Academic literature on the topic 'Dendritic arborization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dendritic arborization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dendritic arborization"
Schaefer, Andreas T., Matthew E. Larkum, Bert Sakmann, and Arnd Roth. "Coincidence Detection in Pyramidal Neurons Is Tuned by Their Dendritic Branching Pattern." Journal of Neurophysiology 89, no. 6 (June 2003): 3143–54. http://dx.doi.org/10.1152/jn.00046.2003.
Full textChen, Chiung-Ya, Chia-Wen Lin, Chiung-Ying Chang, Si-Tse Jiang, and Yi-Ping Hsueh. "Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology." Journal of Cell Biology 193, no. 4 (May 9, 2011): 769–84. http://dx.doi.org/10.1083/jcb.201008050.
Full textMishra, Archana, Boris Knerr, Sónia Paixão, Edgar R. Kramer, and Rüdiger Klein. "The Protein Dendrite Arborization and Synapse Maturation 1 (Dasm-1) Is Dispensable for Dendrite Arborization." Molecular and Cellular Biology 28, no. 8 (February 11, 2008): 2782–91. http://dx.doi.org/10.1128/mcb.02102-07.
Full textFujishima, Kazuto, Junko Kurisu, Midori Yamada, and Mineko Kengaku. "βIII spectrin controls the planarity of Purkinje cell dendrites by modulating perpendicular axon-dendrite interactions." Development 147, no. 24 (November 24, 2020): dev194530. http://dx.doi.org/10.1242/dev.194530.
Full textTroilo, David, Meijuan Xiong, Justin C. Crowley, and Barbara L. Finlay. "Factors controlling the dendritic arborization of retinal ganglion cells." Visual Neuroscience 13, no. 4 (July 1996): 721–33. http://dx.doi.org/10.1017/s0952523800008609.
Full textJan, Yuh-Nung, and Lily Yeh Jan. "Branching out: mechanisms of dendritic arborization." Nature Reviews Neuroscience 11, no. 5 (May 2010): 316–28. http://dx.doi.org/10.1038/nrn2836.
Full textKong, Jiming, Vivian W. Y. Tung, John Aghajanian, and Zuoshang Xu. "Antagonistic Roles of Neurofilament Subunits NF-H and NF-M Against NF-L in Shaping Dendritic Arborization in Spinal Motor Neurons." Journal of Cell Biology 140, no. 5 (March 9, 1998): 1167–76. http://dx.doi.org/10.1083/jcb.140.5.1167.
Full textKeil, Kimberly P., Sunjay Sethi, and Pamela J. Lein. "Sex-Dependent Effects of 2,2′,3,5′,6-Pentachlorobiphenyl on Dendritic Arborization of Primary Mouse Neurons." Toxicological Sciences 168, no. 1 (November 3, 2018): 95–109. http://dx.doi.org/10.1093/toxsci/kfy277.
Full textKeeler, Austin B., Dietmar Schreiner, and Joshua A. Weiner. "Protein Kinase C Phosphorylation of a γ-Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization." Journal of Biological Chemistry 290, no. 34 (July 2, 2015): 20674–86. http://dx.doi.org/10.1074/jbc.m115.642306.
Full textSCHIERWAGEN, ANDREAS K., and JAAP VAN PELT. "SHAPING NEURONAL DENDRITES: INTERPLAY OF TOPOLOGICAL AND METRICAL PARAMETERS." Journal of Biological Systems 03, no. 04 (December 1995): 1193–200. http://dx.doi.org/10.1142/s0218339095001076.
Full textDissertations / Theses on the topic "Dendritic arborization"
Garrett, Andrew Weiner Joshua A. "Control of synaptogenesis and dendritic arborization by the [gamma]-Protocadherin family of adhesion molecules." [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/362.
Full textGarrett, Andrew. "Control of synaptogenesis and dendritic arborization by the γ-Protocadherin family of adhesion molecules." Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/362.
Full textKarakatsani, Andromachi [Verfasser], and Hans [Akademischer Betreuer] Straka. "LRP4 regulates dendritic arborization and synapse formation in the central nervous system neurons / Andromachi Karakatsani ; Betreuer: Hans Straka." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1120301963/34.
Full textHandara, Gerry [Verfasser], and Stephan [Akademischer Betreuer] Kröger. "The role of transmembrane-agrin and its receptor complex during dendritic arborization and synaptogenesis / Gerry Handara ; Betreuer: Stephan Kröger." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1199265411/34.
Full text高山, 雄太. "筋萎縮性側索硬化症2型原因遺伝子のショウジョウバエホモログの生体内機能." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/189376.
Full textChassefeyre, Romain. "Rôle de CHMP2B et du complexe ESCRT-III dans le remodelage dans membranes cellulaires : cas des épines dendritiques." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENV049/document.
Full textCHMP2B is a subunit of ESCRT-III, a highly conserved cytosolic protein machinery, responsible for membrane remodeling in diverse cellular mechanisms. Mutations in CHMP2B are responsible for a familial form of frontotemporal dementia. A previous study highlighted that FTD-related mutants of CHMP2B impair the morphological maturation of dendritic spines, a process that may underlie neurodegeneration in this disease. The goal of this research work id directed towards understanding the role of CHMP2B and ESCRT-III in dendritic spines structure and function. In cell lines, we demonstrated that CHMP2B associates preferentially with the plasma membrane, polymerizes in helical filaments and forms long and thin membrane protrusions. This result indicates that CHMP2B is directly involved in plasma membrane remodeling. In neurons, CHMP2B concentrates in specific sub-membrane microdomains close to the PSD. Biochemical analysis revealed that CHMP2B and CHMP4B associate with other subunits to form a remarkably stable postsynaptic ESCRT-III complex. Mass-spectrometry indicated that this complex also interacts with postsynaptic scaffolds and proteins involved in actin cytoskeleton remodelling. RNAi depletion of CHMP2B, in cultured neurons, alters stability of dendrite branching and morphology of dendritic spines, and impairs spine head growth, normally associated with LTP. Rescue experiments, with point mutants, indicated that CHMP2B activity in dendrite branching is dependent on its capacity to both bind phospholipids and oligomerization with ESCRT-III. We propose a novel functionality for an ESCRT-III complex containing CHMP2B, in maturation-dependent and plasticity-dependent processes of dendritic spine morphogenesis
Ou, Yimiao. "Molecular mechanisms controlling the arborization of dendrites in «Drosophila»." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96940.
Full textL'élaboration et le fonctionnement harmonieux des circuits nerveux dépendent de la croissance des dendrites et de leur guidage et ciblage vers les territoires appropriés au cours du développement. La morphologie des dendrites sert de signe distinctif pour chaque neurone, et ainsi, joue un rôle crucial dans la détermination des différents influx (synaptiques ou sensoriels) que reçoit un neurone. Malgré de récentes avancées dans la compréhension des mécanismes moléculaires et cellulaires qui contrôlent l'architecture dendritique, notre connaissance du développement des dendrites reste encore incomplète. Mes travaux de recherche se sont attachés à découvrir de nouveaux gènes et mécanismes impliqués dans la morphogenèse dendritique. Dans ce but, j'ai choisi au cours de ma thèse deux méthodes d'étude: une approche par crible génétique et une approche par gènes candidats, que j'ai appliquées aux neurones appelés dendritic arborization (da) de la drosophile, mon modèle d'étude. Mes recherches m'ont permis de me concentrer sur trois molécules: 1) le récepteur nucléaire de l'hormone stéroïde ecdysone (EcR), 2) le facteur de transcription Longitudinals Lacking (Lola) et enfin, 3) la molécule de surface Turtle (Tutl). J'ai pu montrer que chacun de ces facteurs est implique dans des aspects distincts du processus de morphogenèse dendritique incluant le branchement, la distribution et l'auto-répulsion dendritiques. L'identification de ces molécules, la description de leurs patrons d'expression et la caractérisation des phénotypes associés à leurs pertes ou gains de fonctions, m'ont permis d'apporter de nouvelles connaissances des réseaux de régulation contrôlant la morphogenèse dendritique.
Mah, Kar Men. "Unique roles for the C3 gamma-protocadherin isoform in WNT signaling and dendrite arborization." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5964.
Full textKeeler, Austin Byler. "Branching out by sticking together: elucidating mechanisms of gamma-protocadherin control of dendrite arborization." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/2230.
Full textDimitrova, Svetla. "Physiological Roles of Robo Receptor during dendrite development of the multidendritic arborization neurons of the Drosophila peripheral nervous system." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-78347.
Full textBook chapters on the topic "Dendritic arborization"
Gogan, P., Suzanne Tyč-Dumont, S. M. Korogod, and L. P. Savtchenko. "Functional Connections Between the Architecture of the Dendritic Arborization and the Microarchitecture of the Dendritic Membrane." In Neurobiology, 293–300. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5899-6_23.
Full textFrançois, Chantal, Jérôme Yelnik, Patricia Arecchi-Bouchhioua, and Gérard Percheron. "Branching Pattern and Geometrical Properties of Dendritic and Axonal Arborizations in the Striato-Pallido-Thalamic System in Macaques." In Advances in Behavioral Biology, 43–50. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-0194-1_6.
Full textKwon, Ester J., Takahiro Soda, and Li-Huei Tsai. "Neurodevelopment and Schizophrenia." In Neurobiology of Mental Illness, edited by Pamela Sklar, 327–37. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199934959.003.0025.
Full text"The Recent Advancement in Rapid Golgi Method and Result Interpretation." In Protocols used in Molecular Biology, edited by Surya Prakash Pandey, Mallikarjuna Rao Gedda, and Abhishek Pathak, 146–52. BENTHAM SCIENCE PUBLISHERS, 2020. http://dx.doi.org/10.2174/9789811439315120010017.
Full textIwasaki, Toshiharu, Kingsley Ibhazehiebo, Junko Kimura-Kuroda, Wataru Miyazaki, Noriaki Shimokawa, and Noriyuki Koibuchi. "Disruption of Thyroid Hormone Receptor-Mediated Transcription, Thyroid Hormone-Induced Purkinje Cell Dendrite Arborization and Granule Cell Neurite Extension by Polybrominated Diphenylethers." In BASIC/TRANSLATIONAL - Endocrine-Disrupting Chemicals, P1–91—P1–91. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part1.p4.p1-91.
Full text