Academic literature on the topic 'Delay differential equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Delay differential equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Delay differential equation"
Kulenović, M. R. S. "Oscillation of the Euler differential equation with delay." Czechoslovak Mathematical Journal 45, no. 1 (1995): 1–6. http://dx.doi.org/10.21136/cmj.1995.128506.
Full textDas, P. "Oscillation of odd order neutral delay differential equation." Czechoslovak Mathematical Journal 45, no. 2 (1995): 241–51. http://dx.doi.org/10.21136/cmj.1995.128520.
Full textNaoum, Riyadh, Abbas Al-Bayati, and Ann Al-Sawoor. "OSFESOR Code – The Delay Differential Equation Tool “Improving Delay Differential Equations Solver”." AL-Rafidain Journal of Computer Sciences and Mathematics 1, no. 2 (December 1, 2004): 199–217. http://dx.doi.org/10.33899/csmj.2004.164119.
Full textCassidy, Tyler. "Distributed Delay Differential Equation Representations of Cyclic Differential Equations." SIAM Journal on Applied Mathematics 81, no. 4 (January 2021): 1742–66. http://dx.doi.org/10.1137/20m1351606.
Full textBusenberg, Stavros, and L. Thomas hill. "Construction of differential equation approximations to delay differential equations." Applicable Analysis 31, no. 1-2 (January 1988): 35–56. http://dx.doi.org/10.1080/00036818808839814.
Full textChambers, LL G. "The delay differential equation." Mathematika 33, no. 1 (June 1986): 80–86. http://dx.doi.org/10.1112/s0025579300013899.
Full textSvoboda, Zdeněk. "Asymptotic properties of one differential equation with unbounded delay." Mathematica Bohemica 137, no. 2 (2012): 239–48. http://dx.doi.org/10.21136/mb.2012.142869.
Full textHino, Yoshiyuki, and Taro Yoshizawa. "Total stability property in limiting equations for a functional-differential equation with infinite delay." Časopis pro pěstování matematiky 111, no. 1 (1986): 62–69. http://dx.doi.org/10.21136/cpm.1986.118265.
Full textTunç, Cemil, and Osman Tunç. "On the Fundamental Analyses of Solutions to Nonlinear Integro-Differential Equations of the Second Order." Mathematics 10, no. 22 (November 13, 2022): 4235. http://dx.doi.org/10.3390/math10224235.
Full textHu, Haijun, Li Liu, and Jie Mao. "Multiple Nonlinear Oscillations in a𝔻3×𝔻3-Symmetrical Coupled System of Identical Cells with Delays." Abstract and Applied Analysis 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/417678.
Full textDissertations / Theses on the topic "Delay differential equation"
Gallage, Roshini Samanthi. "Approximation Of Continuously Distributed Delay Differential Equations." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2196.
Full textFontana, Gaia. "Traffic waves and delay differential equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21211/.
Full textZhou, Ziqian. "Statistical inference of distributed delay differential equations." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2173.
Full textWang, Yong Tian. "Stochastic differential delay equation with jumps and application to finance." Thesis, Swansea University, 2007. https://cronfa.swan.ac.uk/Record/cronfa43121.
Full textOlien, Leonard. "Analysis of a delay differential equation model of a neural network." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23927.
Full textDvořáková, Stanislava. "The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-233952.
Full textNewbury, Golnar. "A Numerical Study of a Delay Differential Equation Model for Breast Cancer." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/34420.
Full textMaster of Science
Dražková, Jana. "Stability of Neutral Delay Differential Equations and Their Discretizations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-234204.
Full textKhavanin, Mohammad. "The Method of Mixed Monotony and First Order Delay Differential Equations." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96643.
Full textEn este artículo se prueba una generalización del método de monotonía mixta, para construir sucesiones monótonas que convergen a la solución única de una ecuación diferencial de retraso con valor inicial.
Magpantay, Felicia Maria. "On the stability and numerical stability of a model state dependent delay differential equation." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106523.
Full textDans cette thèse, l'équation différentielle à retard (DDE) modèle d'état dépendant suivante est considérée,epsilon.u'(t) = mu.u(t) + sigma.u(t-a-c.u(t)).Pour epsilon, a et c fixés, la région de stabilité analytique de cette équation est connue et est la même pour le retard constant (c=0) ainsi que pour l'état de retard dépendant (c non nulle). Différentes approches sont utilisées pour prouver directement la stabilité dans certaines parties de cette région analytique pour la DDE d'état dépendant: d'abord en utilisant un argument de Gronwall, puis en utilisant une méthode de Lyapunov-Razumikhin qui est une généralisation du travail de Barnea [6] qui considère le cas mu = c = 0. Les régions de paramètres dans lesquelles la stabilité est prouvée par ces méthodes contiennent la partie entière de retard indépendant de la région de stabilité analytique et certaines parties de la portion de retard dépendant. Ces méthodes sont ensuite étendues pour montrer la stabilité de la méthode d'Euler arrière avec interpolation linéaire appliquée à la DDE modèle. En utilisant la méthode de Lyapunov-Razumikhin, la stabilité est prouvée dans des regions de paramètres plus grandes qui dépendent du pas de discrétisation, mais qui contiennent toujours la région trouvée pour la DDE. Des expressions analytiques pour les régions dans lesquelles les méthodes Theta générales sont stables ont également été tirées et évaluées numériquement. Dans le dernier chapitre d'un nouveau schéma pour intégration numérique des DDE scalaires avec des multiples retards d'état dépendant est présenté. Ce schéma est basé sur des méthodes de Runge-Kutta singulièrement et diagonalement implicites (SDIRK) afin de résoudre des problèmes raides tels que l'équation ci-dessus avec des petites valeurs de epsilon. En raison de la nature des méthodes SDIRK, s'il n'y a pas de chevauchement, alors à chaque iteration un ensemble d'équations scalaires sont résolues, une par une, en utilisant un algorithme de bissection de Newon. Des nouvelles extensions continues qui sont polynomiales par morceaux sont choisies pour accompagner le schéma SDIRK afin de ne pas détruire la structure SDIRK dans les cas de chevauchement et pour éviter le problème des piques quand il y a un changement brusque de la solution numérique.
Books on the topic "Delay differential equation"
1947-, Arino Ovide, Hbid M. L, and Ait Dads E, eds. Delay differential equations and applications. Dordrecht: Springer, 2006.
Find full textJoseph, Wiener, Hale J. K, and International Conference on Theory and Applications of Differential Equations (1991 : Edinburg, Texas), eds. Ordinary and delay differential equations. Harlow: Longman Scientific & Technical, 1992.
Find full textArino, O., M. L. Hbid, and E. Ait Dads, eds. Delay Differential Equations and Applications. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-3647-7.
Full textJoseph, Wiener, Hale Jack K, and International Conference on Theory and Applications of Differential Equations (1991 : University of Texas Pan-American), eds. Ordinary and delay differential equations. Essex, England: Longman Scientific & Technical, 1992.
Find full textS, Piazzera, ed. Semigroups for delay equations. Wellesley, Mass: A.K. Peters, 2005.
Find full textHino, Yoshiyuki. Functional differential equations with infinite delay. Berlin: Springer-Verlag, 1991.
Find full textMarino, Zennaro, ed. Numerical methods for delay differential equations. Oxford: Clarendon Press, 2003.
Find full textGil’, Michael I. Stability of Vector Differential Delay Equations. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0577-3.
Full textBook chapters on the topic "Delay differential equation"
Zhao, Siming, and Tamás Kalmár-Nagy. "Center Manifold Analysis of the Delayed Lienard Equation." In Delay Differential Equations, 1–17. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85595-0_7.
Full textGopalsamy, K. "The Delay Logistic Equation." In Stability and Oscillations in Delay Differential Equations of Population Dynamics, 1–123. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7920-9_1.
Full textNah, K., and J. Wu. "Normalization of a Periodic Delay in a Delay Differential Equation." In Trends in Biomathematics: Modeling Cells, Flows, Epidemics, and the Environment, 143–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46306-9_10.
Full textKashchenko, Ilia. "Asymptotics of an Equation with Large State-Dependent Delay." In Differential and Difference Equations with Applications, 339–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56323-3_26.
Full textLosson, Jérôme, Michael C. Mackey, Richard Taylor, and Marta Tyran-Kamińska. "Approximate “Liouville-Like” Equation and Invariant Densities for Delay Differential Equations." In Fields Institute Monographs, 115–30. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1072-5_8.
Full textLainscsek, Claudia, and Terrence J. Sejnowski. "Delay Differential Equation Models of Normal and Diseased Electrocardiograms." In Understanding Complex Systems, 67–76. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02925-2_6.
Full textSah, Si Mohamed, and Richard H. Rand. "Three Ways of Treating a Linear Delay Differential Equation." In Springer Proceedings in Physics, 251–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63937-6_14.
Full textBenaissa, Abbes, and Salim A. Messaoudi. "Global Existence and Energy Decay of Solutions for a Nondissipative Wave Equation with a Time-Varying Delay Term." In Progress in Partial Differential Equations, 1–26. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00125-8_1.
Full textArora, Geeta, and Mandeep Kaur Vaid. "Numerical Simulation of Singularly Perturbed Differential Equation with Large Delay Using Exponential B-Spline Collocation Method." In Differential Equations in Engineering, 77–94. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003105145-4.
Full textMilota, J. "Stability for a Linear Functional Differential Equation with Infinite Delay." In Lecture Notes in Economics and Mathematical Systems, 50–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-00748-8_5.
Full textConference papers on the topic "Delay differential equation"
Insperger, Ta´mas, Ga´bor Ste´pa´n, Ferenc Hartung, and Janos Turi. "State Dependent Regenerative Delay in Milling Processes." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85282.
Full textWallace, Max, Jan Sieber, Simon Neild, David Wagg, and Bernd Krauskopf. "Delay Differential Equation Models for Real-Time Dynamic Substructuring." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85010.
Full textČermák, Jan A. N. "The Schröder equation and asymptotic properties of linear delay differential equations." In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.6.
Full textSan-Um, Wimol, and Banlue Srisuchinwong. "A simple multi-scroll chaotic delay differential equation." In 2011 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2011). IEEE, 2011. http://dx.doi.org/10.1109/ecticon.2011.5947790.
Full textManimaran, R., and Er M. Aravind. "Application of delay differential equation in queueing theory." In 4TH INTERNATIONAL CONFERENCE ON THE SCIENCE AND ENGINEERING OF MATERIALS: ICoSEM2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0028540.
Full textVerdugo, Anael, and Richard H. Rand. "Differential-Delay Equation Model of Gene Expression: A Continuum Approach." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66321.
Full textErneux, Thomas. "Multiple Time Scale Analysis of Delay Differential Equations Modeling Mechanical Systems." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85028.
Full textKalma´r-Nagy, Tama´s. "A New Look at the Stability Analysis of Delay-Differential Equations." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84740.
Full textSEIFERT, GEORGE. "A HYBRID APPROXIMATION TO CERTAIN DELAY DIFFERENTIAL EQUATION WITH A CONSTANT DELAY." In Proceedings of the 9th International Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701572_0003.
Full textXu, Mingdong, Fan Wu, and Henry Leung. "Stochastic delay differential equation and its application on communications." In 2010 IEEE International Symposium on Circuits and Systems - ISCAS 2010. IEEE, 2010. http://dx.doi.org/10.1109/iscas.2010.5537244.
Full textReports on the topic "Delay differential equation"
Gilsinn, David E. Approximating periodic solutions of autonomous delay differential equations. Gaithersburg, MD: National Institute of Standards and Technology, 2006. http://dx.doi.org/10.6028/nist.ir.7375.
Full text