Academic literature on the topic 'Dendrites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dendrites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dendrites"
Larkum, M. E., M. G. Rioult, and H. R. Luscher. "Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures." Journal of Neurophysiology 75, no. 1 (January 1, 1996): 154–70. http://dx.doi.org/10.1152/jn.1996.75.1.154.
Full textFujishima, Kazuto, Junko Kurisu, Midori Yamada, and Mineko Kengaku. "βIII spectrin controls the planarity of Purkinje cell dendrites by modulating perpendicular axon-dendrite interactions." Development 147, no. 24 (November 24, 2020): dev194530. http://dx.doi.org/10.1242/dev.194530.
Full textMitchell, Josephine W., Ipek Midillioglu, Ethan Schauer, Bei Wang, Chun Han, and Jill Wildonger. "Coordination of Pickpocket ion channel delivery and dendrite growth in Drosophila sensory neurons." PLOS Genetics 19, no. 11 (November 9, 2023): e1011025. http://dx.doi.org/10.1371/journal.pgen.1011025.
Full textChristie, J. M., and G. L. Westbrook. "Regulation of Backpropagating Action Potentials in Mitral Cell Lateral Dendrites by A-Type Potassium Currents." Journal of Neurophysiology 89, no. 5 (May 1, 2003): 2466–72. http://dx.doi.org/10.1152/jn.00997.2002.
Full textGöbel, Werner, and Fritjof Helmchen. "New Angles on Neuronal Dendrites In Vivo." Journal of Neurophysiology 98, no. 6 (December 2007): 3770–79. http://dx.doi.org/10.1152/jn.00850.2007.
Full textFeng, Chengye, Pankajam Thyagarajan, Matthew Shorey, Dylan Y. Seebold, Alexis T. Weiner, Richard M. Albertson, Kavitha S. Rao, Alvaro Sagasti, Daniel J. Goetschius, and Melissa M. Rolls. "Patronin-mediated minus end growth is required for dendritic microtubule polarity." Journal of Cell Biology 218, no. 7 (May 10, 2019): 2309–28. http://dx.doi.org/10.1083/jcb.201810155.
Full textNithianandam, Vanitha, and Cheng-Ting Chien. "Actin blobs prefigure dendrite branching sites." Journal of Cell Biology 217, no. 10 (July 24, 2018): 3731–46. http://dx.doi.org/10.1083/jcb.201711136.
Full textSchiller, Yitzhak. "Inter-Ictal- and Ictal-Like Epileptic Discharges in the Dendritic Tree of Neocortical Pyramidal Neurons." Journal of Neurophysiology 88, no. 6 (December 1, 2002): 2954–62. http://dx.doi.org/10.1152/jn.00525.2001.
Full textSharp, D. J., W. Yu, and P. W. Baas. "Transport of dendritic microtubules establishes their nonuniform polarity orientation." Journal of Cell Biology 130, no. 1 (July 1, 1995): 93–103. http://dx.doi.org/10.1083/jcb.130.1.93.
Full textVelte, Toby J., and Richard H. Masland. "Action Potentials in the Dendrites of Retinal Ganglion Cells." Journal of Neurophysiology 81, no. 3 (March 1, 1999): 1412–17. http://dx.doi.org/10.1152/jn.1999.81.3.1412.
Full textDissertations / Theses on the topic "Dendrites"
Croydon, David Alexander. "Random fractal dendrites." Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:4e17aebc-456d-4891-8527-692331ebff05.
Full textSvensson, Carl-Magnus. "Dynamics of spatially extended dendrites." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10788/.
Full textGudgel, Katherine Ann. "Growth of ammonium chloride dendrites." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/289878.
Full textFörstner, Friedrich. "The morphological identity of insect dendrites." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-129497.
Full textJin, Xiaoming. "Dendritic development of GABAergic cortical interneurons revealed by biolistic transfection with GFP." Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2626.
Full textTitle from document title page. Document formatted into pages; contains vii, 218 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
Nilson, James E. "Compartmental distribution of two cation chloride cotransporter types along starburst amacrine cell dendrites underlies the directional properties of these dendrites." Thesis, Boston University, 2005. https://hdl.handle.net/2144/37167.
Full textPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
A fundamental aspect of vision is the ability to detect motion and to define its direction. In the retina, directionally selective ganglion cells respond to stimulus motion in a 'preferred' direction but respond little to stimulus motion in the opposite or 'null' direction. However despite nearly forty years of investigation, the precise cellular locus and underlying mechanisms of direction selective encoding have remained largely elusive. Recently, starburst amacrine cells, that are presynaptic to directionally selective ganglion cells, have been shown to provide direction specific inhibitory output to these ganglion cells. Therefore defining the biophysical properties specific to starburst amacrine cell dendrites will provide significant insight into the ability of visual systems to encode the direction of objects moving through an animal's visual field. Using a combination of intracellular filling of starburst amacrine cells and immunohistochemical localization of biophysically relevant molecules, we have examined how individual dendrites compute such motion. In order to define the relative degree and pattern of colocalization of these markers on filled dendrites we developed a new set of image acquisition and data analysis procedures that have allowed us to define the biophysical signature intrinsic to different portions of starburst amacrine cell dendrites. We have found that sodium-potassium-chloride cotransporter (NKCC2) and potassium-chloride cotransporter (KCC2) are expressed and differentially distributed on the proximal and distal dendritic compartments of starburst amacrine cells, respectively. The functional relevance of the anatomical distribution pattern of these cation-chloride-cotransporter types has been confirmed by others using physiological techniques. In summary, our studies provide a fundamental mechanism through which starburst amacrine cells define motion direction and transmit this information to directionally selective ganglions cells. In addition, our illumination of the basic concept of segregation of functional components to different dendritic compartments will likely prove to be an important theme of neuronal function throughout the nervous system.
2031-01-01
Karam, Philippe Chucri. "Modeling passive and active mechanisms in motoneuron dendrites." Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/13713.
Full textGeorge, Suma. "Simulink modeling and implementation of cmos dendrites using fpaa." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44915.
Full textOu, Yimiao. "Molecular mechanisms controlling the arborization of dendrites in «Drosophila»." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96940.
Full textL'élaboration et le fonctionnement harmonieux des circuits nerveux dépendent de la croissance des dendrites et de leur guidage et ciblage vers les territoires appropriés au cours du développement. La morphologie des dendrites sert de signe distinctif pour chaque neurone, et ainsi, joue un rôle crucial dans la détermination des différents influx (synaptiques ou sensoriels) que reçoit un neurone. Malgré de récentes avancées dans la compréhension des mécanismes moléculaires et cellulaires qui contrôlent l'architecture dendritique, notre connaissance du développement des dendrites reste encore incomplète. Mes travaux de recherche se sont attachés à découvrir de nouveaux gènes et mécanismes impliqués dans la morphogenèse dendritique. Dans ce but, j'ai choisi au cours de ma thèse deux méthodes d'étude: une approche par crible génétique et une approche par gènes candidats, que j'ai appliquées aux neurones appelés dendritic arborization (da) de la drosophile, mon modèle d'étude. Mes recherches m'ont permis de me concentrer sur trois molécules: 1) le récepteur nucléaire de l'hormone stéroïde ecdysone (EcR), 2) le facteur de transcription Longitudinals Lacking (Lola) et enfin, 3) la molécule de surface Turtle (Tutl). J'ai pu montrer que chacun de ces facteurs est implique dans des aspects distincts du processus de morphogenèse dendritique incluant le branchement, la distribution et l'auto-répulsion dendritiques. L'identification de ces molécules, la description de leurs patrons d'expression et la caractérisation des phénotypes associés à leurs pertes ou gains de fonctions, m'ont permis d'apporter de nouvelles connaissances des réseaux de régulation contrôlant la morphogenèse dendritique.
Coutts, Emma Jayne. "The effect of noise in models of spiny dendrites." Thesis, Heriot-Watt University, 2010. http://hdl.handle.net/10399/2352.
Full textBooks on the topic "Dendrites"
Greg, Stuart, Spruston Nelson, and Häusser Michael, eds. Dendrites. 2nd ed. Oxford: Oxford University Press, 2007.
Find full textEmoto, Kazuo, Rachel Wong, Eric Huang, and Casper Hoogenraad, eds. Dendrites. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0.
Full textGreg, Stuart, Spruston Nelson, and Häusser Michael, eds. Dendrites. Oxford: Oxford University Press, 1999.
Find full textA, Zhuravlëv V., ed. Physics of dendrites: Computational experiments. Singapore: World Scientific, 1994.
Find full textKupferman, Justine. Targeting Ion Channels to Distal Dendrites. [New York, N.Y.?]: [publisher not identified], 2013.
Find full textR, Baylog Louis, ed. Dendritic spines biochemistry, modeling and properties. Hauppauge NY: Nova Science Publishers, 2009.
Find full textCenter, Langley Research, ed. Analytic theory for the selection of 2-D needle crystal at arbitrary Peclet number. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Find full textNova Scotian Institute of Science., ed. Dendrites and batrachians and reptiles of Nova Scotia. [Halifax, N.S: Nova Scotian Institute of Science, 1994.
Find full textA, Hellawell, and United States. National Aeronautics and Space Administration., eds. Communications: Mechanical deformation of dendrites by fluid flow. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textBook chapters on the topic "Dendrites"
Emoto, Kazuo, Rachel Wong, Eric Huang, and Casper Hoogenraad. "Introduction." In Dendrites, 3–6. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_1.
Full textFuerst, Peter G. "Mosaics and Lamination in the Retina." In Dendrites, 213–44. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_10.
Full textWang, Yuan, and Edwin W. Rubel. "Modifying Dendritic Structure After Function." In Dendrites, 245–70. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_11.
Full textTogashi, Kazuya, Hiroyuki Koizumi, Takahiro Kanamori, and Kazuo Emoto. "Molecular Control of Dendritic Remodeling." In Dendrites, 273–94. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_12.
Full textCline, Hollis T. "Experience-Dependent Dendritic Arbor Development." In Dendrites, 295–315. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_13.
Full textKatrancha, Sara Marie, and Anthony J. Koleske. "Dendrite Maintenance." In Dendrites, 317–55. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_14.
Full textIwasaki, Hirohide, Shinji Tanaka, and Shigeo Okabe. "Molecular Assembly of Excitatory Synapses." In Dendrites, 359–85. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_15.
Full textBikbaev, Arthur, Maël Duménieu, Jeffrey Lopez-Rojas, and Martin Heine. "Localising Receptors and Channels Across the Dendritic Arbour." In Dendrites, 387–424. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_16.
Full textChipman, Peter, and Yukiko Goda. "Adhesion Molecules in Synapse Assembly and Function." In Dendrites, 425–65. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_17.
Full textVilla, Katherine L., and Elly Nedivi. "Excitatory and Inhibitory Synaptic Placement and Functional Implications." In Dendrites, 467–87. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_18.
Full textConference papers on the topic "Dendrites"
Singh, P., V. Cozzolino, G. Galyon, R. Logan, K. Troccia, J. L. Hurd, and P. Tsai. "Dendritic Growth Failure of a Mesa Diode." In ISTFA 1997. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.istfa1997p0179.
Full text"Dendrites Abstracts." In 4th NAMASEN Training Workshop on Dendrites. Frontiers Media SA, 2014. http://dx.doi.org/10.3389/978-2-88919-341-7.
Full textYoon, Ikroh, and Seungwon Shin. "Numerical Simulation of Multiple Seeds Interaction During Three-Dimensional Dendritic Solidification With Fluid Flow." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18129.
Full textSekulic, Dusan P. "A Heuristic Thermodynamic Interpretation of a Mechanism Responsible for the Selection of Solidification Microstructures." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39521.
Full textDiepers, Hermann-J., Janin Eiken, and Ingo Steinbach. "Is There a Difference Between Dendrites of a Binary or a Ternary Alloy? Some Answers by Phase-Field Simulations." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32844.
Full textRózsa, Balázs, Zoltán Szadai, Linda Judák, Balázs Chiovini, Gábor Juhász, Katalin Ócsai, Dénes Pálfi, et al. "Imaging of dendrites and sparse interneuronal networks with 3D random access microscopy." In Optics and the Brain. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/brain.2023.bw3b.6.
Full textJiang, Qian, Abhishek Deshpande, and Abhijit Dasgupta. "Is the Heterogeneous Microstructure of SnAgCu (SAC) Solders Going to Pose a Challenge for Heterogeneous Integration?" In ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ipack2017-74133.
Full textHutchinson, Zachary. "Artificial Dendrites: an Algorithm." In 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI). IEEE, 2020. http://dx.doi.org/10.1109/cogmi50398.2020.00033.
Full textGuo, Taiming, Hongmin Li, and G. X. Wang. "Development of Irregular Interface Morphology During Unidirectional Solidification of Succinonitrile." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47215.
Full textPlagge, Mark, Suma George Cardwell, and Frances S. Chance. "Expressive Dendrites in Spiking Networks." In 2024 Neuro Inspired Computational Elements Conference (NICE). IEEE, 2024. http://dx.doi.org/10.1109/nice61972.2024.10548485.
Full textReports on the topic "Dendrites"
Wheeler, A. A., B. T. Murray, and R. J. Schaefer. Computation of dendrites using a phase field model. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4894.
Full textGoodman, K. Copper Dendrites and Surface Engineering for Enhanced CO2 Reduction Research Report Paper. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1784613.
Full textUppuluri, Srinivas, Petar R. Dvornic, June W. Klimash, Peter I. Carver, and Nora C. Tan. The Properties of Dendritic Polymers I: Generation 5 Poly(amidoamine) Dendrimers. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada346880.
Full textAllen, Jeffrey, Robert Moser, Zackery McClelland, Md Mohaiminul Islam, and Ling Liu. Phase-field modeling of nonequilibrium solidification processes in additive manufacturing. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42605.
Full textUppuluri, Srinivas, Petar R. Dvornic, Nora C. Beck Tan, and Gary Hagnauer. The Properties of Dendritic Polymers 2: Generation Dependence of the Physical Properties of Poly(amidoamine) Dendrimers. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada359423.
Full textKenamond, Mark. Dendritic Paving Ideas. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1165179.
Full textMoore, Jeffrey S. Dendritic Materials Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada422098.
Full textKenamond, Mark. (U) Dendritic Zoner Idea. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1132544.
Full textKumta, Prashant, Moni Datta, and Oleg Velikokhatnyi. Engineering Approaches to Dendrite free Lithium Anodes. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1772243.
Full textKukowska Latallo, J. F., A. U. Bielinska, C. Chen, M. Rymaszewski, and D. A. Tomalia. Gene Transfer Using StarburstTM Dendrimers. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada406313.
Full text