Dissertations / Theses on the topic 'Densité dans les espaces de Sobolev'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 45 dissertations / theses for your research on the topic 'Densité dans les espaces de Sobolev.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bethuel, Fabrice. "Densité des fonctions régulières dans des espaces de Sobolev." Paris 11, 1989. http://www.theses.fr/1989PA112120.
Full textVaudène, Renée. "Espaces de Sobolev généralisés de type orlicz ou à poids : densité, immersion continue, interpolation de Lagrange." Perpignan, 1985. http://www.theses.fr/1985PERP0005.
Full textAbbas, Lamia. "Inégalités de Landau-Kolmogorov dans des espaces de Sobolev." Phd thesis, INSA de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-00776349.
Full textAddou, Ahmed. "Problèmes aux limites non linéaires dans les espaces d'Orlicz-Sobolev." Doctoral thesis, Universite Libre de Bruxelles, 1987. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213440.
Full textFontenas, Eric. "Constantes dans les inégalités de Sobolev et fonctions extrémales." Toulouse 3, 1996. http://www.theses.fr/1996TOU30001.
Full textCheikh, Ali Hussein. "Analyse asymptotique des équations de Hardy-Sobolev dans des espaces singuliers." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0174.
Full textIn this manuscript, divided into 3 parts, we study the existence of extremal for Hardy-Sobolev inequalities. Part 1: We obtain the (non-)existence of singulars solutions for the perturbative Hardy-Schrödinger equation on a non-smooth domain with the singular point 0 on the boundary of the domain. In particular, we introduce a geometric quantity G which generalizes the mean curvature for ”Large dimensions” and the new notion of the mass in ”Small dimensions”. Our main result is that, in the case of a subcritical perturbation, an interaction appears between the perturbation and G at 0 (resp. m) for large dimensions (resp. small dimensions). In addition, the negativity of the curvature G (resp. the positivity of the mass m) for the large dimensions (resp. small dimensions) is sufficient when the perturbation has no effect. Part 2: In this part, we perform a blow-up analysis of solutions for the Hardy-Sobolev equation of minimizing type. First, we obtain an optimal control of the family of solutions. After, we get specific informations about the blowup point using a Pohozaev identity. Part 3: We consider the best constant in a critical Sobolev inequality of second order. We show non-rigidity for the optimizers above a certain threshold, namely, we prove that the best constant is achieved by a nonconstant solution of the associated fourth order elliptic problem under Neumann boundary conditions. Our arguments rely on asymptotic estimates of the Rayleigh quotient. We also show rigidity below another threshold
Ben, Ayed Inès. "Etude d'injections de Sobolev critiques dans les espaces d'Orlicz et applications." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1133.
Full textIn this thesis, we focused on the one hand on the description of the lack of compactness of the critical Sobolev embedding into different classes of Orlicz spaces, and on the other hand on the study of the nonlinear Klein-Gordon equation with exponential nonlinearity. This work is divided into three parts. The aim of the first part is to characterize the lack of compactness of the Sobolev embedding of $H^2_{rad}(R^4)$ into the Orlicz space $mathcal{L}(R^4)$.The aim of the second part is twofold: firstly, we describe the lack of compactness of the Sobolev embedding of $H^1(R^2)$ into different classes of Orlicz spaces, secondly we investigate a family of nonlinear Klein-Gordon equations with exponential nonlinearity. This study includes both the global existence problem, the asymptotic completeness and the qualitative study for the associated Cauchy problem. The third part is dedicated to the analysis of the solutions to the 2D Klein-Gordon equation associated to a sequence of bounded Cauchy data in $H^1_{rad}(R^2)times L^2_{rad}(R^2)$. Based on the profile decompositions, this analysis was conducted in the framework of Orlicz norm
Han, Bang-Xian. "Analyse dans les espaces métriques mesurés." Thesis, Paris 9, 2015. http://www.theses.fr/2015PA090014/document.
Full textThis thesis concerns in some topics on calculus in metric measure spaces, in connection with optimal transport theory and curvature-dimension conditions. We study the continuity equations on metric measure spaces, in the viewpoint of continuous functionals on Sobolev spaces, and in the viewpoint of the duality with respect to absolutely continuous curves in the Wasserstein space. We study the Sobolev spaces of warped products of a real line and a metric measure space. We prove the 'Pythagoras theorem' for both cartesian products and warped products, and prove Sobolev-to-Lipschitz property for warped products under a certain curvature-dimension condition. We also prove the identification of p-weak gradients under curvature-dimension condition, without the doubling condition or local Poincaré inequality. At last, using the non-smooth Bakry-Emery theory on metric measure spaces, we obtain a Bochner inequality and propose a definition of N-Ricci tensor
Elhami, Charaf. "Etude de la positivité de fonctionnelles bilinéaires dans des espaces de Sobolev." Rouen, 1999. http://www.theses.fr/1999ROUES017.
Full textDroniou, Jérôme. "Etude de Certaines Equations aux Dérivées Partielles." Phd thesis, Université de Provence - Aix-Marseille I, 2001. http://tel.archives-ouvertes.fr/tel-00001180.
Full textMunnier, Vincent. "Analyse et rectifiabilité dans les espaces métriques singuliers." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00630615.
Full textGrellier, Sandrine. "Espaces de fonctions holomorphes dans les domaines de type fini." Orléans, 1991. http://www.theses.fr/1991ORLE2025.
Full textBarbieri, Davide. "Approximation des normes de Sobolev dans les groupes de Carnot." Cergy-Pontoise, 2008. http://www.theses.fr/2008CERG0381.
Full textIn this thesis we deal with a notion of Sobolev space W^{1,p} introduced by Bourgain, Brezis and Mironescu in 2001 by means of a norm involving local averages of finite differences. This norm turns out to be equivalent to the ordinary norm of the gradient, and this result has led to a Poincaré-like estimate due to Ponce in 2003, where indeed the right hand side contains the mentioned local approximations of the gradient norm. The main results are a generalization of these two works, originally stated in Euclidean setting, to a non-Euclidean framework, namely that of Carnot groups. While the first result of Bourgain et al. Could be directly generalized by adapting an Euclidean proof to the differential structure of Carnot groups, the Poincaré estimate of Ponce needed a completely different proof. This proof provides a sligtly less sharp result, but, due to its constructive approach, it gives an explicit realization of the threshold that makes the approximations effective
De, Oliveira Filho Geraldo. "Compactification des variétés minimales dans l'espace hyperbolique H [exposant] n." Paris 7, 1990. http://www.theses.fr/1990PA077158.
Full textRaudin, Yves. "Espaces de Sobolev avec poids et problèmes elliptiques non homogènes dans le demi-espace." Phd thesis, Université de Pau et des Pays de l'Adour, 2007. http://tel.archives-ouvertes.fr/tel-00260327.
Full textTouadera, Faustin. "Problèmes de Cauchy matriciels C ° °et dans les espaces de Sobolev, à caractéristiques multiples." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb376015825.
Full textTouadera, Faustin. "Problèmes de Cauchy matriciels C∞[infini] et dans les espaces de Sobolev, à caractéristiques multiples." Lille 1, 1986. http://www.theses.fr/1986LIL10085.
Full textBonzom, Florian. "Problèmes elliptiques en domaines non bornés: une approche dans des espaces de Sobolev avec poids." Phd thesis, Université de Pau et des Pays de l'Adour, 2008. http://tel.archives-ouvertes.fr/tel-00345851.
Full textBonzom, Florian Fabien Jean-Marc Amrouche Cherif. "Problèmes elliptiques en domaines non bornés une approche dans les espaces de Sobolev avec poids /." Pau : université de Pau et des Pays de l'Adour, 2008. http://tel.archives-ouvertes.fr/docs/00/34/58/51/PDF/these_bonzom.pdf.
Full textBonzom, Florian Fabien Jean-Marc. "Problèmes elliptiques en domaines non bornés : une approche dans les espaces de Sobolev avec poids." Pau, 2008. http://tel.archives-ouvertes.fr/docs/00/34/58/51/PDF/these_bonzom.pdf.
Full textThe aim of this PhD thesis is the resolution of elliptic problems in several unbounded domains. First, we study the Laplace operator in an exterior domain with nonhomogeneous and mixed boundary conditions and next in an exterior domain in the half-space with Dirichlet, Neumann and mixed boundary conditions. Then, we consider the Stokes problem in three different unbounded geometries: an exterior domain in the half-space, a perturbed half-space and an aperture domain. We give, for these problems, existence and uniqueness fundamental results in Lp's theory (with p strictly greater than 1 and strictly less than the infinity) in the functional framework of weighted Sobolev spaces. Moreover, we are also interested in strong solutions (particularly with regularity results) and in very weak solutions
Boulmezaoud, Tahar Zamène. "Etude des champs de Beltrami dans des domaines de R 3 bornés et non-bornés et applications en astrophysique." Paris 6, 1999. http://www.theses.fr/1999PA066659.
Full textBoutayeb, Salahaddine. "Sur les estimations du noyau de la chaleur dans les espaces métriques doublants." Cergy-Pontoise, 2010. http://www.theses.fr/2010CERG0498.
Full textIn the setting of a Riemannian manifold and more generally in a measured metric space endowed with a symmetric submarkovian semigroup, we are interested to generalize some heat kernel estimates results obtained by various authors when the volume growth is polynomial, to a more general case of the volume growth, called the doubling case. In this thesis, we will prove the following results: -Characterization of the Gaussian upper estimate by some one parameter weighted inequalities. -Obtaining the Gaussian upper estimate from the lower estimate. -Assuming the Gaussian upper estimate, we characterize the lower estimate by some Hölder type inequalities
Nguyen, Huy Hoang. "Equations de Navier-Stokes dans des domaines non bornés en dimension trois et problèmes elliptiques à données dans L/\1." Pau, 2008. http://www.theses.fr/2008PAUU3018.
Full textIn this thesis, we deal with the problems which are directly or indirectly related to fluid mechanics using weighted Sobolev spaces. The first part of this thesis contains three chapters which mainly concerns about the regularity of solutions of the stationary Navier-Stokes equations for incompressible viscous fluids in three-dimensional exterior domains or in the whole three-dimensional space with some additional results concerning the Oseen equations as well as the characterization of the kernel of the Laplace operator with Dirichlet boundary conditions in n-dimensional exterior domains and the characterization of the kernel of the Oseen system in threedimensional exterior domains. In the second part, we deal with certain properties of the gradient, divergence and rotational operators with applications to some elliptic problems in the whole space and in the half-space with L1-data
Salloum, Zaynab Guillopé Colette Talhouk Raafat. "Étude mathématique d'écoulements de fluides viscoélastiques dans des domaines singuliers." S. l. : Paris Est, 2008. http://doxa.scd.univ-paris12.fr:80/theses/th0417512.pdf.
Full textGrira, Sofiane. "Les équations de Navier-Stokes nonlinéaires dans IR [exposant 3]." Sherbrooke : Université de Sherbrooke, 1997.
Find full textTami, Abdelkader. "Etude d'un problème pour le bilaplacien dans une famille d'ouverts du plan." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4362/document.
Full textIn this work, we study the family of problems Δ 2uω = fω with boundary conditionuω = Δ uω = 0. There, the second member is assumed to depend smoothly on ω in L2(ω), where ω = {(r, θ); 0 < r < 1, 0 < θ < ω} , 0 < ω ≤ π, is a family of truncated sectors of the plane. If ω < π it is known from Blum et Rannacher (1980) that the solution uω decomposes as uω = u1,ω + u2,ω + u3,ω, (1) where u1,ω, u2,ω are singular and u3,ω is regular. Indeed, near the origin, u1,ω(resp. u2,ω, u3,ω) is of regularity H1+πω−ǫ (resp. H2+πω−ǫ, H4) for every Q > 0, while the solution uπ is, in the neighborhood of the origin again, of regularity H4. One clearly sees a resolution of the singularity near the angle π whose descriptionis the main objective of this work. The obtained result is that there exists a decomposition (1) of uω which is uniform with respect to ω, when ω → π, with the best possible topologies for each term, and which term by term convergestowards the Taylor expansion of uπ near 0
Farah, Hassane. "Etude mathématique et numérique d'un modèle de diffusion acoustique à coefficients discontinus dans un ouvert non régulier." Ecully, Ecole centrale de Lyon, 1997. http://www.theses.fr/1997ECDL0019.
Full textTran, Viet-Hoang. "Etude des singularités de problèmes d'évolution posés dans un polygone ou un polyèdre et applications." Lyon 1, 1995. http://www.theses.fr/1995LYO10070.
Full textHagbé, Joseph François. "Vitesse de convergence de l'itération du point fixe de Banach pour des problèmes semilinéaires elliptiques dans des domaines ayant une singularité conique." Valenciennes, 2004. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/2263f888-b8ae-4923-a945-c7f2e41b8acb.
Full textWe determine the convergence speed of the Banach fixed-point iteration applied to semilinear elliptic boundary value problems on domains with a conical point at the boundary. An important quantity is the norm of the embedding of the natural domain of the linear part of the problem into a family of weighted Sobolev spaces depending on an exponent giving a bound for the asymptotic behavior of the elements near the conical point. For general domains, we obtain a Lipschitz constant for the fixed point application which is proportional to this norm. Here we use the mapping properties of the Nemytskij (composition) operator on weighted Sobolev spaces. In the case of a 2d-sector, we derive estimations from above and below of the norm of this embedding, which imply its asymptotic behaviour when tending to infinity, when the interior angle of the sector approaches a limit value, for which the natural domain is no longer included in the given weighted space. We use Bessel functions
Bouzit, Hamid. "Equations d'Oseen dans des domaines non bornés." Pau, 2007. http://www.theses.fr/2007PAUU3004.
Full textIn mecanics of fluids, the study of the stationary flow of an incompressible fluid past a body constitutes an axis of important work. Since C. L. M. H. Navier and G. C. Stokes, we know that these flows are described by a non lineary system called Navier-Stokes system. I am interested on the Oseen problem which is a linear model of the Navier-Stokes system. I give the estimates of the scalar Oseen potentials with a function p- integrable or a distribution. I study the associated scalar Oseen equation by giving solutions in explicit forman regularities result of solutions. Finally, I study thet dimensional Oseen system. I give explicit form of strong and generalized solutions
Mazet, Sylvain. "Sur les opérateurs elliptiques sous forme divergence à coefficients peu réguliers et leur approximation dans une base d'ondelettes." Aix-Marseille 1, 1998. http://www.theses.fr/1998AIX11067.
Full textMelouah, Kamel. "Espaces de Sobolev à poids et leurs applications à des problèmes elliptiques linéaires et non linéaires dans des domaines non bornés." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376162504.
Full textMelouah, Kamel. "Espaces de sobolev a poids et leurs applications a des problemes elliptiques lineaires et non lineaires dans des domaines non bornes." Orléans, 1988. http://www.theses.fr/1988ORLE2011.
Full textMelkemi, Khaled. "Orthogonalité des B-splines de Chebyshev cardinales dans un espace de Sobolev pondéré." Phd thesis, Université Joseph Fourier (Grenoble), 1999. http://tel.archives-ouvertes.fr/tel-00004843.
Full textGambino, Mélanie. "Vivre dans les espaces ruraux de faible densité de population : pratiques et représentations des jeunes dans le Périgord vert (France) et le Rural Galway (Irlande)." Toulouse 2, 2008. https://halshs.archives-ouvertes.fr/tel-01151094.
Full textIn this research, we adopt an approach of the remote areas which differs from most of the previous studies, in the fact that we take low population densities as a datum. We focus on problems little invested by geographers until now, by investigating the meaning of living in remote areas. The constant doubts about the future of these remote areas led us to take an interest in a group of actors on which a part of the future rests : young people from 15 to 25 years of age. Thus, this research aims at understanding how young people deal with low population density. It is a question of penetrating into the logics of usage and appropriation of these specific areas and of explaining its models of organization. More precisely, it is important to understand how remote areas are lived, inhabited, put in acts, invested, perceived, transformed… to analyze the functioning of this particular spatial organization. In a more general way, our research aims at investigating how remote areas are represented and reinvented today. This analysis also tries to be a contribution to a better knowledge of the variety of rural areas in Europe. This work leans on a qualitative methodology based on semi-directive interviews and on participating observation. Besides, our analysis proceeds by comparison between France and Ireland because the place of rural areas in both French and Irish imagination establishes a common feature between these two countries
Lacoste, Patrick. "Les éléments finis des équations de Maxwell dans le code PALAS : Eléments finis nouveaux pour le cadre axisymétrique : La condensation des matrices masses." Bordeaux 1, 1994. http://www.theses.fr/1994BOR10560.
Full textTorne, Olaf. "Symétrie et brisure de symétrie dans quelques problèmes elliptiques." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211121.
Full textRazafison, Ulrich Jerry. "Théorie L(p) avec poids pour les équations d'Oseen dans les domaines non bornés." Phd thesis, Mathématiques appliquées, 2004. http://www.theses.fr/2004PAUU3012.
Full textThis thesis is devoted to the study of the Oseen equations in unbounded domains. The Oseen model is a linearized version of the Navier-Stokes equations describing the flow of a viscous and incompressible fluid past a bounded body. To describe the behavior at infinity of solutions and to take into account the paraboloidal region, the so-called wake, which appears behind the body during the flow, we choose to set the problem in a functional framework which uses anisotropic weights. In a first step, we prove density results and Hardy inequalities. In a second step, we prove existence, uniqueness and regularity of solutions. The results are first established in the whole space, then in an exterior domain
Salloum, Zaynab. "Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers." Thesis, Paris Est, 2008. http://www.theses.fr/2008PEST0017/document.
Full textIn this PHD thesis, we study three problems for viscoelastic flows of Oldroyd type. First, we study steady flows of slightly compressible in a bounded domain with non-zero velocities on the boundary ; the pressure and the extra-stress tensor are prescribed on the part of the boundary corresponding to entering velocity. This causes a weak singularity in the solution at the junction of incoming and outgoing flows. We also study the problem of steady flows of slightly compressible fluids with zero boundary conditions in a domain with an isolated corner point. Using a method of fixed point (first and second problems) and a Helmoltz decomposition (second problem), we show some results of existence and uniqueness of solutions. In the last part, we study the case of a non-steady flow : we show some results of local and of global existence, with sufficiently small initial data, for compressible flows. The zero-Mach number limit is also established
Rossignol, Raphaël. "Largeur du seuil dans les lois du Zéro-Un." Phd thesis, Paris 5, 2005. http://www.theses.fr/2005PA05S010.
Full textThis thesis further develops some recent results due to Talagrand , Friedgut and Kalai on the study of general conditions under which threshold phenomena occur. In a first part, we contribute to the unification of the general framework of the threshold phenomena, firstly by connecting the original setting of the "thresholds functions" due to Erdös and Renyi, the one of Friedgut and Kalai's work and the concentration of the hittig time of the property for which the threshold phenomenon holds ; secondly, by originating a research on the stability of the threshold phenomena under three kind of operations : union, intersection and tensor product. We obtain thus a simple way to construct threshold widths of various orders. In a second part, we optimize the general upper bound on the threshold width of a monotone symmetric property by using the logarithmic Sobolev inequality on the discrete cube
Salloum, Zaynab. "Étude mathématique d'écoulements de fluides viscoélastiques dans des domaines singuliers." Phd thesis, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00461675.
Full textNicolis, Stamatios. "Étude des défauts topologiques dans des structures atomiques désordonnées : influence sur le spectre d'excitations." Paris 11, 1988. http://www.theses.fr/1988PA112045.
Full textOru, Frédéric. "Rôle des oscillations dans quelques problèmes d'analyse non-linéaire." Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0018.
Full textBerdan, Nada El. "Régularité de problèmes à données dans les espaces pondérés par la distance au bord via l'inégalité uniforme de Hopf et le principe de dualité." Thesis, Poitiers, 2016. http://www.theses.fr/2016POIT2303/document.
Full textWe discuss the existence and non existence of the so called Hopf uniform Inequality (variant of a maximum principle) for the linear equation Lv = f with measurable coefficients and under the homogeneous Dirichlet Boundary condition. Then we apply such inequality to prove the W1;p 0 -regularity of a semi linear problem Lu = F(u), singular at u = 0, with the coefficients of the main operator of L in the space of vanishing mean oscillation. Moreover, when those coefficients are Lipschitz, we show that the gradient of the solution is at most in the space of bounded mean oscillation : bmor. In the last part of this thesis, we are concerned with the linear easticity system (Stationnary equation of the waves elasticity). But, here the second terms varies with respect to the distance function until the boundary.Using the duality method, we study the regularity of the solution of the elasticity system for the data belonging to various weighted spaces
Nguyen, Hoang Phuong. "Résultats de compacité et régularité dans un modèle de Ginzburg-Landau non-local issu du micromagnétisme. Lemme de Poincaré et régularité du domaine." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30315.
Full textIn this thesis, we study some boundary value problems involving micromagnetic models and differential forms. In the first part, we consider a nonlocal Ginzburg-Landau model arising in micromagnetics with an imposed Dirichlet boundary condition. The model typically involves S²-valued maps with an energy functional depending on several parameters, which represent physical quantities. A first question concerns the compactness of magnetizations having the energies of several Néel walls of finite length and topo- logical defects when these parameters converge to 0. Our method uses techniques developed for Ginzburg-Landau type problems for the concentration of energy on vortex balls, together with an approximation argument of S²-valued vector fields by S¹-valued vector fields away from the vortex balls. We also carry out in detail the proofs of the C^infinite regularity in the interior and C(^1,alpha) regularity up to the boundary, for all alpha belong to (0, 1/2), of critical points of the model. In the second part, we study the Poincaré lemma, which states that on a simply connected domain every closed form is exact. We prove the Poincaré lemma on a domain with a Dirichlet boundary condition under a natural assumption on the regularity of the domain: a closed form ƒ in the Hölder space C(^r,alpha) is the differential of a C(^r+1,alpha) form, provided that the domain itself is C(^r+1,alpha). The proof is based on a construction by approximation, together with a duality argument. We also establish the corresponding statement in the setting of higher order Sobolev spaces