Dissertations / Theses on the topic 'Delay differential equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Delay differential equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gallage, Roshini Samanthi. "Approximation Of Continuously Distributed Delay Differential Equations." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2196.
Full textFontana, Gaia. "Traffic waves and delay differential equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21211/.
Full textZhou, Ziqian. "Statistical inference of distributed delay differential equations." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2173.
Full textWang, Yong Tian. "Stochastic differential delay equation with jumps and application to finance." Thesis, Swansea University, 2007. https://cronfa.swan.ac.uk/Record/cronfa43121.
Full textOlien, Leonard. "Analysis of a delay differential equation model of a neural network." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23927.
Full textDvořáková, Stanislava. "The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-233952.
Full textNewbury, Golnar. "A Numerical Study of a Delay Differential Equation Model for Breast Cancer." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/34420.
Full textMaster of Science
Dražková, Jana. "Stability of Neutral Delay Differential Equations and Their Discretizations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-234204.
Full textKhavanin, Mohammad. "The Method of Mixed Monotony and First Order Delay Differential Equations." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96643.
Full textEn este artículo se prueba una generalización del método de monotonía mixta, para construir sucesiones monótonas que convergen a la solución única de una ecuación diferencial de retraso con valor inicial.
Magpantay, Felicia Maria. "On the stability and numerical stability of a model state dependent delay differential equation." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106523.
Full textDans cette thèse, l'équation différentielle à retard (DDE) modèle d'état dépendant suivante est considérée,epsilon.u'(t) = mu.u(t) + sigma.u(t-a-c.u(t)).Pour epsilon, a et c fixés, la région de stabilité analytique de cette équation est connue et est la même pour le retard constant (c=0) ainsi que pour l'état de retard dépendant (c non nulle). Différentes approches sont utilisées pour prouver directement la stabilité dans certaines parties de cette région analytique pour la DDE d'état dépendant: d'abord en utilisant un argument de Gronwall, puis en utilisant une méthode de Lyapunov-Razumikhin qui est une généralisation du travail de Barnea [6] qui considère le cas mu = c = 0. Les régions de paramètres dans lesquelles la stabilité est prouvée par ces méthodes contiennent la partie entière de retard indépendant de la région de stabilité analytique et certaines parties de la portion de retard dépendant. Ces méthodes sont ensuite étendues pour montrer la stabilité de la méthode d'Euler arrière avec interpolation linéaire appliquée à la DDE modèle. En utilisant la méthode de Lyapunov-Razumikhin, la stabilité est prouvée dans des regions de paramètres plus grandes qui dépendent du pas de discrétisation, mais qui contiennent toujours la région trouvée pour la DDE. Des expressions analytiques pour les régions dans lesquelles les méthodes Theta générales sont stables ont également été tirées et évaluées numériquement. Dans le dernier chapitre d'un nouveau schéma pour intégration numérique des DDE scalaires avec des multiples retards d'état dépendant est présenté. Ce schéma est basé sur des méthodes de Runge-Kutta singulièrement et diagonalement implicites (SDIRK) afin de résoudre des problèmes raides tels que l'équation ci-dessus avec des petites valeurs de epsilon. En raison de la nature des méthodes SDIRK, s'il n'y a pas de chevauchement, alors à chaque iteration un ensemble d'équations scalaires sont résolues, une par une, en utilisant un algorithme de bissection de Newon. Des nouvelles extensions continues qui sont polynomiales par morceaux sont choisies pour accompagner le schéma SDIRK afin de ne pas détruire la structure SDIRK dans les cas de chevauchement et pour éviter le problème des piques quand il y a un changement brusque de la solution numérique.
Jánský, Jiří. "Delay Difference Equations and Their Applications." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233892.
Full textZhang, Zhengyang. "A class of state-dependent delay differential equations and applications to forest growth." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0062/document.
Full textThis thesis is devoted to the studies of a class of state-dependent delay differential equations. This class of equations is derived from a size-structured model.The motivation comes from the parameter fittings of this system to a forest simulator called SORTIE. Cases of both single species forest and two-species forest are considered in Chapter 2. The numerical simulations of the system correspond relatively very well to the forest data generated by SORTIE, which shows that this system is able to be used to describe the population dynamics of forests. Moreover, an extended model considering the spatial positions of trees is also proposed in Chapter 2 for the two-species forest case. From the numerical simulations of this spatial model one can see the diffusion of forests in space. Chapter 3 and 4 focus on the mathematical analysis of the state-dependent delay differential equations. The properties of semiflow generated by this system are studied in Chapter 3, where we find that this semiflow is not time-continuous. The boundedness and dissipativity of the semiflow for both single species model and multi-species model are studied in Chapter 4. Furthermore, in order to study the population dynamics after the introduction of parasites into a forest, a predator-prey system consisting of the above state-dependent delay differential equation (describing the forest) and an ordinary differential equation (describing the parasites) is constructed in Chapter 5 (only the single species forest is considered here). Numerical simulations in several scenarios and cases are operated to display the complex behaviours of solutions appearing in this system with the predator-prey relation and the state-dependent delay
Kumar, Chaman. "Explicit numerical schemes of SDEs driven by Lévy noise with super-linear coeffcients and their application to delay equations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15946.
Full textBéreš, Lukáš. "Matematické modelování pomocí diferenciálních rovnic." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318707.
Full textObrátil, Štěpán. "Vyšetřování stability numerických metod pro diferenciální rovnice se zpožděným argumentem." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400513.
Full textBerntson, B. K. "Integrable delay-differential equations." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1566618/.
Full textBou, Saba David. "Analyse et commande modulaires de réseaux de lois de bilan en dimension infinie." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI084/document.
Full textNetworks of balance laws are defined by the interconnection, via boundary conditions, of elementary modules individually characterized by the conservation of physical quantities. Industrial applications of such networks can be found in electric (HVDC networks), hydraulic and pneumatic (gas, water and oil distribution) transmission lines. The thesis is focused on modular analysis and boundary control of an elementary line represented by a system of balance laws in infinite dimension, where the dynamics of the line is taken into consideration by means of first order two by two coupled linear hyperbolic partial differential equations. This representation allows to rigorously model the transport phenomena and finite propagation speed, aspects usually neglected in transient regime. The developments of this work are analysis tools that test the stability, as well as boundary control for the stabilization around an equilibrium point. In the analysis section, we consider a system of balance laws with static boundary conditions and anti-diagonal in-domain couplings. We propose sufficient stability conditions, explicit in terms of the system coefficients, and numerical by constructing an algorithm. The method is based on reformulating the analysis problem as an analysis of a delay system in the frequency domain, obtained by applying a backstepping transform to the original system. In the stabilization work, couplings with dynamic boundary conditions, described by ordinary differential equations (ODE), at both boundaries of the PDEs are considered. We develop a backstepping (bounded and invertible) transform and a control law that at the same time, stabilizes the PDEs inside the domain and the ODE dynamics, and eliminates the couplings that are a potential source of instability. The effectiveness of the control law is illustrated by a numerical simulation
Allen, Brenda. "Non-smooth differential delay equations." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390472.
Full textNorton, Trevor Michael. "Galerkin Approximations of General Delay Differential Equations with Multiple Discrete or Distributed Delays." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83825.
Full textMaster of Science
Piddubna, Ganna Konstantinivna. "Lineární maticové diferenciální rovnice se zpožděním." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-233626.
Full textTaylor, S. Richard. "Probabilistic Properties of Delay Differential Equations." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1183.
Full textRon, Eyal [Verfasser]. "Hysteresis-Delay Differential Equations / Eyal Ron." Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1121588026/34.
Full textHines, Gwendolen. "Dependence of the attractor on the delay for delay-differential equations." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/28954.
Full textZhang, Wenkui. "Numerical analysis of delay differential and integro-differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0011/NQ42489.pdf.
Full textBahar, Arifah. "Applications of stochastic differential equations and stochastic delay differential equations in population dynamics." Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415294.
Full textRossi, Marcelo. "Modelo matemático da resposta imune à infecção pelo vírus HIV-1." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12012009-150807/.
Full textRecent advances in knowledge about the viral infection and AIDS seropositive patients has led to a better life quality. The determination of what people or cellular immune mechanism which is more relevant for the epidemic installation leads to new levels of possibilities to new antiretroviral drugs discovers and more efficient treatment. Mathematical modeling use on epidemiology, correlates individuals (this case cells) and illness (the virus) through differential equations, where want to observe the conditions necessary to the installation or not the disease. In this study, it was observed through simulations, that the most important component, after lymphocyte CD4 T cells, macrophages is the cell (as a reservoir of viral proliferation) that the infection occurs repeatedly over time (because of the antigen presenting process) and CTL lymphocytes are inefficient in eradicating the infection by HIV-1, which may be a simple phenomenon of co-adaptation.
Dokyi, Martha. "Diferenciální rovnice se zpožděním v dynamických systémech." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445464.
Full textVittadello, Sean T. "Mathematical models for cell migration and proliferation informed by visualisation of the cell cycle." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/204074/1/Sean_Vittadello_Thesis.pdf.
Full textReiss, Markus. "Nonparametric estimation for stochastic delay differential equations." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964782480.
Full textBallinger, George Henri. "Qualitative theory of impulsive delay differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ51178.pdf.
Full textWille, David Richard. "The numerical solution of delay-differential equations." Thesis, University of Manchester, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291519.
Full textLumb, Patricia M. "Delay differential equations : detection of small solutions." Thesis, University of Chester, 2004. http://hdl.handle.net/10034/68595.
Full textEzeofor, Victory S. "Analysis of differential-delay equations for biology." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39940/.
Full textReiß, Markus. "Nonparametric estimation for stochastic delay differential equations." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14741.
Full textLet (X(t), t>= -r) be a stationary stochastic process solving the affine stochastic delay differential equation dX(t)=L(X(t+s))dt+sigma dW(t), t>= 0, with sigma>0, (W(t), t>=0) a standard one-dimensional Brownian motion and with a continuous linear functional L on the space of continuous functions on [-r,0], represented by a finite signed measure a. Assume that a trajectory (X(t), -r 0. This rate is worse than those obtained in many classical cases. However, we prove a lower bound, stating that no estimator can attain a better rate of convergence in a minimax sense. For discrete time observations of maximal distance Delta, the Galerkin estimator still attains the above asymptotic rate if Delta is roughly of order T^(-1/2). In contrast, we prove that for observation intervals Delta, with Delta independent of T, the rate must deteriorate significantly by providing the rate estimate T^(-s/(2s+6)) from below. Furthermore, we construct an adaptive estimator by applying wavelet thresholding techniques to the corresponding ill-posed inverse problem. This nonlinear estimator attains the above minimax rate even for more general classes of Besov spaces B^s_(p,infinity) with p>max(6/(2s+3),1). The restriction p >= 6/(2s+3) is shown to hold for any estimator, hence to be inherently associated with the estimation problem. Finally, a hypothesis test with a nonparametric alternative is constructed that could for instance serve to decide whether a trajectory has been generated by a stationary process with or without time delay. The test works for an L^2-separation rate between hypothesis and alternative of order T^(-s/(2s+2.5)). This rate is again shown to be optimal among all conceivable tests. For the proofs, the parameter dependence of the stationary solutions has to be studied in detail and the mapping properties of the associated covariance operators have to be determined exactly. Other results of general interest concern the mixing properties of the stationary solution, a case study for exponential weight functions and the approximation of the stationary process by discrete time autoregressive processes.
Nishiguchi, Junya. "Retarded functional differential equations with general delay structure." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225381.
Full textZhang, Yandong Sinha S. C. "Some techniques in the control of dynamic systems with periodically varying coefficients." Auburn, Ala., 2007. http://hdl.handle.net/10415/1346.
Full textOgrowsky, Arne [Verfasser]. "Random Differential Equations with Random Delay / Arne Ogrowsky." München : Verlag Dr. Hut, 2011. http://d-nb.info/1017353352/34.
Full textKaroui, Abderrazek. "On the numerical solution of delay differential equations." Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7673.
Full textGuillouzic, Steve. "Fokker-Planck approach to stochastic delay differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58279.pdf.
Full textLosson, Jérôme. "Multistability and probabilistic properties of differential delay equations." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60514.
Full textTannerah, Lamees Hassan. "Modelling a dairy herd using delay differential equations." Thesis, University of Liverpool, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427024.
Full textRibeiro, Maria de Fátima Fabião. "Equação diferencial com atraso das funções geradoras até à função W-Lambert : Contributo para uma Aplicação à Economia, Introdução do Efeito de Atraso no Modelo de Solow." Doctoral thesis, Instituto Superior de Economia e Gestão, 2005. http://hdl.handle.net/10400.5/4719.
Full textO objectivo desta dissertação é obter a solução da equação diferencial com atraso de primeira ordem com coeficientes constantes expressa em termos da função W-Lambert. Ao definir o Problema Inicial Básico (PIB) como um caso particular daquela equação e aplicado o Método do Passo, captou-se um tipo de estrutura em árvore nas soluções definidas em cada passo do método. Esta constatação levou ao desenvolvimento de um processo construtivo da solução do PIB. Com este procedimento obtiveram-se dois resultados principais. O primeiro consiste na validade da conjectura feita inicialmente sobre a solução do PIB, a de que existe uma função geradora de uma classe específica de polinómios no atraso. O segundo revela a estrutura combinatória associada às equações diferenciais com atraso, mostrando como a relação existente entre a função W-Lambert e a função árvore justifica o efeito em árvore que então se intuiu. Pretendeu-se ainda, através de uma aplicação à Economia, avaliar as alterações que o modelo de Solow reflecte quando nele é introduzido o efeito do atraso na modelação do progresso tecnológico e da força laboral, modificando as hipóteses que habitualmente são formuladas sobre aquelas variáveis económicas.
The scope of this dissertation is to obtain the solution of the first order delay differential equation with constant coefficients expressed in terms of the W-Lambert function. Defining the Basic Initial Problem (BIP) as being a particular case of those equations, and applying the step method, a type of tree structure was captured in the solutions defined in each step of the method. This observation led to the development of a constructive process of the BIP solution. With this procedure two main conclusions were achieved. The first consists on the validation of the conjecture initially made about the BIP solution that generating function of a specific class of polynomials in the delay exists. The second reveals a combinatorial structure associated with the delay differential equations, therefore showing how the existent relation between W-Lambert function and tree function justifies the tree effect as foreseen. Furthermore it was attempted, through an application to Economics, to evaluate the changes that the Solow model reflects when introducing the effect of the delay on modeling the technical progress and the labour force, modifying the assumptions that are usually formulated about those economic variables.
Swain, Robin. "The Morris-Lecar equations with delay /." Internet access available to MUN users only, 2003. http://collections.mun.ca/u?/theses,162993.
Full textRené, Alexandre. "Spectral Solution Method for Distributed Delay Stochastic Differential Equations." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34327.
Full textGimeno, i. Alquézar Joan. "Effective methods for recurrence solutions in delay differential equations." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/668438.
Full textBennett, Deborah. "Applications of delay differential equations in physiology and epidemiology." Thesis, University of Surrey, 2005. http://epubs.surrey.ac.uk/842713/.
Full textWeedermann, Marion. "On perturbations of delay-differential equations with periodic orbits." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/27972.
Full textCaberlin, Martin D. "Stiff ordinary and delay differential equations in biological systems." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=29416.
Full textZhuang, Dawei. "Stability analysis of stochastic differential delay equations with jumps." Thesis, Swansea University, 2011. https://cronfa.swan.ac.uk/Record/cronfa42955.
Full textLiu, Yunkang. "On functional differential equations with proportional delays." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364534.
Full text