Academic literature on the topic 'Dendrid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dendrid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dendrid"
Hampiholi, Prabhakar R., and Jotiba P. Kitturkar. "On Enumeration of some Non-Isomorphic Dendroids." Bulletin of Mathematical Sciences and Applications 18 (May 2017): 40–49. http://dx.doi.org/10.18052/www.scipress.com/bmsa.18.40.
Full textNAGHMOUCHI, ISSAM. "DYNAMICS OF MONOTONE GRAPH, DENDRITE AND DENDROID MAPS." International Journal of Bifurcation and Chaos 21, no. 11 (November 2011): 3205–15. http://dx.doi.org/10.1142/s0218127411030465.
Full textBalibrea, Francisco, Roman Hric, and L'ubomír Snoha. "Minimal Sets on Graphs and Dendrites." International Journal of Bifurcation and Chaos 13, no. 07 (July 2003): 1721–25. http://dx.doi.org/10.1142/s0218127403007576.
Full textLanding, Ed, Christopher R. Barnes, and Robert K. Stevens. "Tempo of earliest Ordovician graptolite faunal succession: conodont-based correlations from the Tremadocian of Quebec." Canadian Journal of Earth Sciences 23, no. 12 (December 1, 1986): 1928–49. http://dx.doi.org/10.1139/e86-180.
Full textMorales, José Ángel Juárez, Gerardo Reyna Hernández, Jesús Romero Valencia, and Omar Rosario Cayetano. "Free Cells in Hyperspaces of Graphs." Mathematics 9, no. 14 (July 10, 2021): 1627. http://dx.doi.org/10.3390/math9141627.
Full textGansert, Juliane, Jorge Golowasch, and Farzan Nadim. "Sustained Rhythmic Activity in Gap-Junctionally Coupled Networks of Model Neurons Depends on the Diameter of Coupled Dendrites." Journal of Neurophysiology 98, no. 6 (December 2007): 3450–60. http://dx.doi.org/10.1152/jn.00648.2007.
Full textGao, Zhi Guo. "Numerical Analysis of Solidification Behavior during Laser Welding Nickel-Based Single-Crystal Superalloy Part I: Crystallography-Dependent Solid Aluminum Distribution." Materials Science Forum 1020 (February 2021): 13–22. http://dx.doi.org/10.4028/www.scientific.net/msf.1020.13.
Full textMakhrova, E. N. "On Limit Sets of Monotone Maps on Dendroids." Applied Mathematics and Nonlinear Sciences 5, no. 2 (November 30, 2020): 311–16. http://dx.doi.org/10.2478/amns.2020.2.00056.
Full textBerthé, V., F. Dolce, F. Durand, J. Leroy, and D. Perrin. "Rigidity and Substitutive Dendric Words." International Journal of Foundations of Computer Science 29, no. 05 (August 2018): 705–20. http://dx.doi.org/10.1142/s0129054118420017.
Full textHeath, Jo, and Van C. Nall. "Centers of a dendroid." Fundamenta Mathematicae 189, no. 2 (2006): 173–83. http://dx.doi.org/10.4064/fm189-2-6.
Full textDissertations / Theses on the topic "Dendrid"
Tylich, Ondřej. "Elektromigrace tavidlových zbytků na povrchu DPS." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242134.
Full textSchippling, Susanne. "Funktionelle Analyse von Dendrin zellbiologische Untersuchungen und Inaktivierung des Dendrin-Gens der Maus /." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961678046.
Full textManubens-Gil, Linus 1989. "Computationl and modeling approaches to multi-scale anatomical description of neuronal circuitry." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/664511.
Full textDurant l’últim segle, el sistema nerviós s’ha estudiat des d’un punt de vista reduccionista, basant-se en la hipòtesi que entendre en profunditat neurones individuals o fraccions petites de poblacions neuronals portaria a conclusions generals sobre la funció del cervell. De totes maneres, fins a quin punt detalls anatòmics de neurones individuals poden afectar la connectivitat de les xarxes que formen, és una qüestió que en gran part s’ha passat per alt. Les discapacitats intel·lectuals proporcionen una oportunitat excel·lent per explorar la rellevància de detalls estructurals, perquè molts trastorns cognitius mostren alteracions arquitectòniques específiques que correlacionen amb habilitats cognitives. En aquesta Tesi, pretenia estudiar com la topologia dels circuits neuronals és afectada per característiques arquitectòniques en un model murí de discapacitat intel·lectual, en concret de síndrome de Down, i per tractaments pro-cognitius amb efectes de remodel·lació de la xarxa. Ho he fet des de tres punts de vista: 1. L’exploració d’un model computacional 2D mínim de la capa cortical II/III parametritzat amb dades experimentals d’arquitectura dendrítica ens els nostres models de síndrome de Down. 2. L’estudi de neurones individuals, la seva diversitat i propietats morfològiques d’escala mesoscòpica en el model murí TgDyrk1A de síndrome de Down. 3. El desenvolupament d’un marc experimental i computacional per a l’estudi del problema des d’una perspectiva multi-escala. La meva feina ha mostrat que l’arquitectura dendrítica i la distribució de contactes sinàptics tenen implicacions significatives en l’optimalitat de neurones individuals per a l’eficiència en el processat d’informació i per a la capacitat d’emmagatzemar memòries, i que aquestes dues quantitats permeen al nivell de xarxa, determinant les capacitats computacionals de conjunts de neurones. També, he trobat variacions neuromorfològiques a CA1 dependents de la posició en neurones piramidals, acompanyades per variacions en densitat cel·lular, apuntat que propietats intrínseques de CA1 poden variar al llarg de la seva extensió. Aquestes inhomogeneitats eren diferents en ratolins sans i TgDyrk1A, possiblement tenint efectes en aspectes funcionals emergents concrets. xiv En la meva Tesi he afrontat reptes en lligar estructura i funció i en l’estudi de les inhomogeneïtats morfològiques en múltiples escales (de cèl·lula individual i de poblacions). Per a assolir aquests reptes, he desenvolupat mètodes computacionals per al mapejat 3D de poblacions cel·lulars i de densitats dendrítiques i he avaluat la seva validesa. També he desenvolupat un marc de modelització que permet l’instanciació multi-escala de xarxes neuronals biològicament realistes. Finalment, he optimitzat la tècnica de clarejat de cervell sencer CLARITY i he desenvolupat un pipeline per a aplicar les nostres eines d’anàlisi de poblacions i els mètodes multi-escala de model·lizatió per a l’anàlisi estructural de cervells sencers, i per a l’estudi de les implicacions del morfoespai neuronal en la topologia de la circuiteria neuronal.
Bjørnstad, Pedersen Lars. "An analysis of a shared mating in V2." Thesis, Umeå universitet, Institutionen för fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-96855.
Full textI detta examensarbete undersöker vi, från en topologisk synvinkel och utan applicering av Thurstons teorem, varför matchningen av det så kallade basilikapolynomet
Gräler, Markus. "Der G-Protein-gekoppelte Rezeptor EDG6." [S.l. : s.n.], 2000. http://www.diss.fu-berlin.de/2001/6/index.html.
Full textEvers, Jan Felix. "The role of dendritic filopodia in postembryonic remodelling of dendritic architecture." [S.l. : s.n.], 2005. http://www.diss.fu-berlin.de/2005/153/index.html.
Full textSaunders, Kate Marie. "Silurian dendroid graptolites : taxonomy, palaeoecology and biostratigraphy." Thesis, University of Portsmouth, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343388.
Full textArendt, Oliver. "Untersuchungen zur diffusiblen Mobilität kalziumbindender Proteine in Dendriten von Nervenzellen." Leipzig Leipziger Univ.-Verl, 2009. http://d-nb.info/998768014/04.
Full textSunseri, Erin Hannah. "Dendrite orientation in aluminum magnesium alloys." [Ames, Iowa : Iowa State University], 2009.
Find full textHilscher, Markus Michael. "Synchronization by Distal Dendrite-targeting Interneurons." PROGRAMA DE P?S-GRADUA??O EM NEUROCI?NCIAS, 2016. https://repositorio.ufrn.br/jspui/handle/123456789/24680.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-01-29T12:29:16Z (GMT) No. of bitstreams: 1 MarkusMichaelHilscher_TESE.pdf: 11039544 bytes, checksum: 9754abf5e62f785551c64a4ba1a727d0 (MD5)
Made available in DSpace on 2018-01-29T12:29:16Z (GMT). No. of bitstreams: 1 MarkusMichaelHilscher_TESE.pdf: 11039544 bytes, checksum: 9754abf5e62f785551c64a4ba1a727d0 (MD5) Previous issue date: 2016-12-01
A sincroniza??o neuronal surge de uma intera??o cooperativa de v?rios tipos celulares atrav?s de excita??o e inibi??o. Os mecanismos por tr?s desse tipo de coordena??o neuronal s?o, provavelmente, os mais din?micos entre as fun??es cerebrais, dificultando sua compreens?o. Entre os fatores que dificultam o estudo da sincronia, pode-se citar: o vasto n?mero de tipos de celulares, a diversidade de processos sin?pticos, a contribui??o de uma multiplicidade de canais e correntes i?nicas, entre outros. Essa tese tem como objetivo entender o papel de interneur?nios que especificamente inervam o dom?nio distal dos dendritos de c?lulas piramidais do hipocampo e neoc?rtex, na sincroniza??o de neur?nios em suas respectivas redes. A distribui??o de canais i?nicos e receptors sin?pticos em dendritos de c?lulas piramidais ? extremamente anisotr?pica. Assim, interneur?nios que inervam dom?nios proximais e distais dos dendritos causam efeitos distintos na c?lula alvo quando ativados. Por exemplo, por??es distais dos dendritos cont?m em abund?ncia um dos principais canais marcapassos em neur?nios: o canal regulado por nucleot?deo c?clico ativado por hiperpolariza??o. Esses canais produzem uma corrente cati?nica despolarizante (Ih) e tem um papel importante na regula??o da excitabilidade neuronal alterando dramaticamente as propriedades de disparo de neur?nios. Usando modelagem computacional, essa tese mostra como a amplitude de Ih em certos tipos celulares muda a taxa de disparo de um neur?nio, sua sincronia al?m da energia espectral e frequ?ncia de oscila??es. Al?m disso, como a express?o de Ih difere entre regi?es cerebrais, localiza??o e tipos celulares, essa tese, fazendo o uso de patch clamp, explora como Ih difere ao longo do eixo dorsoventral do hipocampo em c?lulas oriens-lacunosum moleculare (OLM), que s?o os principais interneur?nios que inervam dendritos distais dessa regi?o. Ademais, estudou-se aqui as c?lulas Martinotti, interneur?nios que inervam os dendritos distais do neoc?rtex. Nesse estudo, mostrou-se como uma popula??o definida de interneur?nios pode ser manipulada com o objetivo de controlar e coordenar o disparo de c?lulas piramidais. Ao fornecer inibi??o com energia e frequ?ncia adequada, as c?lulas Martinotti afetam especificamente um ?nico tipo de c?lula piramidal. Usando optogen?tica para ativar/desativar popula??es de c?lulas Martinotti, ? poss?vel gerar potenciais de a??o rebote em c?lulas piramidais quando alinhadas temporalmente. Os potenciais de a??o rebote, por sua vez, s?o resultado de uma forte inibi??o produzida pelas c?lulas Martinotti, o que faz com que esses esses interneur?nios possam resetar o disparo de c?lulas piramidais. De forma geral, c?lulas Martinotti e c?lulas OLM mostram similaridades surpreendentes em propriedades morfol?gicas, neuroqu?micas e eletrofisiol?gicas. Especialmente, suas longas proje??es axonais para camadas superiores assim como seus modos de disparo lentos, com baixos limiares e acomodativos tornam esses neur?nios singulares em suas capacidades de sincronizar os circuitos nos quais est?o inseridos.
Synchronization among neurons arises from the cooperative interaction of various cell types through excitation and inhibition. The mechanisms behind this type of neuronal orchestration are as versatile as almost no other coordination task in the brain, making its comprehension heavily challenging. Among many others, the high number of involved cell types, the diversity of synaptic processes as well as the contribution of a multitude of ion channels and currents span the plurality of neuronal synchronization mechanisms in our brains. Focusing on two brain areas, the hippocampus and the neocortex, this thesis aims to understand the role of distal dendritetargeting interneurons in shaping pyramidal cell activity and the timing of their action potentials. The distribution of ion channels and synaptic receptors in pyramidal cell dendrites is extremely anisotropic. Thus, interneurons innervating the proximal or distal areas of the dendrites cause different effects in the target cell when activated. For example, the distal portions of the pyramidal cell dendrites contain one of the most prominent pacemaker channels: the hyperpolarizationactivated cyclic nucleotide-gated channels. These channels produce a cationic depolarizing current (Ih) and play an essential role in the regulation of neuronal excitability. Using computational modeling, this thesis shows how the amount of Ih in certain cell types determines their spike rate, synchrony as well as power and frequency of ongoing network oscillations. Moreover, since Ih differs between brain regions as well as cell types and location, this thesis electrophysiologically explores how Ih differs along the dorsoventral axis of hippocampus in oriens-lacunosum moleculare (OLM) cells, the main distal dendrite-targeting interneurons of that region. Utilizing the main distal dendrite-targeting interneuron of the neocortex, the Martinotti cell, this thesis also shows how a defined population of interneurons can be manipulated in order to control and align pyramidal cell firing. By providing the right amount and frequency of inhibition, Martinotti cells are able to synchronize trains of subtype-specific pyramidal cells. Using optogenetic approaches to activate/inactivate populations of Martinotti cells, these dendrite-targeting interneurons are shown to trigger rebound action potentials in pyramidal cells when temporally aligned. The rebound action potentials in turn are the result of strong inhibition by Martinotti cells, giving these distal dendrite-targeting interneurons the power to reset pyramidal cell firing. Overall, Martinotti cells and OLM cells show quite striking similarities in morphological, neurochemical and electrophysiological properties. Especially, their long axonal projections to upper layers as well as their low-threshold, slow spiking fashion and the accommodating firing make these distal dendrite-targeting interneurons so special for neuronal synchronization.
Books on the topic "Dendrid"
Cuntz, Hermann, Michiel W. H. Remme, and Benjamin Torben-Nielsen, eds. The Computing Dendrite. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8094-5.
Full textSaunders, Kate Marie. Silurian dendroid graptolites: Taxonomy, palaeoecology and biostratigraphy. Portsmouth: University of Portsmouth, School of Earth and Environmental Sciences, 2001.
Find full textPanaretos, A. Dendra gigantes tou topou mas. Leukōsia, Kypros: Hypourgeion Geōrgias kai Physikōn Porōn, 1985.
Find full textZima, Petr. Lexique Dendi, Songhay: Djougou, Bénin : avec un index Français-Dendi. Köln: Rüdiger Köppe, 1994.
Find full textKpara, Mama Yola. Guide de transcription dendi. [Cotonou]: République du Bénin, Ministère de la cultures et des communications, Direction de l'alphabétisation, Centre départemental de l'alphabétisation de l'ATACORA, 1995.
Find full textOl £ga Vai nshtei n. Dendi: Moda, literatura, stil £ zhizni. Moskva: Novoe literaturnoe obozrenie, 2005.
Find full textHena klōnari apo to megalo dendro tēs Cheimarras. Athēna: Ekdotikos Oikos Angelakē, 2013.
Find full textMessmer, Mildred A. Dendis. The Dendis and Knapik families: Their American story. Interlaken, N.Y: M.A.D. Messmer, 2008.
Find full textKantēs, Panagiōtēs Christou. Ereuna gia to genealogiko dendro koinotētas Hagiou Iōannē Malountas. Leukōsia: [s.n.], 2006.
Find full textBook chapters on the topic "Dendrid"
Bährle-Rapp, Marina. "Dendrit." In Springer Lexikon Kosmetik und Körperpflege, 145. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_2731.
Full textGooch, Jan W. "Dendrite." In Encyclopedic Dictionary of Polymers, 200. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3412.
Full textStabel, Aaron, Kimberly Kroeger-Geoppinger, Jennifer McCullagh, Deborah Weiss, Jennifer McCullagh, Naomi Schneider, Diana B. Newman, et al. "Dendrite." In Encyclopedia of Autism Spectrum Disorders, 856. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_1422.
Full textWalrath, Robert. "Dendrite." In Encyclopedia of Child Behavior and Development, 481. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-79061-9_798.
Full textCalifano, Claudia. "Dendrite." In Encyclopedia of Autism Spectrum Disorders, 1307. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-91280-6_1422.
Full textDolce, Francesco, and Dominique Perrin. "Eventually Dendric Shifts." In Computer Science – Theory and Applications, 106–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19955-5_10.
Full textKatrancha, Sara Marie, and Anthony J. Koleske. "Dendrite Maintenance." In Dendrites, 317–55. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_14.
Full textPerrin, Dominique. "Groups, Languages and Dendric Shifts." In Developments in Language Theory, 60–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98654-8_5.
Full textSantina, Luca Della, and Yvonne Ou. "Dendrite Degeneration in Glaucoma." In Dendrites, 581–97. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_22.
Full textNakagawa, Takayuki. "Afferent Dendrite and Axon." In Regenerative Medicine for the Inner Ear, 273–77. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54862-1_29.
Full textConference papers on the topic "Dendrid"
Glasbergen, Brad, Fangyu Wu, and Khuzaima Daudjee. "Dendrite." In SIGMOD/PODS '21: International Conference on Management of Data. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3448016.3452755.
Full textGaillard, Mathieu, Bedrich Benes, Eric Guérin, Eric Galin, Damien Rohmer, and Marie-Paule Cani. "Dendry." In I3D '19: Symposium on Interactive 3D Graphics and Games. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3306131.3317020.
Full textArce, Fernando, Erik Zamora, and Humberto Sossa. "Dendrite Ellipsoidal Neuron." In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7965933.
Full textChen, Lei. "Integrating First-Principle Calculation and Phase-Field Simulation for Lithium Dendritic Growth on the Anode of a Lithium-Ion Battery." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65538.
Full textPutta, Ramesh N., and Malur N. Srinivasan. "Mathematical Model of Solidification in Continuous Cast Low Carbon Steel Billets." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12303.
Full textZhanbossinov, Askhat, Kamilya Smagulova, and Alex Pappachen James. "CMOS-memristor dendrite threshold circuits." In 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE, 2016. http://dx.doi.org/10.1109/apccas.2016.7803914.
Full textBolotov, V. N., S. V. Denisov, A. V. Krichok, and Yu V. Tkach. "Fractal antenna of dendrite type." In 1999 9th International Crimean Microwave Conference 'Microwave and Telecommunication Technology'. Conference Proceedings. IEEE, 1999. http://dx.doi.org/10.1109/crmico.1999.815194.
Full textDenisov, S. V., and A. V. Kirichok. "Simulation of dendrite fractal antennas." In 2000 10th International Crimean Microwave Conference. Microwave and Telecommunication Technology. Conference Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/crmico.2000.1256133.
Full textAveson, J., G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, A. Tandjaoui, B. Billia, K. Goodwin, et al. "Dendrite Bending during Directional Solidification." In Superalloys. John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.7449/2012/superalloys_2012_615_624.
Full textOtake, Shiro, Masahiro Nishimura, and Ken-ichiro Sugiyama. "Oxidization and Combustion in Liquid Sodium Droplet." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75250.
Full textReports on the topic "Dendrid"
Merchant, Bion John. The GNEMRE Dendro Tool. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/926809.
Full textKumta, Prashant, Moni Datta, and Oleg Velikokhatnyi. Engineering Approaches to Dendrite free Lithium Anodes. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1772243.
Full textHarry, Katherine Joann. Lithium dendrite growth through solid polymer electrolyte membranes. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1481923.
Full textMcFadden, G. B., S. R. Coriell, and R. F. Sekerka. Analytic solution for a non-axisymmetric isothermal dendrite. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6308.
Full textMcFadden, G. B., S. R. Coriell, and R. F. Sekerka. Shape parameter for a non-axisymmetric isothermal dendrite. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6347.
Full textQi, Yue, Long-Qing Chen, Xingcheng Xiao, and Qinglin Zhang Zhang. Dendrite Growth Morphology Modeling in Liquid and Solid Electrolytes. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1659759.
Full textArias, Eduardo, Ivana Moggio, and Ronald Ziolo. Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms Dendrimers. Phase 2. Cholesteric Liquid Crystal Glass Platinum Acetylides. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada619975.
Full text