Dissertations / Theses on the topic 'Demand Forecasting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Demand Forecasting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Martin, C. A. "International tourism demand forecasting." Thesis, University of Bradford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379816.
Full textSyntetos, Argyrios. "Forecasting of intermittent demand." Thesis, Online version, 2001. http://bibpurl.oclc.org/web/26215.
Full textGato, Shirley, and s3024038@rmit edu au. "Forecasting Urban Residential Water Demand." RMIT University. Civil, Environmental and Chemical Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070202.113452.
Full textRostami, Tabar Bahman. "ARIMA demand forecasting by aggregation." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00980614.
Full textGOMES, RENATA MIRANDA. "BIAS DETECTION IN DEMAND FORECASTING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18477@1.
Full textPROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Essa dissertação teve como objetivo propor dois novos métodos para detecção de viés na previsão de demanda. Os métodos consistem numa adaptação de duas técnicas de controle estatístico de processos, o gráfico de controle de EWMA e o algoritmo CUSUM, ao contexto de detecção de viés na previsão de demanda. O desempenho dos métodos foi analisado por simulação, para diversos casos de mudança na inclinação (tendência) da série de dados (mudança de modelo constante para modelo com tendência; alteração na tendência de série crescente; estabilização de série crescente em um patamar constante), e com diferentes parâmetros para os métodos. O estudo limitou-se a séries sem sazonalidade e aos métodos de previsão de amortecimento exponencial simples e de Holt. Os resultados mostraram a grande superioridade do gráfico de EWMA proposto e apontam questões para pesquisas futuras.
The purpose of this dissertation is to propose two new methods for detection of biases in demand forecasting. These methods are adaptations of two statistical process control techniques, the EWMA control chart and the CUSUM control chart (or CUSUM algorithm), to the context of the detection of biases in demand forecasting. The performance of the proposed methods was analyzed by simulation, for several magnitudes of changes in the trend of the series (change from a level series to a series with a trend, changes in the trend parameter, and stabilization of a series with a trend in a constant average level) and with different parameters for all methods. The study was limited to non-seasonal models and to the methods of simple exponential smoothing and Holt’s Exponential Smoothing. The results have shown the superiority of the EWMA method proposed and indicate issues for future research.
Holbrook, Blair Sato. "Point-of-sale demand forecasting." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104397.
Full textThesis: S.M. in Engineering Systems, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, 2016. In conjunction with the Leaders for Global Operations Program at MIT.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 38).
Nike Always Available (AA) is a significant global business unit within Nike that allows retail customers to purchase athletic essentials at weekly replenishment intervals and 95% availability. However, demand fluctuations and current forecasting processes have resulted in frequent stock-outs and inventory surpluses, which in turn affect revenue, profitability, and brand trust. Potential root causes for demand fluctuations have included: -- Erratic customer behavior, including unplanned promotional events, allocation of open-to- buy dollars for futures (i.e., contract) versus replenishment (i.e., AA), and product inventory loading to protect from anticipated stock-outs; -- Lack of incentives and accountability to encourage accurate forecasting by customers. Current forecasting processes, which utilize historical sell-in data (i.e., product sold to retail customers) were found to be significantly inaccurate - 100% MAPE. The goal of this project was to develop a more accurate forecast based on historical sell-through data (i.e., product sold to consumers), which were recently made available. Forecast error was drastically reduced using the new forecasting method - 35% MAPE. A pilot was initiated with a major retail customer in order to test the new forecast model and determine the effects of a more transparent ordering partnership. The pilot is ongoing at the time of thesis completion.
by Blair Sato Holbrook.
M.B.A.
S.M. in Engineering Systems
Al-Madfai, Hasan. "Weather corrected electricity demand forecasting." Thesis, University of South Wales, 2002. https://pure.southwales.ac.uk/en/studentthesis/weather-corrected-electricity-demand-forecasting(2e066cc4-58b1-4694-9937-ee8f57fbed02).html.
Full textFernandes, Filho Roberto Braga. "Integração de modelos de previsão de demanda qualitativos e quantitativos e comparação com seus desempenhos individuais." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/117896.
Full textA good forecasting system is one of the steps to the success of a company. Forecasts with small errors enable the maintenance of a reduced inventory, a more efficient factory occupation and financial management, together with other benefits provided by a reliable system. There are several ways to make a forecast, but for years the quantitative and qualitative methods integrated has been considered more promising. Both methods have unique advantages which makes it particularly interesting integration. This paper aims to develop and test a forecasting system in a large company in order to provide a reliable form of integration methods. It also seeks to validate the aid of experts in the predictive adjustments so that problems derived from the human judgment can be avoided. A comparison of the various forecasts made is provided in a way that the reader can interpret them and judge which may be the most appropriate to the situation you are in.
Ho, Kien K. (Kine Kit). "Demand forecasting for aircraft engine aftermarket." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43833.
Full textIncludes bibliographical references.
In 2006, Pratt and Whitney launched the Global Material Solutions business model aiming to supply spare parts to non-OEM engines with minimum 95% on-time delivery and fill-rate. Lacking essential technical knowledge of the target engines, predictability and associated confidence of the parts demands are very limited. This thesis focuses on exploring alternative and innovative approaches to providing more accurate demand forecasts based on limited information. Approaches including application of fundamental sampling theorems, random walk simulations based on Markov Chain simplification, and sensitivity analysis on incremental scrap rates were introduced. A software tool, based on the sensitivity analysis was introduced for all gas path parts. The methodology could potentially be applicable to industries other than Aerospace.
by Kien K. Ho.
S.M.
M.B.A.
Obbiso, Pietro. "Forecasting intermittent demand: a comparative approach." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24792/.
Full textAhmed, Shadman. "Phase-Out Demand Forecasting : Predictive modeling on forecasting product life cycle." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287446.
Full textUtfasningen i en produktlivscykel kan kännetecknas vara oförutsägbart. En noggrann prognos av stadiet kan ge värdefull insikt såsom att begränsa antalet utgångna inventeringar och om produktens efterfrågan. Detta kan ge positiv ekonomisk effekt samt spara resurser. I denna studie jämförde vi med domän experter om data drivna prognosmodeller kunde förbättra estimeringen av efterfrågan inom utfasningen i en produktlivscykel. På grund av att tillgängligheten av prognosmodeller är omfattande, ett antal modeller studerades som visat bäst resultat i olika studier. Efter en nogrann urval av 11 olika modeller som visade bäst prestanda, användes följande 3 modeller för den senare delen av studien: Autoregressiv Integrerad Glidande Medelvärde (ARIMA), Stödvektor Regression (SVR) och Gaussisk Process Regression (GPR). Resultat visade att ingen av modellerna kunde generellt förbättra prognoserna, dock visade SVR signifikant liknande prognosfel som planestimeringarna från domän experter för 14 unika produkter. Dessutom visades sig att en minskning av data förbättrade prestandan hos modellerna. Där endast 60% av träningsdatat tycktes vara optimalt för ARIMA och GPR medan SVR med 80%. Vi presenterar resultaten ihop med ytterligare frågor som undersöktes inom detta område.
Norvell, Joakim. "Statistical forecasting and product portfolio management." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-116866.
Full textFör att ett företag ska kunna vara lönsamt och konkurrenskraftigt måste kundnöjdheten vara mycket hög. Detta betyder att ett företag måste kunna förse rätt produkt i rätt tid på rätt plats, annars kommer kunden troligtvis att vända sig till konkurrenten. Men dessa faktorer kommer med osäkerhet för företaget i försörjningskedjan i när, vad och hur mycket av produkten de ska producera och distribuera. För att minska osäkerheten och för att planera bättre för framtida efterfrågan, måste någon typ av prognos upprättas. En prognos kan vara baserad på statistiska metoder men också kompletterad med subjektiv marknadsinformation om statistiken inte är tillräcklig. Studien som denna rapport beskriver är gjord i samarbete med Sales och Operations- avdelning (S&OP) på Sandvik Mining Rock Tools i Sandviken. Där används statistiska prognoser i kombination med manuella förändringar av säljare samt regionala planerare som bas för planering av lagernivåer och produktion. Detta gör man för att möta marknadens efterfråga och för att kontinuerligt vara uppdaterad med marknadens variationer. Syftet med detta arbete har varit att studera kunders efterfrågan av produkt- kund kombination och den metod som används vid statistiska prognoser hos S&OP- avdelningen. Ett problem som finns när man vill skapa prognoser är hur man ska prognostisera oregelbunden försäljning korrekt. Detta arbete har därför analyserat historisk försäljning för att se i vilken utsträckning oregelbunden efterfrågan finns och hur den kan hanteras. Resultatet är ett enkelt verktyg för att kunna kartlägga kunders köpbeteende. Ett till resultat är att historisk försäljning kan bli uppdelat i Volatilitet, Volym, Värde, Antalet köptillfällen och Tidsintervallet mellan köptillfällena. Dessa variabler kan även tas till hänsyn när man analyserar och prognostiserar oregelbunden försäljning. Ett tredje resultat är en klassificering av tidsserier som kan fungera som riktmärken om efterfrågan ska vara statistisk eller manuellt prognostiserade eller inte bör ha en prognos över huvud taget. Denna studie analyserade 36 månaders historik för 56 850 tidsserier av försäljning per produkt- kund kombination. Resultaten var att en kund bör ha åtminstone ett år av kontinuerlig efterfrågan innan man kan ha en prognos med statistiska modeller. Gränsen för att ens ha en prognos är att efterfrågan bör återkomma var tredje månad i genomsnitt och ha en historik av åtminstone sex försäljningstillfällen. Då klassificeras efterfrågan som oregelbunden och prognosen kan vara baserad på statistiska metoder men med manuella ändringar. I resultatet framkom det att oregelbunden efterfrågan representerar cirka 70 procent i avseende på intäkter och kräver således mycket uppmärksamhet.
Lawson, Richard. "Adaptive state-space forecasting of gas demand." Thesis, Lancaster University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358799.
Full textXu, Runmin S. M. Massachusetts Institute of Technology. "Machine learning for real-time demand forecasting." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99565.
Full textThesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 89-92).
For a taxi company, the capability to forecast taxi demand distribution in advance provides valuable decision supports. This thesis studies real-time forecasting system of spatiotemporal taxi demand based on machine learning approaches. Traditional researches usually examine a couple of candidate models by setting up an evaluation metric and testing the overall forecasting performance of each model, finally the best model is selected. However, the best model might be changing from time to time, since the taxi demand patterns are sensitive to the dynamic factors such as date, time, weather, events and so on. In this thesis, we first study range searching techniques and their applications to taxi data modeling as a foundation for further research. Then we discuss machine learning approaches to forecast taxi demand, in which the pros and cons of each proposed candidate model are analyzed. Beyond single models, we build a five-phase ensemble estimator that makes several single models work together in order to improve the forecasting accuracy. Finally, all the forecasting approaches are evaluated in a case study over rich taxi records of New York City. Experiments are conducted to simulate the operation of real-time forecasting system. Results prove that multi-model ensemble estimators do produce better forecasting performances than single models.
by Runmin Xu.
S.M.
S.M. in Transportation
Riedel, Silvia. "Forecast combination in revenue management demand forecasting." Thesis, Bournemouth University, 2008. http://eprints.bournemouth.ac.uk/9640/.
Full textSani, Babangida. "Periodic inventory control systems and demand forecasting methods for low demand items." Thesis, Lancaster University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309040.
Full textARVIDSSON, JENS. "Forecasting on-demand video viewership ratingsusing neural networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156382.
Full textAtt förutsäga tittarsiffror för strömmande video är viktigt för reklamindustrin då försäljning av reklam sker innan den visats. Alltför stora fel i dessa förutsägelser leder till att annonsörer måste kompenseras för ej visade reklamsnuttar, alternativt att möjligheter till att sälja mer reklam går förlorade. Dessa förutsägelser kan göras genom att ta genomsnittet av tidigare veckors tittarsiffror och använda detta som förutsägelse för påföljande veckor (där tittarsiffran för söndag nästa vecka är lika med genomsnittet av de senaste tre söndagarna). I det här exjobbet undersöks möjligheten att använda ett neuronnätverk för att göra dessa förutsägelser istället, genom att jämföra resultaten från detta mot den nuvarande metoden på data från December till Februari. Neuronnätetär av typen Multilayer Perceptron och använder en design som är anpassat till de veckovisa mönster som data uppvisar. Undersökningen finner att trots goda förutsägelser från neuronnätverket når det inte samma träffsäkerhet (mätt med standardmått på förutsägelser) som den nu använda metoden, troligtvis på grund av det starka veckovisa mönstret som data uppvisar.
Louw, Riëtte. "Forecasting tourism demand for South Africa / Louw R." Thesis, North-West University, 2011. http://hdl.handle.net/10394/7607.
Full textThesis (M.Com. (Economics))--North-West University, Potchefstroom Campus, 2011.
Koul, Ashish 1979. "Device-oriented telecommunications customer call center demand forecasting." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90787.
Full textThesis: S.M., Massachusetts Institute of Technology, Engineering Systems Division, 2014. In conjunction with the Leaders for Global Operations Program at MIT.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 53).
Verizon Wireless maintains a call center infrastructure employing more than 15,000 customer care representatives across the United States. The current resource management process requires a lead time of several months to hire and train new staff for the customer rep position. To ensure that call center resources are balanced with customer demand, an accurate forecast of incoming call volume is required months in advance. The standard forecasting method used at Verizon relies on an analysis of aggregate call volume. By analyzing the growth trend of the customer base and the month-upon-month seasonal fluctuations within each year, the total incoming call volume is predicted several months in advance. While this method can yield solid results, it essentially groups all customers into a single category and assumes uniform customer behavior. Given the size of the Verizon customer base, forecast inaccuracy in the current process can lead to resource allocation errors on the order of tens of thousands of labor hours per month. This thesis proposes a call forecasting model which segments customers according to wireless device type. By taking into consideration customer behavior on a per device basis and accounting for the continuous churn in mobile devices, there is the potential to create a forecasting tool with better accuracy. For each device model, future call volumes are estimated based upon projected device sales and observed customer behavior. Aggregate call volume is determined as the sum across all device models. Linear regression methods are employed to construct forecast models for each of the top 20 mobile devices (those which generate the most customer service calls) using historical device data. The aggregate call volume forecast for these top 20 devices is benchmarked against the standard forecast currently in use at Verizon to validate the reliability of the new approach. Furthermore, device-oriented analytics processes developed for this project will enable Verizon to build a rich library of device data without additional staff or resource investments. By incorporating device-oriented data analysis into the call volume forecasting process, Verizon Wireless hopes to improve forecast accuracy and staff planning, effectively maintaining service levels while reducing overall staffing costs at call centers.
by Ashish Koul.
M.B.A.
S.M.
Lelo, Nzita Alain. "Forecasting spare parts demand using condition monitoring information." Diss., University of Pretoria, 2009. http://hdl.handle.net/2263/67760.
Full textDissertation (MSc)--University of Pretoria, 2018.
Mechanical and Aeronautical Engineering
MSc
Unrestricted
Silva, Jesús, Naveda Alexa Senior, Guliany Jesús García, Núẽz William Niebles, and Palma Hugo Hernández. "Forecasting Electric Load Demand through Advanced Statistical Techniques." Institute of Physics Publishing, 2020. http://hdl.handle.net/10757/652142.
Full textTsivras, Sotirios-Ilias. "Load Demand Forecasting : A case study for Greece." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-29841.
Full textTalupula, Ashik. "Demand Forecasting Of Outbound Logistics Using Machine learning." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18834.
Full textGuerrero, Gomez Gricel Celenne. "Lumpy demand characterization and forecasting performance using self-adaptive forecasting models and Kalman filter." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textLee, Wing Yee. "Improving the role of judgment in demand forecasting through enhanced forecasting support system design." Thesis, University of Bath, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436773.
Full textNyulu, Thandekile. "Weather neutral models for short-term electricity demand forecasting." Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/d1018751.
Full textZhao, Zezheng. "Residential Side Load Forecasting and Optimisation." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27396.
Full textCrudelini, Miriam. "Demand Forecasting mediante algoritmi di boosting: una valutazione sperimentale." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19136/.
Full textLobban, Stacey, and Hana Klimsova. "Demand Forecasting : A study at Alfa Laval in Lund." Thesis, Växjö University, School of Management and Economics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-2127.
Full textAccurate forecasting is a real problem at many companies and that includes Alfa Laval in Lund. Alfa Laval experiences problems forecasting for future raw material demand. Management is aware that the forecasting methods used today can be improved or replaced by others. A change could lead to better forecasting accuracy and lower errors which means less inventory, shorter cycle times and better customer service at lower costs.
The purpose of this study is to analyze Alfa Laval’s current forecasting models for demand of raw material used for pressed plates, and then determine if other models are better suited for taking into consideration trends and seasonal variation.
Sanders, Nada R. "Forecasting short term demand in the physical distribution environment /." Connect to resource, 1986. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1262198594.
Full textMohammadipour, Maryam. "Intermittent demand forecasting with integer autoregressive moving average models." Thesis, Bucks New University, 2009. http://bucks.collections.crest.ac.uk/9586/.
Full textStefancik, John. "Demand forecasting using Monte Carlo Multi-Attribute Utility Theory." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104825.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 173-176).
Volatile commodity prices over the past decade, environmentally-focused policy initiatives and new technology developments have forced manufacturers to consider the idea of substituting towards alternative materials in order meet both consumer and societal needs. The threat of substitution has created the need for manufacturing firms and other members of the supply chain to have the ability to understand the implications of substitution on future product market shares and overall raw material demand. This thesis demonstrates how Multi-Attribute Utility Theory (MAUT) can be extended to the group level to forecast future market shares by applying a distribution to the attribute weights and using a Monte Carlo simulation to capture the choices made by a heterogeneous set of decision makers. Unlike established demand forecasting techniques, such as discrete choice models, this methodology requires only a few data points from a handful of expert interviews and allows for systematic changes of preferences over time. Furthermore, the Monte Carlo MAUT methodology utilizes both revealed preference and stated preference data by integrating the two data types through a response surface methodology. Two case studies on underground distribution and overhead distribution power cables are explored in order to illustrate how the Monte Carlo MAUT methodology can be successfully applied in cases where there are diverse product types, limited numbers of decisions makers and historical market share data is sparse. Each case study illustrates how Monte Carlo MAUT can, on a regional basis, provide key insights into the impacts of changing commodity prices, changing product attribute levels, varying new technology learning rates and changing consumer preferences over time. Furthermore, an example of how Monte Carlo MAUT can be utilized to help policymakers evaluate the advantages, disadvantages and overall impact of different policy schemes within an environmental context is provided. Private firms and public governments alike can utilize Monte Carlo MAUT to improve their understanding of how market shares are likely to change over time, and more importantly, the key decisions needed on each party's behalf in order to maximize societal well-being.
by John Stefancik.
S.M. in Technology and Policy
Kaftan, David. "Design Day Analysis - Forecasting Extreme Daily Natural Gas Demand." Thesis, Marquette University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10825062.
Full textThis work provides a framework for Design Day analysis. First, we estimate the temperature conditions which are expected to be colder than all but one day in N years. This temperature is known as the Design Day condition. Then, we forecast an upper bound on natural gas demand when temperature is at the Design Day condition.
Natural gas distribution companies (LDCs) need to meet demand during extreme cold days. Just as bridge builders design for a nominal load, natural gas distribution companies need to design for a nominal temperature. This nominal temperature is the Design Day condition. The Design Day condition is the temperature that is expected to be colder than every day except one in N years. Once Design Day conditions are estimated, LDCs need to prepare for the Design Day demand. We provide an upper bound on Design Day demand to ensure LDCs will be able to meet demand.
Design Day conditions are determined in a variety of ways. First, we fit a kernel density function to surrogate temperatures - this method is referred to as the Surrogate Kernel Density Fit. Second, we apply Extreme Value Theory - a field dedicated to finding the maxima or minima of a distribution. In particular, we apply Block-Maxima and Peak-Over-Threshold (POT) techniques. The upper bound of Design Day demand is determined using a modified version of quantile regression.
Similar Design Day conditions are estimated by both the Surrogate Kernel Density Fit and Peaks-Over-Threshold methods. Both methods perform well. The theory supporting the POT method and the empirical performance of the SKDF method lends confidence in the Design Day conditions estimates. The upper bound of demand on these conditions is well modeled by the modified quantile regression technique.
Sanders, Nada Rankovic. "Forecasting short term demand in the physical distribution environment." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1262198594.
Full textAlsup, Meia(Meia L. ). "Forecasting electricity demand in the data-poor Indian context." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129084.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 51-53).
Electricity demand at the grid level is steadily growing in India. More areas are getting interconnected to the grid; and with rising incomes, electricity is highly affected by adoption of air conditioning systems and electric vehicles. Compared with the developed world context where electricity demand is approximately flat if not decreasing year to year, demand in India is growing. In this paper, we aim to examine forecasting methods and determine an optimal method for forecasts in India. Despite limited historical data, we improve forecasts of electricity demand in India out to the year 2050. The forecasts are in five year increments across three different GDP growth scenarios (not accounting for Covid-19). In addition, a layer of natural variation is added to the forecasts for the purpose of modeling the role of various energy technologies on the grid. The methodology to generate more realistic sample loads from predicted average scenarios is a key contribution.
by Meia Alsup.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Bellfield, Sherryl. "Short-term domestic water demand : estimation, forecasting and management." Thesis, University of Leeds, 2001. http://etheses.whiterose.ac.uk/2576/.
Full textHaaf, Christine Grace. "Vehicle Demand Forecasting with Discrete Choice Models: 2 Logit 2 Quit." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/491.
Full textJeon, Gyoo Jeong. "Innovative methods for long-term mineral forecasting." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184653.
Full textSchwann, Gregory Michael. "Housing demand : an empirical intertemporal model." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/27526.
Full textArts, Faculty of
Vancouver School of Economics
Graduate
Al-Aoudah, Ahmed A. "Long term load forecasting for the Central Region of Saudi Arabia." Thesis, Cranfield University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250633.
Full textHartley, Joseph Alan. "A neural network and rule based system application in water demand forecasting." Thesis, Brunel University, 1995. http://bura.brunel.ac.uk/handle/2438/7867.
Full textMonahan, Kayla M. "Aircraft Demand Forecasting." 2016. https://scholarworks.umass.edu/masters_theses_2/329.
Full textWeinberg, David. "Electrical power demand forecasting." Thesis, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385594.
Full textChang, Ku-kuang, and 張谷光. "Improved Methods in Collaborative Forecasting and Demand Forecasting." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/95773804895773020937.
Full text國立臺灣科技大學
工業管理系
96
Forecasting is an important part of supply chain management. The forecasting accuracy will influence the material planning and the scheduling; even affect the replenishment plan of the retailer of the supply chain downstream. In this study, we focus on two issues which are the collaborative forecasting between enterprises and the demand forecasting. The collaborative forecasting concept, shares the information and risk between the supply chain partners, combines both advantage the seller and buyer. It no longer only focuses on one side of supply chain, but contains the coordination, planning, execution and monitoring among all members until collaboratively producing the final forecasting with of both agreement. The final forecasting could drive the replenishment plan successfully. Demand forecasting emphasized on how to promote forecasting accuracy of the products. We could obtain a more suitable demand plan and a better collaborative forecasting due to the higher degree of accuracy. If we promote the accuracy of collaborative forecasting and demand forecasting, we can monitor the forecasting accuracy and avoid the shortage or too many stocks in the whole supply chain. To improve the accuracy of the forecasting, we consider three forecasting problems which include collaborative forecasting, multi-product forecasting and combining forecasting under the demand forecasting. First, we applied Six Sigma methodology and proposed a continuous improvement model on different phases of collaborative planning, forecasting and replenishment (CPFR). A real case is used to demonstrate how to improve the performance of collaborative forecasts. Second, in a multi-product framework, the traditional estimation methods could not get the satisfied results. We have conducted research using the hybrid genetic algorithm (GA) for an efficient parameter estimation method for multi-product forecasting. Finally, we developed a demand forecasting methodology that combines market and shipment forecasts. We used the LCD monitor sales data to test and verify our methods. In the past studies, the linear ways were usually used to estimate the parameters of combining forecasts. Fuzzy neural network (FNN) is a nonlinear model and often used to find the best combination in past references. The applications of FNN to combining forecasting problems are extremely few. We developed an integrated fuzzy neural network model to find the best combining forecasting and compare with other traditional methods such as k method, adaptive set of weights and linear composite. Results show that the proposed model using integrated FNN can gain the superior forecasting efficiency and performance in the whole.
Pan, Shiau-Wet, and 潘曉葦. "Constructing the Demand Forecasting Model." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/33268185814063481892.
Full text國立臺灣科技大學
資訊管理系
88
Demand forecasting is one of the most crucial issues of inventory management since production planning and inventory management are based on demand forecasts. To satisfy the random demands of customers, managers need to decide appropriate production planning and inventory levels. Reducing the demand forecasting error can free up capital and inventory space, which leads to reduction in the cost of inventory management. There exists no unique best forecasting method for different demand models. Everyone has already known that there is no best forecasting method fitting all situations in the world. Combining forecasting method use historical data to select the most promising method in each of the three types of forecasting method. Then a quadratic program is solved for the appropriate weights on each method such that the minimum mean square errors is achieved. Using mean squared errors as a comparison criterion, this study compares three common types of forecasting methods with the combining-method in sixteen different situations. Empirical show that the combining-method is outperforms the existing methods by more than ten percent in the mean squared errors..
Liu, Chia-Hsin, and 劉佳欣. "Consuming Emergency Relief Demand Forecasting." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/13063804109913340843.
Full text國立交通大學
交通運輸研究所
95
Because of rescue time, quantity and quality of resources and information of affected areas are limited. After the large-scale earthquake disaster happened, how to distribute urgent relief effectively, efficiently and precisely is vital to the alleviation of disaster impact in the affected areas, which remains challenging in the field of logistics and related study areas. In this study, we present a data-fusion approach to the operations of emergency relief distribution system responding to deal with the disorder information in the initial stage of disaster. Based on a proposed 2-layer consuming emergency relief demand forecasting conceptual framework, the proposed methodology involves two recursive mechanisms: (1) consuming relief demand forecasting, and (2) disaster-affected area grouping. Numerical studies with a simulated data sets are conducted, and the corresponding results indicate the applicability of the proposed method and its potential advantages. We hope that this study can not only make the proposed emergency logistics system available with more benefits to the development of emergency logistics systems for the urgent needs of disaster areas around the world but also stimulate more excellent researches concerning emergency logistics management.
RAJESH, PAILI. "FORECASTING ON A INTERMITTENT DEMAND." Thesis, 2020. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18208.
Full textChen, Meng-Yin, and 陳孟吟. "Intermittent Demand Classification and Demand Forecasting for Medical Materials." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/45671883790010094435.
Full text東海大學
工業工程與經營資訊學系
103
The accuracy forecasting is the basic of inventory management. Intermittent demand is random demand with a lot of zero values. Materials have different types and frequency of usage in healthcare., Usage is affect by patients’ wound size and age. Due to the uncertainty of materials usage, it is difficult to predict materials. Therefore, this paper classify demand by square coefficient of variation (CV2) and the average inter-demand interval (ADI) and use Simple Moving Average(SMA), Single Exponential Smoothing(SES) , Autoregressive Integrated Moving Average model(ARIMA) and Croston’s method to forecasting. By a hospital’s datasets, it shows that there are optimal forecasting method in each classification. In lumpy, erratic and intermittent demand, Croston single exponential smoothing produces more accurate forecast. Simple moving average has better performance in smooth demand. Based on the classification and forecasting method, it can decrease inventory , shortage and the cost of inventory management . Finally, the proposed model could be applied on other hospital replenishment case.
Ahmed, Naveed Ahmed Nasar. "Demand Forecasting Model for Emergent Manufacturing." 2008. http://trace.tennessee.edu/utk_gradthes/414.
Full textLiou, Vincent, and 劉文祺. "Trend Seasonal Smoothing Demand Forecasting Models." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/11889280232213944305.
Full text