Journal articles on the topic 'Delay difference equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Delay difference equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tang, X. H., and J. S. Yu. "Oscillation of delay difference equation." Computers & Mathematics with Applications 37, no. 7 (April 1999): 11–20. http://dx.doi.org/10.1016/s0898-1221(99)00083-8.
Full textDavies, Roy O., and A. J. Ostaszewski. "On a Difference-Delay Equation." Journal of Mathematical Analysis and Applications 247, no. 2 (July 2000): 608–26. http://dx.doi.org/10.1006/jmaa.2000.6893.
Full textWang, Chao, Ravi P. Agarwal, and Donal O’Regan. "δ-Almost Periodic Functions and Applications to Dynamic Equations." Mathematics 7, no. 6 (June 9, 2019): 525. http://dx.doi.org/10.3390/math7060525.
Full textTang, X. H. "Oscillation for nonlinear delay difference equations." Tamkang Journal of Mathematics 32, no. 4 (December 31, 2001): 275–80. http://dx.doi.org/10.5556/j.tkjm.32.2001.342.
Full textDing, Xiaohua. "Exponential stability of a kind of stochastic delay difference equations." Discrete Dynamics in Nature and Society 2006 (2006): 1–9. http://dx.doi.org/10.1155/ddns/2006/94656.
Full textDai, Binxiang, and Na Zhang. "Stability and global attractivity for a class of nonlinear delay difference equations." Discrete Dynamics in Nature and Society 2005, no. 3 (2005): 227–34. http://dx.doi.org/10.1155/ddns.2005.227.
Full textWei, Zhijian. "Periodicity in a Class of Systems of Delay Difference Equations." Journal of Applied Mathematics 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/735825.
Full textGyőri, I., G. Ladas, and P. N. Vlahos. "Global attractivity in a delay difference equation." Nonlinear Analysis: Theory, Methods & Applications 17, no. 5 (January 1991): 473–79. http://dx.doi.org/10.1016/0362-546x(91)90142-n.
Full textSun, Taixiang, Hongjian Xi, and Mingde Xie. "Global stability for a delay difference equation." Journal of Applied Mathematics and Computing 29, no. 1-2 (September 3, 2008): 367–72. http://dx.doi.org/10.1007/s12190-008-0137-1.
Full textAshyralyev, A., K. Turk, and D. Agirseven. "On the stable difference scheme for the time delay telegraph equation." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 99, no. 3 (September 30, 2020): 105–19. http://dx.doi.org/10.31489/2020m3/105-119.
Full textKikina, L. K., and I. P. Stavroulakis. "Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations." International Journal of Differential Equations 2010 (2010): 1–14. http://dx.doi.org/10.1155/2010/598068.
Full textAshyralyev, Allaberen, and Deniz Agirseven. "Bounded Solutions of Semilinear Time Delay Hyperbolic Differential and Difference Equations." Mathematics 7, no. 12 (December 2, 2019): 1163. http://dx.doi.org/10.3390/math7121163.
Full textBohner, Martin, Srinivasan Geetha, Srinivasan Selvarangam, and Ethiraju Thandapani. "Oscillation of third-order delay difference equations with negative damping term." Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica 72, no. 1 (June 25, 2018): 19. http://dx.doi.org/10.17951/a.2018.72.1.19-28.
Full textJiang, Jianchu. "Oscillation of nonlinear delay difference equations." International Journal of Mathematics and Mathematical Sciences 28, no. 5 (2001): 301–6. http://dx.doi.org/10.1155/s0161171201007323.
Full textSekiguchi, Masaki, Emiko Ishiwata, and Yukihiko Nakata. "Convergence of a Logistic Type Ultradiscrete Model." Discrete Dynamics in Nature and Society 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/7893049.
Full textKiventidis, Thomas. "Positive solutions of integrodifferential and difference equations with unbounded delay." Glasgow Mathematical Journal 35, no. 1 (January 1993): 105–13. http://dx.doi.org/10.1017/s0017089500009629.
Full textEkimov, Alexander V., Aleksei P. Zhabko, and Pavel V. Yakovlev. "The stability of differential-difference equations with proportional time delay. I. Linear controlled system." Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes 16, no. 3 (2020): 316–25. http://dx.doi.org/10.21638/11701/spbu10.2020.308.
Full textTIAN, Chuan-Jun, Sui Sun CHENG, and Sheng-Li XIE. "Frequent Oscillation Criteria for a Delay Difference Equation." Funkcialaj Ekvacioj 46, no. 3 (2003): 421–39. http://dx.doi.org/10.1619/fesi.46.421.
Full textDhar, Probir Kumar, Abhik Mukherjee, and Durjoy Majumder. "Difference Delay Equation-Based Analytical Model of Hematopoiesis." Automatic Control of Physiological State and Function 1 (2012): 1–11. http://dx.doi.org/10.4303/acpsf/235488.
Full textPhilos, Ch G. "Oscillations in a nonautonomous delay logistic difference equation." Proceedings of the Edinburgh Mathematical Society 35, no. 1 (February 1992): 121–31. http://dx.doi.org/10.1017/s0013091500005381.
Full textDriver, R. D., G. Ladas, and P. N. Vlahos. "Asymptotic behavior of a linear delay difference equation." Proceedings of the American Mathematical Society 115, no. 1 (January 1, 1992): 105. http://dx.doi.org/10.1090/s0002-9939-1992-1111217-0.
Full textYan, J., and B. Liu. "Asymptotic behavior of a nonlinear delay difference equation." Applied Mathematics Letters 8, no. 6 (November 1995): 1–5. http://dx.doi.org/10.1016/0893-9659(95)00075-2.
Full textZhou, Yinggao. "Global attractivity in a delay logistic difference equation." Applied Mathematics-A Journal of Chinese Universities 18, no. 1 (March 2003): 53–58. http://dx.doi.org/10.1007/s11766-003-0083-5.
Full textKhatibzadeh, Hadi. "An oscillation criterion for a delay difference equation." Computers & Mathematics with Applications 57, no. 1 (January 2009): 37–41. http://dx.doi.org/10.1016/j.camwa.2008.07.041.
Full textZhu, Wei, Daoyi Xu, and Zhichun Yang. "Global exponential stability of impulsive delay difference equation." Applied Mathematics and Computation 181, no. 1 (October 2006): 65–72. http://dx.doi.org/10.1016/j.amc.2006.01.015.
Full textLiu, Zeqing, Liangshi Zhao, Jeong Sheok Ume, and Shin Min Kang. "Solvability of a Second Order Nonlinear Neutral Delay Difference Equation." Abstract and Applied Analysis 2011 (2011): 1–24. http://dx.doi.org/10.1155/2011/328914.
Full textFalkena, Swinda K. J., Courtney Quinn, Jan Sieber, and Henk A. Dijkstra. "A delay equation model for the Atlantic Multidecadal Oscillation." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2246 (February 2021): 20200659. http://dx.doi.org/10.1098/rspa.2020.0659.
Full textMoremedi, G. M., and I. P. Stavroulakis. "Oscillation Conditions for Difference Equations with a Monotone or Nonmonotone Argument." Discrete Dynamics in Nature and Society 2018 (June 21, 2018): 1–13. http://dx.doi.org/10.1155/2018/9416319.
Full textZhang, B. G., and Pengxiang Yan. "Classification of solutions of delay difference equations." International Journal of Mathematics and Mathematical Sciences 17, no. 3 (1994): 619–23. http://dx.doi.org/10.1155/s016117129400089x.
Full textWiener, Joseph, and Lokenath Debnath. "A parabolic differential equation with unbounded piecewise constant delay." International Journal of Mathematics and Mathematical Sciences 15, no. 2 (1992): 339–46. http://dx.doi.org/10.1155/s0161171292000425.
Full textOuncharoen, Rujira, Saowaluck Chasreechai, and Thanin Sitthiwirattham. "On Nonlinear Fractional Difference Equation with Delay and Impulses." Symmetry 12, no. 6 (June 8, 2020): 980. http://dx.doi.org/10.3390/sym12060980.
Full textStević, Stevo, Bratislav Iričanin, Witold Kosmala, and Zdeněk Šmarda. "Note on the bilinear difference equation with a delay." Mathematical Methods in the Applied Sciences 41, no. 18 (October 22, 2018): 9349–60. http://dx.doi.org/10.1002/mma.5293.
Full textKipnis, M. M., and V. V. Malygina. "The Stability Cone for a Matrix Delay Difference Equation." International Journal of Mathematics and Mathematical Sciences 2011 (2011): 1–15. http://dx.doi.org/10.1155/2011/860326.
Full textZhang, Guang, and Sui Sun Cheng. "Oscillation criteria for a neutral difference equation with delay." Applied Mathematics Letters 8, no. 3 (May 1995): 13–17. http://dx.doi.org/10.1016/0893-9659(95)00022-i.
Full textLi, Xianyi, and Deming Zhu. "Global asymptotic stability for a nonlinear delay difference equation." Applied Mathematics-A Journal of Chinese Universities 17, no. 2 (June 2002): 183–88. http://dx.doi.org/10.1007/s11766-002-0043-5.
Full textWu, Kaining, Xiaohua Ding, and Liming Wang. "Stability and Stabilization of Impulsive Stochastic Delay Difference Equations." Discrete Dynamics in Nature and Society 2010 (2010): 1–15. http://dx.doi.org/10.1155/2010/592036.
Full textLiu, Zeqing, Wei Sun, Jeong Sheok Ume, and Shin Min Kang. "Positive Solutions of a Second-Order Nonlinear Neutral Delay Difference Equation." Abstract and Applied Analysis 2012 (2012): 1–30. http://dx.doi.org/10.1155/2012/172939.
Full textIbrahim, Tarek F., Abdul Qadeer Khan, and Abdelhameed Ibrahim. "Qualitative Behavior of a Nonlinear Generalized Recursive Sequence with Delay." Mathematical Problems in Engineering 2021 (August 5, 2021): 1–8. http://dx.doi.org/10.1155/2021/6162320.
Full textCermák, Jan, Jiří Jánský, and Petr Tomásek. "Two types of stability conditions for linear delay difference equations." Applicable Analysis and Discrete Mathematics 9, no. 1 (2015): 120–38. http://dx.doi.org/10.2298/aadm141009016c.
Full textGlagolev, Mikhail V., Aleksandr F. Sabrekov, and Vladimir M. Goncharov. "Delay differential equations as a tool for mathematical modelling of population dynamic." Environmental Dynamics and Global Climate Change 9, no. 2 (November 27, 2018): 40–63. http://dx.doi.org/10.17816/edgcc10483.
Full textTyler, Albert V., Linda L. Sebring, Margaret C. Murphy, and Lea F. Murphy. "A Sensitivity Analysis of Deriso's Delay-Difference Equation Using Simulation." Canadian Journal of Fisheries and Aquatic Sciences 42, no. 4 (April 1, 1985): 836–41. http://dx.doi.org/10.1139/f85-107.
Full textNiri, Khadija, and Ioannis P. Stavroulakis. "On the oscillation of the solutions to delay and difference equations." Tatra Mountains Mathematical Publications 43, no. 1 (December 1, 2009): 173–87. http://dx.doi.org/10.2478/v10127-009-0036-3.
Full textSumathy, M., P. Venkata Mohan Reddy, and M. Maria Susai Manuel. "Qualitative Property of Third-Order Nonlinear Neutral Distributed-Delay Generalized Difference Equations." Mathematical Problems in Engineering 2021 (August 23, 2021): 1–12. http://dx.doi.org/10.1155/2021/2875613.
Full textYi, Taishan, and Xingfu Zou. "Map dynamics versus dynamics of associated delay reaction–diffusion equations with a Neumann condition." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2122 (April 29, 2010): 2955–73. http://dx.doi.org/10.1098/rspa.2009.0650.
Full textZhou, Ying-gao. "Existence of positive solutions in a delay logistic difference equation." Journal of Central South University of Technology 9, no. 2 (June 2002): 142–44. http://dx.doi.org/10.1007/s11771-002-0060-9.
Full textLiu, Min, and Zhenyu Guo. "Solvability of a Higher-Order Nonlinear Neutral Delay Difference Equation." Advances in Difference Equations 2010 (2010): 1–14. http://dx.doi.org/10.1155/2010/767620.
Full textJekl, Jan. "Linear even order homogenous difference equation with delay in coefficient." Electronic Journal of Qualitative Theory of Differential Equations, no. 45 (2020): 1–19. http://dx.doi.org/10.14232/ejqtde.2020.1.45.
Full textYu, J. S. "Asymptotic stability for a linear difference equation with variable delay." Computers & Mathematics with Applications 36, no. 10-12 (November 1998): 203–10. http://dx.doi.org/10.1016/s0898-1221(98)80021-7.
Full textZhou, Zhan, and Qinqin Zhang. "Global attractivity of a nonautonomous logistic difference equation with delay." Computers & Mathematics with Applications 38, no. 7-8 (October 1999): 57–64. http://dx.doi.org/10.1016/s0898-1221(99)00238-2.
Full textMatsunaga, H., T. Hara, and S. Sakata. "Global attractivity for a nonlinear difference equation with variable delay." Computers & Mathematics with Applications 41, no. 5-6 (March 2001): 543–51. http://dx.doi.org/10.1016/s0898-1221(00)00297-2.
Full text