Academic literature on the topic 'Delay differential equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Delay differential equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Delay differential equation"

1

Kulenović, M. R. S. "Oscillation of the Euler differential equation with delay." Czechoslovak Mathematical Journal 45, no. 1 (1995): 1–6. http://dx.doi.org/10.21136/cmj.1995.128506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Das, P. "Oscillation of odd order neutral delay differential equation." Czechoslovak Mathematical Journal 45, no. 2 (1995): 241–51. http://dx.doi.org/10.21136/cmj.1995.128520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Naoum, Riyadh, Abbas Al-Bayati, and Ann Al-Sawoor. "OSFESOR Code – The Delay Differential Equation Tool “Improving Delay Differential Equations Solver”." AL-Rafidain Journal of Computer Sciences and Mathematics 1, no. 2 (December 1, 2004): 199–217. http://dx.doi.org/10.33899/csmj.2004.164119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cassidy, Tyler. "Distributed Delay Differential Equation Representations of Cyclic Differential Equations." SIAM Journal on Applied Mathematics 81, no. 4 (January 2021): 1742–66. http://dx.doi.org/10.1137/20m1351606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Busenberg, Stavros, and L. Thomas hill. "Construction of differential equation approximations to delay differential equations." Applicable Analysis 31, no. 1-2 (January 1988): 35–56. http://dx.doi.org/10.1080/00036818808839814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chambers, LL G. "The delay differential equation." Mathematika 33, no. 1 (June 1986): 80–86. http://dx.doi.org/10.1112/s0025579300013899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Svoboda, Zdeněk. "Asymptotic properties of one differential equation with unbounded delay." Mathematica Bohemica 137, no. 2 (2012): 239–48. http://dx.doi.org/10.21136/mb.2012.142869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hino, Yoshiyuki, and Taro Yoshizawa. "Total stability property in limiting equations for a functional-differential equation with infinite delay." Časopis pro pěstování matematiky 111, no. 1 (1986): 62–69. http://dx.doi.org/10.21136/cpm.1986.118265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tunç, Cemil, and Osman Tunç. "On the Fundamental Analyses of Solutions to Nonlinear Integro-Differential Equations of the Second Order." Mathematics 10, no. 22 (November 13, 2022): 4235. http://dx.doi.org/10.3390/math10224235.

Full text
Abstract:
In this article, a scalar nonlinear integro-differential equation of second order and a non-linear system of integro-differential equations with infinite delays are considered. Qualitative properties of solutions called the global asymptotic stability, integrability and boundedness of solutions of the second-order scalar nonlinear integro-differential equation and the nonlinear system of nonlinear integro-differential equations with infinite delays are discussed. In the article, new explicit qualitative conditions are presented for solutions of both the second-order scalar nonlinear integro-differential equations with infinite delay and the nonlinear system of integro-differential equations with infinite delay. The proofs of the main results of the article are based on two new Lyapunov–Krasovski functionals. In particular cases, the results of the article are illustrated with three numerical examples, and connections to known tests are discussed. The main novelty and originality of this article are that the considered integro-differential equation and system of integro-differential equations with infinite delays are new mathematical models, the main six qualitative results given are also new.
APA, Harvard, Vancouver, ISO, and other styles
10

Hu, Haijun, Li Liu, and Jie Mao. "Multiple Nonlinear Oscillations in a𝔻3×𝔻3-Symmetrical Coupled System of Identical Cells with Delays." Abstract and Applied Analysis 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/417678.

Full text
Abstract:
A coupled system of nine identical cells with delays and𝔻3×𝔻3-symmetry is considered. The individual cells are modelled by a scalar delay differential equation which includes linear decay and nonlinear delayed feedback. By analyzing the corresponding characteristic equations, the linear stability of the equilibrium is given. We also investigate the simultaneous occurrence of multiple periodic solutions and spatiotemporal patterns of the bifurcating periodic oscillations by using the equivariant bifurcation theory of delay differential equations combined with representation theory of Lie groups. Numerical simulations are carried out to illustrate our theoretical results.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Delay differential equation"

1

Gallage, Roshini Samanthi. "Approximation Of Continuously Distributed Delay Differential Equations." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2196.

Full text
Abstract:
We establish a theorem on the approximation of the solutions of delay differential equations with continuously distributed delay with solutions of delay differential equations with discrete delays. We present numerical simulations of the trajectories of discrete delay differential equations and the dependence of their behavior for various delay amounts. We further simulate continuously distributed delays by considering discrete approximation of the continuous distribution.
APA, Harvard, Vancouver, ISO, and other styles
2

Fontana, Gaia. "Traffic waves and delay differential equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21211/.

Full text
Abstract:
Questo elaborato si pone l'obiettivo di studiare il problema del traffico, concentrandosi su un modello semplificato in cui i veicoli sono confinati su una circonferenza e la cui velocità è determinata dal modello optimal velocity. Il discorso si sviluppa su tre capitoli: nel primo viene presentato il modello optimal velocity per il flusso del traffico e si procede a uno studio della stabilità lineare attorno al punto di equilibrio stazionario. Nel secondo capitolo lo stesso modello viene studiato nel limite termodinamico per un numero infinito di veicoli. Si ricava una soluzione costituita da un'onda di traffico che si propaga in verso opposto al moto delle auto. Nel terzo e ultimo capitolo il modello viene studiato tramite teoria perturbativa nell'intorno del punto critico, introducendo un potenziale termodinamico e seguendo la teoria di Landau delle transizioni di fase. Vengono infine ricavate le medesime condizioni di stabilità del sistema trovate nel primo capitolo.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Ziqian. "Statistical inference of distributed delay differential equations." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2173.

Full text
Abstract:
In this study, we aim to develop new likelihood based method for estimating parameters of ordinary differential equations (ODEs) / delay differential equations (DDEs) models. Those models are important for modeling dynamical processes that are described in terms of their derivatives and are widely used in many fields of modern science, such as physics, chemistry, biology and social sciences. We use our new approach to study a distributed delay differential equation model, the statistical inference of which has been unexplored, to our knowledge. Estimating a distributed DDE model or ODE model with time varying coefficients results in a large number of parameters. We also apply regularization for efficient estimation of such models. We assess the performance of our new approaches using simulation and applied them to analyzing data from epidemiology and ecology.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Yong Tian. "Stochastic differential delay equation with jumps and application to finance." Thesis, Swansea University, 2007. https://cronfa.swan.ac.uk/Record/cronfa43121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Olien, Leonard. "Analysis of a delay differential equation model of a neural network." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23927.

Full text
Abstract:
In this thesis I examine a delay differential equation model for an artificial neural network with two neurons. Linear stability analysis is used to determine the stability region of the stationary solutions. They can lose stability through either a pitchfork or a supercritical Hopf bifurcation. It is shown that, for appropriate parameter values, an interaction takes place between the pitchfork and Hopf bifurcations. Conditions are found under which the set of initial conditions that converge to a stable stationary solution is open and dense in the function space. Analytic results are illustrated with numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
6

Dvořáková, Stanislava. "The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-233952.

Full text
Abstract:
Disertační práce formuluje asymptotické odhady řešení tzv. sublineárních a superlineárních diferenciálních rovnic se zpožděním. V těchto odhadech vystupuje řešení pomocných funkcionálních rovnic a nerovností. Dále práce pojednává o kvalitativních vlastnostech diferenčních rovnic se zpožděním, které vznikly diskretizací studovaných diferenciálních rovnic. Pozornost je věnována souvislostem asympotického chování řešení rovnic ve spojitém a diskrétním tvaru, a to v obecném i v konkrétních případech. Studována je rovněž stabilita numerické diskretizace vycházející z $\theta$-metody. Práce obsahuje několik příkladů ilustrujících dosažené výsledky.
APA, Harvard, Vancouver, ISO, and other styles
7

Newbury, Golnar. "A Numerical Study of a Delay Differential Equation Model for Breast Cancer." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/34420.

Full text
Abstract:
In this thesis we construct a new model of the immune response to the growth of breast cancer cells and investigate the impact of certain drug therapies on the cancer. We use delay differential equations to model the interaction of breast cancer cells with the immune system. The new model is constructed by combining two previous models. The first model accounts for different cell cycles and includes terms to evaluate drug treatments, but ignores quiescent tumor cells. The second model includes quiescent cells, but ignores the immune response and drug treatments. The new model is obtained by combining and modifying these two models to account for quiescent cells, immune cells and includes drug intervention terms. This new model is used to evaluate the effects of pulsed applications of the drug Paclitaxel for models with and without quiescent cells. We use sensitivity equation methods to analyze the sensitivity of the model with respect to the initial number of immune cytotoxic T-cells. Numerical experiments are conducted to compare the model predictions to observed behavior.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
8

Dražková, Jana. "Stability of Neutral Delay Differential Equations and Their Discretizations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-234204.

Full text
Abstract:
Disertační práce se zabývá asymptotickou stabilitou zpožděných diferenciálních rovnic a jejich diskretizací. V práci jsou uvažovány lineární zpožděné diferenciální rovnice s~konstantním i neohraničeným zpožděním. Jsou odvozeny nutné a postačující podmínky popisující oblast asymptotické stability jak pro exaktní, tak i diskretizovanou lineární neutrální diferenciální rovnici s konstantním zpožděním. Pomocí těchto podmínek jsou porovnány oblasti asymptotické stability odpovídajících exaktních a diskretizovaných rovnic a vyvozeny některé vlastnosti diskrétních oblastí stability vzhledem k měnícímu se kroku použité diskretizace. Dále se zabýváme lineární zpožděnou diferenciální rovnicí s neohraničeným zpožděním. Je uveden popis jejích exaktních a diskrétních oblastí asymptotické stability spolu s asymptotickým odhadem jejich řešení. V závěru uvažujeme lineární diferenciální rovnici s více neohraničenými zpožděními.
APA, Harvard, Vancouver, ISO, and other styles
9

Khavanin, Mohammad. "The Method of Mixed Monotony and First Order Delay Differential Equations." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96643.

Full text
Abstract:
In this paper I extend the method of mixed monotony, to construct monotone sequences that converge to the unique solution of an initial value delay differential equation.
En este artículo se prueba una generalización del método de monotonía mixta, para construir sucesiones monótonas que convergen a la solución única de una ecuación diferencial de retraso con valor inicial.
APA, Harvard, Vancouver, ISO, and other styles
10

Magpantay, Felicia Maria. "On the stability and numerical stability of a model state dependent delay differential equation." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106523.

Full text
Abstract:
In this thesis the following model state dependent delay differential equation is considered,epsilon.u'(t) = mu.u(t) + sigma.u(t-a-c.u(t)).For fixed epsilon, a and c, the analytical stability region of this equation is known and it is the same for both the constant delay (c=0) and state dependent delay (c nonzero) cases. Different approaches are used to directly prove stability in parts of this analytic region for the state dependent DDE: first using a Gronwall argument and then using a Lyapunov-Razumikhin method which is a generalisation of the work of Barnea [6] who considered the mu=c=0 case. The parameter regions in which stability is proven by these methods contain the entire delay independent portion of the analytical stability region and parts of the delay dependent portion. These methods are then extended to show the stability of the backward Euler method with linear interpolation applied to the model DDE. Using the Lyapunov-Razumikhin method, stability is proven in larger parameter regions that depend on the stepsize, but always contain the region found for the DDE. Analytic expressions for regions in which general Theta methods are stable were also derived and evaluated numerically. In the last chapter a new scheme for numerically integrating scalar DDEs with multiple state dependent delays is presented. This scheme is based on singularly diagonally implicit Runge-Kutta (SDIRK) methods in order to solve stiff problems such as the equation above with small epsilon. Due to the nature of SDIRK methods, if there is no overlapping then at each step a set of scalar equations are solved one-by-one using a Newton-bisection algorithm. New continuous extensions which are piecewise polynomial are chosen to accompany the SDIRK scheme so as not to destroy the SDIRK structure in the overlapping cases and to avoid the problem of spiking when there is a sharp change in the numerical solution.
Dans cette thèse, l'équation différentielle à retard (DDE) modèle d'état dépendant suivante est considérée,epsilon.u'(t) = mu.u(t) + sigma.u(t-a-c.u(t)).Pour epsilon, a et c fixés, la région de stabilité analytique de cette équation est connue et est la même pour le retard constant (c=0) ainsi que pour l'état de retard dépendant (c non nulle). Différentes approches sont utilisées pour prouver directement la stabilité dans certaines parties de cette région analytique pour la DDE d'état dépendant: d'abord en utilisant un argument de Gronwall, puis en utilisant une méthode de Lyapunov-Razumikhin qui est une généralisation du travail de Barnea [6] qui considère le cas mu = c = 0. Les régions de paramètres dans lesquelles la stabilité est prouvée par ces méthodes contiennent la partie entière de retard indépendant de la région de stabilité analytique et certaines parties de la portion de retard dépendant. Ces méthodes sont ensuite étendues pour montrer la stabilité de la méthode d'Euler arrière avec interpolation linéaire appliquée à la DDE modèle. En utilisant la méthode de Lyapunov-Razumikhin, la stabilité est prouvée dans des regions de paramètres plus grandes qui dépendent du pas de discrétisation, mais qui contiennent toujours la région trouvée pour la DDE. Des expressions analytiques pour les régions dans lesquelles les méthodes Theta générales sont stables ont également été tirées et évaluées numériquement. Dans le dernier chapitre d'un nouveau schéma pour intégration numérique des DDE scalaires avec des multiples retards d'état dépendant est présenté. Ce schéma est basé sur des méthodes de Runge-Kutta singulièrement et diagonalement implicites (SDIRK) afin de résoudre des problèmes raides tels que l'équation ci-dessus avec des petites valeurs de epsilon. En raison de la nature des méthodes SDIRK, s'il n'y a pas de chevauchement, alors à chaque iteration un ensemble d'équations scalaires sont résolues, une par une, en utilisant un algorithme de bissection de Newon. Des nouvelles extensions continues qui sont polynomiales par morceaux sont choisies pour accompagner le schéma SDIRK afin de ne pas détruire la structure SDIRK dans les cas de chevauchement et pour éviter le problème des piques quand il y a un changement brusque de la solution numérique.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Delay differential equation"

1

Erneux, Thomas. Applied delay differential equations. New York: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Applied delay differential equations. New York: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1947-, Arino Ovide, Hbid M. L, and Ait Dads E, eds. Delay differential equations and applications. Dordrecht: Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Joseph, Wiener, Hale J. K, and International Conference on Theory and Applications of Differential Equations (1991 : Edinburg, Texas), eds. Ordinary and delay differential equations. Harlow: Longman Scientific & Technical, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arino, O., M. L. Hbid, and E. Ait Dads, eds. Delay Differential Equations and Applications. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-3647-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Joseph, Wiener, Hale Jack K, and International Conference on Theory and Applications of Differential Equations (1991 : University of Texas Pan-American), eds. Ordinary and delay differential equations. Essex, England: Longman Scientific & Technical, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

S, Piazzera, ed. Semigroups for delay equations. Wellesley, Mass: A.K. Peters, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hino, Yoshiyuki. Functional differential equations with infinite delay. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Marino, Zennaro, ed. Numerical methods for delay differential equations. Oxford: Clarendon Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gil’, Michael I. Stability of Vector Differential Delay Equations. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0577-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Delay differential equation"

1

Zhao, Siming, and Tamás Kalmár-Nagy. "Center Manifold Analysis of the Delayed Lienard Equation." In Delay Differential Equations, 1–17. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85595-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gopalsamy, K. "The Delay Logistic Equation." In Stability and Oscillations in Delay Differential Equations of Population Dynamics, 1–123. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7920-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nah, K., and J. Wu. "Normalization of a Periodic Delay in a Delay Differential Equation." In Trends in Biomathematics: Modeling Cells, Flows, Epidemics, and the Environment, 143–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46306-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kashchenko, Ilia. "Asymptotics of an Equation with Large State-Dependent Delay." In Differential and Difference Equations with Applications, 339–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56323-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Losson, Jérôme, Michael C. Mackey, Richard Taylor, and Marta Tyran-Kamińska. "Approximate “Liouville-Like” Equation and Invariant Densities for Delay Differential Equations." In Fields Institute Monographs, 115–30. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1072-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lainscsek, Claudia, and Terrence J. Sejnowski. "Delay Differential Equation Models of Normal and Diseased Electrocardiograms." In Understanding Complex Systems, 67–76. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02925-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sah, Si Mohamed, and Richard H. Rand. "Three Ways of Treating a Linear Delay Differential Equation." In Springer Proceedings in Physics, 251–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63937-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Benaissa, Abbes, and Salim A. Messaoudi. "Global Existence and Energy Decay of Solutions for a Nondissipative Wave Equation with a Time-Varying Delay Term." In Progress in Partial Differential Equations, 1–26. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00125-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arora, Geeta, and Mandeep Kaur Vaid. "Numerical Simulation of Singularly Perturbed Differential Equation with Large Delay Using Exponential B-Spline Collocation Method." In Differential Equations in Engineering, 77–94. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003105145-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Milota, J. "Stability for a Linear Functional Differential Equation with Infinite Delay." In Lecture Notes in Economics and Mathematical Systems, 50–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-00748-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Delay differential equation"

1

Insperger, Ta´mas, Ga´bor Ste´pa´n, Ferenc Hartung, and Janos Turi. "State Dependent Regenerative Delay in Milling Processes." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85282.

Full text
Abstract:
Traditional models of regenerative machine tool chatter use constant time delays assuming that the period between two subsequent cuts is a constant determined definitely by the spindle speed. These models result in delay-differential equations with constant time delay. If the vibrations of the tool relative to the workpiece are also included in the surface regeneration model, then the resulted time delay is not constant, but it depends on the actual and a delayed position of the tool. In this case, the governing equation is a delay-differential equation with state dependent time delay. Equations with state dependent delays can not be linearized in the traditional sense, but there exists linear equations that can be associated to them. This way, the local behavior of the system with state dependent delays can be investigated. In this study, a two degree of freedom model is presented for milling process. A thorough modeling of the regeneration effect results in the governing delay-differential equation with state dependent time delay. It is shown through the linearization of the nonlinear equation that an additional term arises in the linearized equation of motion due to the state-dependency of the time delay.
APA, Harvard, Vancouver, ISO, and other styles
2

Wallace, Max, Jan Sieber, Simon Neild, David Wagg, and Bernd Krauskopf. "Delay Differential Equation Models for Real-Time Dynamic Substructuring." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85010.

Full text
Abstract:
Real-time dynamic substructuring is a testing technique that models an entire system through the combination of an experimental test piece, representing part of the system, with a numerical model of the rest of the system. Delays can have a significant effect on the technique, as signals are passed between the two parts of the system in real-time. The focus of this paper is the influence of the delay on the dynamics of the substructured system. This is addressed using a linear example which may be described by a delay differential equation (DDE) model. This type of analysis allows critical delay values for system stability to be computed, which in turn can be used to help design the substructuring test system. Two methods are presented for the example considered. The first makes use of an analytical approach and the second of a numerical software tool, DDE-BIFTOOL. Normally, in substructuring tests, the actuator’s response time exceeds the critical delay time and the substructured system is unstable. It is demonstrated that the system can be stabilized using an adaptive delay compensation technique based on forward polynomial prediction. Finally we outline how these techniques may be applied to an industrial example of modelling a nonlinear spring.
APA, Harvard, Vancouver, ISO, and other styles
3

Čermák, Jan A. N. "The Schröder equation and asymptotic properties of linear delay differential equations." In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

San-Um, Wimol, and Banlue Srisuchinwong. "A simple multi-scroll chaotic delay differential equation." In 2011 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2011). IEEE, 2011. http://dx.doi.org/10.1109/ecticon.2011.5947790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Manimaran, R., and Er M. Aravind. "Application of delay differential equation in queueing theory." In 4TH INTERNATIONAL CONFERENCE ON THE SCIENCE AND ENGINEERING OF MATERIALS: ICoSEM2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0028540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Verdugo, Anael, and Richard H. Rand. "Differential-Delay Equation Model of Gene Expression: A Continuum Approach." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66321.

Full text
Abstract:
This paper presents an analytical study of the stability of the steady state solutions of a gene regulatory network with time delay. The system is modeled as a continuous network and takes the form of a nonlinear delay differential-integral equation coupled to an ordinary differential equation. Two examples are given in which the critical delay causing instability is computed.
APA, Harvard, Vancouver, ISO, and other styles
7

Erneux, Thomas. "Multiple Time Scale Analysis of Delay Differential Equations Modeling Mechanical Systems." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85028.

Full text
Abstract:
The response of two nonlinear oscillators subject to a large delay is investigated by using a two-time multiple scale analysis. The first problem has been proposed by Johnson and Moon [13] as a model for machine-tool vibrations. The second problem has been formulated by Minorsky [22] in his study of a delayed control. For both problems, we derive slow time amplitude equations and show analytically that the delay is responsible for a secondary bifurcation to quasiperiodic oscillations. For Minorsky’s equation, higher order bifurcations are further analyzed for very large delays.
APA, Harvard, Vancouver, ISO, and other styles
8

Kalma´r-Nagy, Tama´s. "A New Look at the Stability Analysis of Delay-Differential Equations." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84740.

Full text
Abstract:
It is shown that the method of steps for linear delay-differential equations combined with the Laplace-transform can be used to determine the stability of the equation. The result of the method is an infinite dimensional difference equation whose stability corresponds to that of the transcendental characteristic equation. Truncations of this difference equation are used to construct numerical stability charts. The method is demonstrated on a first and second order delay equation. Correspondence between the transcendental characteristic equation and the difference equation is proved for the first order case.
APA, Harvard, Vancouver, ISO, and other styles
9

SEIFERT, GEORGE. "A HYBRID APPROXIMATION TO CERTAIN DELAY DIFFERENTIAL EQUATION WITH A CONSTANT DELAY." In Proceedings of the 9th International Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701572_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Mingdong, Fan Wu, and Henry Leung. "Stochastic delay differential equation and its application on communications." In 2010 IEEE International Symposium on Circuits and Systems - ISCAS 2010. IEEE, 2010. http://dx.doi.org/10.1109/iscas.2010.5537244.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Delay differential equation"

1

Gilsinn, David E. Approximating periodic solutions of autonomous delay differential equations. Gaithersburg, MD: National Institute of Standards and Technology, 2006. http://dx.doi.org/10.6028/nist.ir.7375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography