Academic literature on the topic 'DEM-LIDAR'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DEM-LIDAR.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DEM-LIDAR"
Xiaoye Liu. "Airborne LiDAR for DEM generation: some critical issues." Progress in Physical Geography: Earth and Environment 32, no. 1 (February 2008): 31–49. http://dx.doi.org/10.1177/0309133308089496.
Full textOctariady, J., A. Hikmat, E. Widyaningrum, R. Mayasari, and M. K. Fajari. "VERTICAL ACCURACY COMPARISON OF DIGITAL ELEVATION MODEL FROM LIDAR AND MULTITEMPORAL SATELLITE IMAGERY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-1/W1 (May 31, 2017): 419–23. http://dx.doi.org/10.5194/isprs-archives-xlii-1-w1-419-2017.
Full textCao, Hong, Zhao Pan, Qixin Chang, Aiguo Zhou, Xu Wang, and Ziyong Sun. "Stream Network Modeling Using Remote Sensing Data in an Alpine Cold Catchment." Water 13, no. 11 (June 4, 2021): 1585. http://dx.doi.org/10.3390/w13111585.
Full textMuhadi, Nur Atirah, Ahmad Fikri Abdullah, Siti Khairunniza Bejo, Muhammad Razif Mahadi, and Ana Mijic. "The Use of LiDAR-Derived DEM in Flood Applications: A Review." Remote Sensing 12, no. 14 (July 18, 2020): 2308. http://dx.doi.org/10.3390/rs12142308.
Full textTinkham, Wade T., Alistair M. S. Smith, Chad Hoffman, Andrew T. Hudak, Michael J. Falkowski, Mark E. Swanson, and Paul E. Gessler. "Investigating the influence of LiDAR ground surface errors on the utility of derived forest inventories." Canadian Journal of Forest Research 42, no. 3 (March 2012): 413–22. http://dx.doi.org/10.1139/x11-193.
Full textKang, C. L., M. M. Zong, Y. Cheng, F. Wang, T. N. Lu, and G. Z. Liu. "RESEARCH ON CONSTRUCTING DEM WITH POINT CLOUD FILTERING ALGORITHM CONSIDERING SPECIAL TERRAIN." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W10 (February 7, 2020): 211–14. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w10-211-2020.
Full textJakovljevic, Gordana, Miro Govedarica, Flor Alvarez-Taboada, and Vladimir Pajic. "Accuracy Assessment of Deep Learning Based Classification of LiDAR and UAV Points Clouds for DTM Creation and Flood Risk Mapping." Geosciences 9, no. 7 (July 23, 2019): 323. http://dx.doi.org/10.3390/geosciences9070323.
Full textSzypuła, Bartłomiej. "Quality assessment of DEM derived from topographic maps for geomorphometric purposes." Open Geosciences 11, no. 1 (November 30, 2019): 843–65. http://dx.doi.org/10.1515/geo-2019-0066.
Full textBrubaker, Kristen M., Wayne L. Myers, Patrick J. Drohan, Douglas A. Miller, and Elizabeth W. Boyer. "The Use of LiDAR Terrain Data in Characterizing Surface Roughness and Microtopography." Applied and Environmental Soil Science 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/891534.
Full textGökgöz, Türkay, and Moustafa Baker. "Large Scale Landform Mapping Using Lidar DEM." ISPRS International Journal of Geo-Information 4, no. 3 (August 7, 2015): 1336–45. http://dx.doi.org/10.3390/ijgi4031336.
Full textDissertations / Theses on the topic "DEM-LIDAR"
Rangelova, Sandra. "Methods for assessing the consistency of the New National Height Model." Thesis, KTH, Fastigheter och byggande, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299788.
Full textDigitala höjdmodeller (DEM) är en enkel representation av jordens yta. DEM spelar en viktig roll inom fjärranalys och GIS och används som grund för kartläggning och analys för en majoritet av vetenskapliga tillämpningar. Det finns många sätt att producera DEM, men den direkta georefereringstekniken har gjort Airborne Laser Scanning (ALS) till en föredragen teknik för förvärv av exakta ytmodeller över breda områden. ALS använder LiDAR (Light Detection and Ranging) som använder ljus i form av pulserande laser för att mäta avstånd. Före introduktionen av Ny Nationell Höjdmodell (NNH) var den högsta nivån av höjddata över Sverige GSD-höjddata (Geographical Sweden Data). NNH var ett projekt av Lantmäteriet, där mellan 2009-2019 laserscannades hela Sverige. Produkten var en ny höjdmodell som heter Laserdata NH med positionsnoggrannhet på 0,1 m i höjd och relativ noggrannhet på 0,15 m. Detta projekt fokuserar på att testa få metoder för konsekvensbedömning mellan de överlappande remsorna med hjälp av linjära funktioner. Linjära funktioner extraheras för varje överlappande område, baserat på skärningspunkten mellan plana fläckar extraherade från gaveltak. Den första metoden för denna studie beräknar avståndet mellan de överlappande områdena utan linjära funktioner, med två metoder: moln-till-moln-avstånd och nät-till-moln-avstånd. Den andra metoden beräknar de transformationsförskjutningar och rotationer som behövs för att de linjära särdragen ska kola genom att registrera remsorna med både nivellerad och inte nivellerad registrering. I den tredje metoden mäts avstånd och vinklar mellan linjerna, för att ytterligare analysera hur bra remsorna passar ihop. Avstånden mäts som avstånd mellan en mittpunkt på en linje i den första LiDAR-remsan och linjen på den andra LiDAR-remsan, för alla linjära funktioner. Avstånden var mått både som 3D -avstånd och separat som horisontella och vertikala avstånd. Som ett sista steg utfördes en hypotesprovning för att avgöra om avstånden och vinklarna mellan linjerna är signifikanta eller om det finns något systematiskt fel i punktmolnet. Baserat på resultaten från den första metoden erhölls ett betydande avstånd mellan punktmolnen. Resultaten från mask-till-moln-avståndet gav bättre resultat med högre osäkerhet. Enligt den andra metoden erhölls betydande avstånd mellan de linjära särdragen baserat på registreringen. Det genomsnittliga absoluta felet för registreringarna visade ett fel på en dm -nivå, med en minimal rotation i det vertikala planet för samlinjering för den jämnade registreringen. Den tredje metoden visade ett medelavstånd mellan de linjära särdragen på 20 cm. Dessutom visade denna metod en signifikant inkonsekvens mellan de linjära särdragen i det vertikala planet baserat på hög standardosäkerhet.
Gadre, Mandar M. "Automated building footprint extraction from high resolution LIDAR DEM imagery." Diss., Columbia, Mo. : University of Missouri-Columbia, 2005. http://hdl.handle.net/10355/4320.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (July 13, 2006) Includes bibliographical references.
Gagné, Marissa Marlene. "An Analysis and Critique of DEM Creaion and 3-D Modeling Using Airborne LIDAR and Photogrammetric Techniques." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/43528.
Full textMaster of Science
Popescu, Sorin Cristian. "Estimating Plot-Level Forest Biophysical Parameters Using Small-Footprint Airborne Lidar Measurements." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27109.
Full textPh. D.
Fava, Marica. "LIDAR Aviotrasportati Mediante RPAS." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016.
Find full textBogren, Fredrik. "LIDAR-analys av flygsanddyner i Västerbottens inland : Har dynmorfologi bildad under tidigare interstadialer bevarats i landskapet?" Thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-104812.
Full textCrosby, David Alexander. "The Effect of DEM Resolution on the Computation of Hydrologically Significant Topographic Attributes." Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/3859.
Full textBhadra, Sourav. "Assessing the Impacts of Anthropogenic Drainage Structures on Hydrologic Connectivity Using High-Resolution Digital Elevation Models." OpenSIUC, 2019. https://opensiuc.lib.siu.edu/theses/2573.
Full textKniess, Ulrich. "Quantification de l’évolution de glissements de terrain argileux par des techniques de télédétection. Application à la région du Trièves (Alpes Françaises)." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENU038/document.
Full textThree remote sensing techniques, Lidar, satellite radar interferometry and aerial photogrammetry are applied to quantify the spatial and temporal evolution of two clayey landslides (Avignonet and Harmalière, located in the Trièves area, French Alps) in complement to in-situ instrumentations. A geomorphological analysis based on Lidar-derived filtered DEM, coupled to analysis of ortho-photos dating back to 1948 and geophysical investigations, shows that the different evolution of the neighbouring landslides could be partly controlled by the paleotopography of the bedrock underlying the clay layer. Directional roughness is shown to help distinguishing between landsliding and gully erosion patterns. Cross-correlation technique adapted to DEMs has been developed to derive 3D-displacement-vectors between two Lidar acquisitions (2006 and 2009), paying attention on measure quality assessment. The displacement map reveals that, at the Harmalière landslide, the main sliding channel, very active from 1981 - 2001, is now relatively slow (< 0.4 m over 3 years), in contrast with four surrounding distinct areas of large movements (up to 3 m) partly with rotational components. At the Avignonet landslide, displacements generally increase towards the toe (up to 1 m near the drainage outlets). Persistent Scatterers Interferometry technique allows to derive new reliable displacement-rates (1992 - 2000) at 16 points of the Avignonet landslide, consistent with GPS time-series. The long-term average headscarp retreat rates are estimated to 1 - 5 cm/y at Avignonet and 7 - 14cm/y at Harmalière. The retreat of the Avignonet landslide seems to be controlled by the erosion of the top of the underlying compacted alluvial layers. The presence of a paleovalley (Drac river) below the Harmalière toe could explain the difference of kinematics between the two landslides
Mora, Omar Ernesto. "Morphology-Based Identification of Surface Features to Support Landslide Hazard Detection Using Airborne LiDAR Data." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429861576.
Full textBook chapters on the topic "DEM-LIDAR"
Jaboyedoff, M., M. Choffet, M. H. Derron, P. Horton, A. Loye, C. Longchamp, B. Mazotti, C. Michoud, and A. Pedrazzini. "Preliminary Slope Mass Movement Susceptibility Mapping Using DEM and LiDAR DEM." In Terrigenous Mass Movements, 109–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25495-6_5.
Full textSaraf, Noraain Mohamed, Khairun Najwa Kamarolzaman, Nurhafiza Md Saad, Nafisah Khalid, Abdul Rauf Abdul Rasam, and Ainon Nisa Othman. "Data Verification of LiDAR-Derived DEM from Different Interpolation Techniques." In Charting the Sustainable Future of ASEAN in Science and Technology, 361–75. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3434-8_31.
Full textDolžan, Erazem, and Mateja Jemec Auflič. "Using Lidar DEM to Map Landslides: Škofjeloško Cerkljansko Hills, Slovenia." In Advancing Culture of Living with Landslides, 191–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53498-5_22.
Full textCrosta, Giovanni B., Giorgio Lollino, Frattini Paolo, Daniele Giordan, Tamburini Andrea, Rivolta Carlo, and Bertolo Davide. "Rockslide Monitoring Through Multi-temporal LiDAR DEM and TLS Data Analysis." In Engineering Geology for Society and Territory - Volume 2, 613–17. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09057-3_102.
Full textWu, Jee-Cheng, and Chia-Hao Chang. "Classification of Landslide Features Using a LiDAR DEM and Back-Propagation Neural Network." In Advances in Remote Sensing and Geo Informatics Applications, 155–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01440-7_36.
Full textMihalić, Snježana, Hideaki Marui, Osamu Nagai, Hiroshi Yagi, and Toyohiko Miyagi. "Landslide Inventory in the Area of Zagreb City: Effectiveness of Using LiDAR DEM." In Landslide Science and Practice, 155–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31325-7_20.
Full textPradhan, Biswajeet, and Waleed M. Abdulwahid. "Landslide Risk Assessment Using Multi-hazard Scenario Produced by Logistic Regression and LiDAR-Based DEM." In Laser Scanning Applications in Landslide Assessment, 253–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55342-9_13.
Full textHsieh, Yu-Chung, Chih-Yu Kuo, Yi-Zhong Chen, Chin-Shyong Hou, Ruo-Ying Wu, and Rou-Fei Chen. "Using Airborne LiDAR DEM to Determine the Bedrock Incision Rate: An Indirect Dating from Landslide Sliding Surface, Taiwan." In Engineering Geology for Society and Territory - Volume 2, 429–34. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09057-3_69.
Full textMann, Ulrich, Biswajeet Pradhan, Nikolas Prechtel, and Manfred F. Buchroithner. "An Automated Approach for Detection of Shallow Landslides from LiDAR Derived DEM Using Geomorphological Indicators in a Tropical Forest." In Terrigenous Mass Movements, 1–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25495-6_1.
Full textHasegawa, Shuichi, Atsuko Nonomura, Jun’ichi Uchida, Katsushi Kawato, Ryota Kageura, Tatsuro Chiba, and Satoshi Onoda. "Hazard Mapping of Earthquake-Induced Deep-Seated Catastrophic Landslides Along the Median Tectonic Line in Shikoku by Using LiDAR DEM and Airborne Resistivity Data." In Engineering Geology for Society and Territory - Volume 2, 717–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09057-3_120.
Full textConference papers on the topic "DEM-LIDAR"
Li, Jing, and Xiangtao Fan. "Height aided GPS navigation using LiDAR DEM." In 2011 19th International Conference on Geoinformatics. IEEE, 2011. http://dx.doi.org/10.1109/geoinformatics.2011.5980967.
Full textYuan Feng, Zhang Ji-xian, Zhang Li, and Gao Jing-xiang. "Urban DEM generation from airborne Lidar data." In 2009 Joint Urban Remote Sensing Event. IEEE, 2009. http://dx.doi.org/10.1109/urs.2009.5137643.
Full textJiang Ruibo, Yang Mingdong, Pan Jiechen, Wang Dongmei, Yang Fuqin, and Xu Liang. "Compilation of DEM based on lidar data." In 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5622950.
Full textLi, Yong, and Huayi Wu. "DEM Extraction from LIDAR Data by Morphological Gradient." In 2009 Fifth International Joint Conference on INC, IMS and IDC. IEEE, 2009. http://dx.doi.org/10.1109/ncm.2009.46.
Full textLai, Xudong, Xuedong Zheng, and Junwei Jiang. "A Flow to Generate DEM from Lidar Data." In 2009 International Conference on Information Engineering and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/iciecs.2009.5363331.
Full textNeurauter, Scott, Sabrina Szeto, Matt Tindall, Yan Wong, and Chris Wright. "3D Visualization for Hydrocarbon Project Design." In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64588.
Full textJia, Yafei, Tian Lan, Tao Peng, Hongbo Wu, Cuiling Li, and Guoqiang Ni. "Effects of point density on DEM accuracy of airborne LiDAR." In IGARSS 2013 - 2013 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2013. http://dx.doi.org/10.1109/igarss.2013.6721200.
Full textXu, Jingzhong, Yuan Kou, and Jun Wang. "High-precision DEM reconstruction based on airborne LiDAR point clouds." In Remote Sensing of the Environment: 18th National Symposium on Remote Sensing of China, edited by Qingxi Tong, Jie Shan, and Boqin Zhu. SPIE, 2014. http://dx.doi.org/10.1117/12.2064237.
Full textCharalampidis, Dimitrios, and Keith Alphonso. "A texture-based technique for DEM generation from LIDAR data." In Defense and Security Symposium, edited by Monte D. Turner and Gary W. Kamerman. SPIE, 2007. http://dx.doi.org/10.1117/12.719935.
Full textZhang, Shaochen, Zhao Yan, and Falin Wu. "A lunar landing safety estimation methodology using lidar acquired DEM." In 2013 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2013. http://dx.doi.org/10.1109/ist.2013.6729734.
Full textReports on the topic "DEM-LIDAR"
Puetz, Angela M., R. C. Olsen, and Brian Anderson. Effects of LIDAR Point Density on Bare Earth Extraction and DEM Creation. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada534534.
Full text