, no. 1 (November 18, 2020): 324–38. http://dx.doi.org/10.15376/biores.16.1.324-338.
Full text