Journal articles on the topic 'Dendritic materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dendritic materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nenchev, Bogdan, Joel Strickland, Karl Tassenberg, Samuel Perry, Simon Gill, and Hongbiao Dong. "Automatic Recognition of Dendritic Solidification Structures: DenMap." Journal of Imaging 6, no. 4 (2020): 19. http://dx.doi.org/10.3390/jimaging6040019.
Full textTakakura, Genki, Mukannan Arivanandhan, Kensaku Maeda, et al. "Dendritic Growth in Si1−xGex Melts." Crystals 11, no. 7 (2021): 761. http://dx.doi.org/10.3390/cryst11070761.
Full textAlexandrov, Dmitri V., Peter K. Galenko, and Lyubov V. Toropova. "Thermo-solutal and kinetic modes of stable dendritic growth with different symmetries of crystalline anisotropy in the presence of convection." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2113 (2018): 20170215. http://dx.doi.org/10.1098/rsta.2017.0215.
Full textLee, Jae Wook, Seung Choul Han, Byoung-Ki Kim, et al. "Facile synthesis of dendritic-linear-dendritic materials by click chemistry." Macromolecular Research 17, no. 7 (2009): 499–505. http://dx.doi.org/10.1007/bf03218898.
Full textHallensleben, Philipp, Felicitas Scholz, Pascal Thome, et al. "On Crystal Mosaicity in Single Crystal Ni-Based Superalloys." Crystals 9, no. 3 (2019): 149. http://dx.doi.org/10.3390/cryst9030149.
Full textMakarenko, Konstantin, Oleg Dubinin, and Igor Shishkovsky. "Analytical Evaluation of the Dendritic Structure Parameters and Crystallization Rate of Laser-Deposited Cu-Fe Functionally Graded Materials." Materials 13, no. 24 (2020): 5665. http://dx.doi.org/10.3390/ma13245665.
Full textGlicksman, M. E., and A. O. Lupulescu. "Dendritic crystal growth in pure materials." Journal of Crystal Growth 264, no. 4 (2004): 541–49. http://dx.doi.org/10.1016/j.jcrysgro.2003.12.034.
Full textLIU, JUN, and DONGFENG XUE. "A GENERAL TEMPLATE-FREE AND SURFACTANT-FREE SOLUTION-BASED ROUTE TOWARDS DENDRITIC TRANSITION-METAL SULFIDE NANOSTRUCTURES." Modern Physics Letters B 23, no. 31n32 (2009): 3777–83. http://dx.doi.org/10.1142/s021798490902182x.
Full textXiao, J. Z., and H. W. Kui. "Solidification of undercooled molten Cu30Ni70." Journal of Materials Research 14, no. 5 (1999): 1771–81. http://dx.doi.org/10.1557/jmr.1999.0239.
Full textAllen, Jeffrey B. "Phase-field simulations of isomorphous binary alloys subject to isothermal and directional solidification." Multidiscipline Modeling in Materials and Structures 17, no. 5 (2021): 955–73. http://dx.doi.org/10.1108/mmms-02-2021-0033.
Full textWang, Shuo, Jinwu Kang, Xiaopeng Zhang, and Zhipeng Guo. "A Study on the Effect of Ultrasonic Treatment on the Microstructure of Sn-30 wt.% Bi Alloy." Materials 11, no. 10 (2018): 1870. http://dx.doi.org/10.3390/ma11101870.
Full textCao, Xin, Huan Xia, and Xiangyu Zhao. "Toward dendrite-free alkaline zinc-based rechargeable batteries: A minireview." Functional Materials Letters 12, no. 05 (2019): 1930004. http://dx.doi.org/10.1142/s1793604719300044.
Full textBejan, Adrian, and Sylvie Lorente. "Vascularized Multi-Functional Materials and Structures." Advanced Materials Research 47-50 (June 2008): 511–14. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.511.
Full textStrickland, Joel, Bogdan Nenchev, and Hongbiao Dong. "On Directional Dendritic Growth and Primary Spacing—A Review." Crystals 10, no. 7 (2020): 627. http://dx.doi.org/10.3390/cryst10070627.
Full textAryanfar, Asghar, Sajed Medlej, and William A. Goddard III. "Morphometry of Dendritic Materials in Rechargeable Batteries." Journal of Power Sources 481 (January 2021): 228914. http://dx.doi.org/10.1016/j.jpowsour.2020.228914.
Full textCampidelli, Stéphane, Julie Lenoble, Joaquín Barberá, et al. "Supramolecular Fullerene Materials: Dendritic Liquid-Crystalline Fulleropyrrolidines." Macromolecules 38, no. 19 (2005): 7915–25. http://dx.doi.org/10.1021/ma051359g.
Full textHirst, Andrew R., David K. Smith, Martin C. Feiters, Huub P. M. Geurts, and Andrew C. Wright. "Two-Component Dendritic Gels: Easily Tunable Materials." Journal of the American Chemical Society 125, no. 30 (2003): 9010–11. http://dx.doi.org/10.1021/ja036111q.
Full textSun, Meng Le, and Yan Xin Yang. "Large Scale Synthesis of Dendritic CdS Nanostrucutres." Advanced Materials Research 643 (January 2013): 186–90. http://dx.doi.org/10.4028/www.scientific.net/amr.643.186.
Full textKosorukova, Tetiana A., Gregory Gerstein, Valerii V. Odnosum, Yuri N. Koval, Hans Jürgen Maier, and Georgiy S. Firstov. "Microstructure Formation in Cast TiZrHfCoNiCu and CoNiCuAlGaIn High Entropy Shape Memory Alloys: A Comparison." Materials 12, no. 24 (2019): 4227. http://dx.doi.org/10.3390/ma12244227.
Full textTrivedi, R., and W. Kurz. "Dendritic growth." International Materials Reviews 39, no. 2 (1994): 49–74. http://dx.doi.org/10.1179/imr.1994.39.2.49.
Full textXu, Qing Yan, Bai Cheng Liu, and Zuo Jian Liang. "Modeling of Dendritic Structure during Solidification Process Based on Cellular Automaton Model." Materials Science Forum 475-479 (January 2005): 3137–40. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.3137.
Full textZhao, Wei. "Bottom-Up Fabrication of Optical Metamaterials." Advanced Materials Research 910 (March 2014): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amr.910.3.
Full textChen, Weiliang, Shuhua Pang, Zheng Liu, Zhewei Yang, Xin Fan, and Dong Fang. "Hierarchical Dendritic Polypyrrole with High Specific Capacitance for High-performance Supercapacitor Electrode Materials." Journal of New Materials for Electrochemical Systems 20, no. 4 (2017): 197–204. http://dx.doi.org/10.14447/jnmes.v20i4.449.
Full textCarlmark, Anna, Craig Hawker, Anders Hult, and Michael Malkoch. "New methodologies in the construction of dendritic materials." Chem. Soc. Rev. 38, no. 2 (2009): 352–62. http://dx.doi.org/10.1039/b711745k.
Full textVasylyev, Maxym V., Ellen J. Wachtel, Ronit Popovitz-Biro, and Ronny Neumann. "Titanium Phosphonate Porous Materials Constructed from Dendritic Tetraphosphonates." Chemistry - A European Journal 12, no. 13 (2006): 3507–14. http://dx.doi.org/10.1002/chem.200501143.
Full textJeong, Jun-Ho, Jonathan A. Dantzig, and Nigel Goldenfeld. "Dendritic growth with fluid flow in pure materials." Metallurgical and Materials Transactions A 34, no. 3 (2003): 459–66. http://dx.doi.org/10.1007/s11661-003-0082-4.
Full textWan, Weihao, Dongling Li, Haizhou Wang, et al. "Automatic Identification and Quantitative Characterization of Primary Dendrite Microstructure Based on Machine Learning." Crystals 11, no. 9 (2021): 1060. http://dx.doi.org/10.3390/cryst11091060.
Full textWeener, J. W., and E. W. Meijer. "Photoresponsive Dendritic Monolayers." Advanced Materials 12, no. 10 (2000): 741–46. http://dx.doi.org/10.1002/(sici)1521-4095(200005)12:10<741::aid-adma741>3.0.co;2-6.
Full textXie, Hongtao, Qin Geng, Xiaoyue Liu, et al. "Solvent-assisted synthesis of dendritic cerium hexacyanocobaltate and derived porous dendritic Co3O4/CeO2 as supercapacitor electrode materials." CrystEngComm 23, no. 8 (2021): 1704–8. http://dx.doi.org/10.1039/d0ce01726d.
Full textOladele, Olabode, Chen Chen, Fei Yan, Branislav Vlahovic, and Yongan Tang. "Simulation and synthesis of silver dendritic nanostructures for surface-enhanced Raman scattering." Materials Express 9, no. 9 (2019): 1082–86. http://dx.doi.org/10.1166/mex.2019.1603.
Full textScholz, Felicitas, Mustafa Cevik, Philipp Hallensleben, Pascal Thome, Gunther Eggeler, and Jan Frenzel. "A 3D Analysis of Dendritic Solidification and Mosaicity in Ni-Based Single Crystal Superalloys." Materials 14, no. 17 (2021): 4904. http://dx.doi.org/10.3390/ma14174904.
Full textZeng, H. C., and L. C. Lim. "Secondary ionic forces in lead molybdate melt solidification." Journal of Materials Research 13, no. 6 (1998): 1426–29. http://dx.doi.org/10.1557/jmr.1998.0203.
Full textTomalia, Donald A. "The dendritic state." Materials Today 8, no. 3 (2005): 34–46. http://dx.doi.org/10.1016/s1369-7021(05)00746-7.
Full textPark, Sangeun, Saif Haider Kayani, Hyungrae Kim, et al. "Effect of Interdendritic Precipitations on the Mechanical Properties of GBF or EMS Processed Al-Zn-Mg-Cu Alloys." Crystals 11, no. 10 (2021): 1162. http://dx.doi.org/10.3390/cryst11101162.
Full textKeselowsky, Benjamin G., and Jamal S. Lewis. "Dendritic cells in the host response to implanted materials." Seminars in Immunology 29 (February 2017): 33–40. http://dx.doi.org/10.1016/j.smim.2017.04.002.
Full textIngverud, Tobias, Johan Erlandsson, Lars Wågberg, and Michael Malkoch. "Dendritic Polyampholyte-Assisted Formation of Functional Cellulose Nanofibril Materials." Biomacromolecules 21, no. 7 (2020): 2856–63. http://dx.doi.org/10.1021/acs.biomac.0c00573.
Full textDAGANI, RON. "Chemists Explore Potential Of Dendritic Macromolecules As Functional Materials." Chemical & Engineering News 74, no. 23 (1996): 30–38. http://dx.doi.org/10.1021/cen-v074n023.p030.
Full textWen, Z., A. Baek, and N. H. Farhat. "Optoelectronic neural dendritic tree processing with electron-trapping materials." Optics Letters 20, no. 6 (1995): 614. http://dx.doi.org/10.1364/ol.20.000614.
Full textAli, Omar A., Nathaniel Huebsch, Lan Cao, Glenn Dranoff, and David J. Mooney. "Infection-mimicking materials to program dendritic cells in situ." Nature Materials 8, no. 2 (2009): 151–58. http://dx.doi.org/10.1038/nmat2357.
Full textFrechet, J. M. J., M. Henmi, I. Gitsov, S. Aoshima, M. R. Leduc, and R. B. Grubbs. "Self-Condensing Vinyl Polymerization: An Approach to Dendritic Materials." Science 269, no. 5227 (1995): 1080–83. http://dx.doi.org/10.1126/science.269.5227.1080.
Full textHuang, Qing, and Lian Gao. "Simple Route for Synthesis of PbS Dendritic Nanostructured Materials." Chemistry Letters 33, no. 10 (2004): 1338–39. http://dx.doi.org/10.1246/cl.2004.1338.
Full textLiu, Feng, Yuzeng Chen, Gencang Yang, Yiping Lu, Zheng Chen, and Yaohe Zhou. "Competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni78.6Si21.4 alloy." Journal of Materials Research 22, no. 10 (2007): 2953–63. http://dx.doi.org/10.1557/jmr.2007.0380.
Full textWu, Tai-Jung, Sheng-Long Jeng, and Junn-Yuan Huang. "The Weld Microstructure and Mechanical Properties of the Alloy 52 and Its Variants with Applied Electromagnetic Stirring during Welding." Metals 11, no. 2 (2021): 351. http://dx.doi.org/10.3390/met11020351.
Full textZhang, Hongyu, Shunlong Ju, Guanglin Xia, Dalin Sun, and Xuebin Yu. "Dendrite‐Free Li‐Metal Anode Enabled by Dendritic Structure." Advanced Functional Materials 31, no. 16 (2021): 2009712. http://dx.doi.org/10.1002/adfm.202009712.
Full textWang, Yabin, Xin Du, Zhong Liu, Shihui Shi, and Haiming Lv. "Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials." Journal of Materials Chemistry A 7, no. 10 (2019): 5111–52. http://dx.doi.org/10.1039/c8ta09815h.
Full textUllah, M. Habib, Haram Moon, and Chang-Sik Ha. "Effect of pHs on the Structure Evolution of Platinum Nanoclusters and Their Surface Plasmon Resonance Properties." Journal of Nanoscience and Nanotechnology 21, no. 9 (2021): 4700–4704. http://dx.doi.org/10.1166/jnn.2021.19287.
Full textLambert, Joseph B., Jodi L. Pflug, Hongwei Wu, and Xiaoyang Liu. "Dendritic polysilanes." Journal of Organometallic Chemistry 685, no. 1-2 (2003): 113–21. http://dx.doi.org/10.1016/s0022-328x(03)00640-5.
Full textTsukruk, Vladimir V. "Dendritic Macromolecules at Interfaces." Advanced Materials 10, no. 3 (1998): 253–57. http://dx.doi.org/10.1002/(sici)1521-4095(199802)10:3<253::aid-adma253>3.0.co;2-e.
Full textLancelot, Alexandre, Rebeca González-Pastor, Rafael Clavería-Gimeno, et al. "Cationic poly(ester amide) dendrimers: alluring materials for biomedical applications." Journal of Materials Chemistry B 6, no. 23 (2018): 3956–68. http://dx.doi.org/10.1039/c8tb00639c.
Full textGollub, J. P., and L. M. Sander. "Pattern Formation in Materials Science." MRS Bulletin 12, no. 6 (1987): 98–100. http://dx.doi.org/10.1557/s0883769400067336.
Full text