Academic literature on the topic 'Density theorem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Density theorem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Density theorem":

1

Plewik. "UNIFORM DENSITY THEOREM." Real Analysis Exchange 25, no. 1 (1999): 65. http://dx.doi.org/10.2307/44153034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gritsenko, S. A. "On a density theorem." Mathematical Notes 51, no. 6 (June 1992): 553–58. http://dx.doi.org/10.1007/bf01263297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Narins, Lothar, and Tuan Tran. "A Density Turán Theorem." Journal of Graph Theory 85, no. 2 (September 20, 2016): 496–524. http://dx.doi.org/10.1002/jgt.22075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shin, Sug Woo. "Automorphic Plancherel density theorem." Israel Journal of Mathematics 192, no. 1 (February 28, 2012): 83–120. http://dx.doi.org/10.1007/s11856-012-0018-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Avraamova, O. D. "On the density theorem." Russian Mathematical Surveys 44, no. 1 (February 28, 1989): 229–30. http://dx.doi.org/10.1070/rm1989v044n01abeh002019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reiher, Christian. "The clique density theorem." Annals of Mathematics 184, no. 3 (November 1, 2016): 683–707. http://dx.doi.org/10.4007/annals.2016.184.3.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morgan, Frank. "Myers' theorem with density." Kodai Mathematical Journal 29, no. 3 (October 2006): 455–61. http://dx.doi.org/10.2996/kmj/1162478772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stevenhagen, P., and H. W. Lenstra. "Chebotarëv and his density theorem." Mathematical Intelligencer 18, no. 2 (March 1996): 26–37. http://dx.doi.org/10.1007/bf03027290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Allen, Peter, Julia Böttcher, Jan Hladký, and Diana Piguet. "A density Corrádi-Hajnal theorem." Electronic Notes in Discrete Mathematics 38 (December 2011): 31–36. http://dx.doi.org/10.1016/j.endm.2011.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nagy, Á. "Density scaling and virial theorem." Molecular Physics 113, no. 13-14 (March 5, 2015): 1839–42. http://dx.doi.org/10.1080/00268976.2015.1017017.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Density theorem":

1

Cazaubon, Verne. "In search of a Lebesgue density theorem for Rinfinity." Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/27623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We look at a measure, linfinity , on the infinite-dimensional space, Rinfinity , for which we attempt to put forth an analogue of the Lebesgue density theorem. Although this measure allows us to find partial results, for example for continuous functions, we prove that it is impossible to give an analogous theorem in full generality. In particular, we proved that the Lebesgue density of probability density functions on Rinfinity is zero almost everywhere.
2

Donzelli, Fabrizio. "Algebraic Density Property of Homogeneous Spaces." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_dissertations/209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Let X be an affine algebraic variety with a transitive action of the algebraic automorphism group. Suppose that X is equipped with several fixed point free non-degenerate SL_2-actions satisfying some mild additional assumption. Then we prove that the Lie algebra generated by completely integrable algebraic vector fields on X coincides with the set of all algebraic vector fields. In particular, we show that apart from a few exceptions this fact is true for any homogeneous space of form G/R where G is a linear algebraic group and R is a proper reductive subgroup of G.
3

Haruta, Naoki. "Vibronic Coupling Density as a Chemical Reactivity Index and Other Aspects." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xia, Honggang. "On zeros of cubic L-functions." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1148497121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MATSUMOTO, Kohji. "An introduction to the value-distribution theory of zeta-functions." Šiauliai University, 2006. http://hdl.handle.net/2237/20445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nyqvist, Robert. "Algebraic Dynamical Systems, Analytical Results and Numerical Simulations." Doctoral thesis, Växjö : Växjö University Press, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Poulet, Marina. "Equations de Mahler : groupes de Galois et singularités régulières." Thesis, Lyon, 2021. https://tel.archives-ouvertes.fr/tel-03789627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse est consacrée à l'étude des équations de Mahler et des solutions de ces équations, appelées fonctions de Mahler. Des exemples classiques de fonctions de Mahler sont les séries génératrices des suites automatiques. La première partie de cette thèse porte sur les aspects galoisiens des équations de Mahler. Notre résultat principal est un analogue pour ces équations du théorème de densité de Schlesinger selon lequel la monodromie d'une équation différentielle à points singuliers réguliers est Zariski-dense dans son groupe de Galois différentiel. Pour cela, nous commençons par attacher une paire de matrices de connexion à chaque équation de Mahler singulière régulière. Ces matrices nous permettent de construire un sous-groupe du groupe de Galois de l'équation de Mahler et nous montrons que ce sous-groupe est Zariski-dense dans le groupe de Galois. La seule hypothèse de ce théorème de densité est le caractère singulier régulier de l'équation de Mahler considérée. La deuxième partie de cette thèse est consacrée à la construction d'un algorithme qui permet de reconnaître si une équation de Mahler est singulière régulière
This thesis is devoted to the study of Mahler equations and the solutions of these equations, called Mahler functions. Classic examples of Mahler functions are the generating series of automatic sequences. The first part of this thesis deals with the Galoisian aspects of Mahler equations. Our main result is an analog for Mahler equations of the Schlesinger’s density theorem according to which the monodromy of a regular singular differential equation is Zariski-dense in its differential Galois group. To this end, we start by attaching a pair of connection matrices to each regular singular Mahler equation. These matrices enable us to construct a subgroup of the Galois group of the Mahler equation and we prove that this subgroup is Zariski-dense in the Galois group. The only assumption of this density theorem is the regular singular condition on the considered Mahler equation. The second part of this thesis is devoted to the construction of an algorithm which recognizes whether or not a Mahler equation is regular singular
8

Fernandez, Luis Eduardo Zambrano. "Densidade local em grafos." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-15032019-114236/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Nós consideramos o seguinte problema. Fixado um grafo H e um número real \\alpha \\in (0,1], determine o menor \\beta = \\beta(\\alpha, H) que satisfaz a seguinte propriedade: se G é um grafo de ordem n no qual cada subconjunto de [\\alpha n] vértices induz mais que \\beta n^2 arestas então G contém H como subgrafo. Este problema foi iniciado e motivado por Erdös ao conjecturar que todo grafo livre de triângulo de ordem n contém um subconjunto de [n/2] vértices que induz no máximo n^2 /50 arestas. Nosso resultado principal mostra que i) todo grafo de ordem n livre de triângulos e pentágonos contém um subconjunto de [n/2] vértices que induz no máximo n^2 /64 arestas, e ii) se G é um grafo regular de ordem n livre de triângulo, com grau excedendo n/3, então G contém um subconjunto de [n/2] vértices que induz no máximo n^2 /50 arestas. Se além disso G não é 3-cromático então G contém um subconjunto de [n/2] vértices que induz menos de n^2 /54 arestas. Como subproduto e confirmando uma conjectura de Erdös assintoticamente, temos que todo grafo regular de ordem n livre de triângulo com grau excedendo n/3 pode ser tornado bipartido pela omissão de no máximo (1/25 + o(1))n^2 arestas. Nós também fornecemos um contraexemplo a uma conjectura de Erdös, Faudree, Rousseau e Schelp.
We consider the following problem. Fixed a graph H and a real number \\alpha \\in (0,1], determine the smallest \\beta = \\beta(\\alpha, H) satisfying the following property: if G is a graph of order n such that every subset of [\\alpha n] vertices spans more that \\beta n^2 edges then G contains H as a subgraph. This problem was initiated and motivated by Erdös who conjectured that every triangle-free graph of order n contains a subset of [n/2] vertices that spans at most n^2 /50 edges. Our main result shows that i) every triangle- and pentagon-free graph of order n contains a subset of [n/2] vertices inducing at most n^2 /64 edges and, ii) if G is a triangle-free regular graph of order n with degree exceeding n/3 then G contains a subset of [n/2] vertices inducing at most n^2 /50 edges. Furthermore, if G is not 3-chromatic then G contains a subset of [n/2] vertices inducing less than n^2 /54 edges. As a by-product and confirming a conjecture of Erdös asymptotically, we obtain that every n-vertex triangle-free regular graph with degree exceeding n/3 can be made bipartite by removing at most (1/25 + o(1))n^2 edges. We also provide a counterexample to a conjecture of Erdös, Faudree, Rousseau and Schelp.
9

Gaertner, Nathaniel Allen. "Special Cases of Density Theorems in Algebraic Number Theory." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper discusses the concepts in algebraic and analytic number theory used in the proofs of Dirichlet's and Cheboterev's density theorems. It presents special cases of results due to the latter theorem for which greatly simplified proofs exist.
Master of Science
10

Hurth, Tobias. "Limit theorems for a one-dimensional system with random switchings." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We consider a simple one-dimensional random dynamical system with two driving vector fields and random switchings between them. We show that this system satisfies a one force - one solution principle and compute its unique invariant density explicitly. We study the limiting behavior of the invariant density as the switching rate approaches zero and infinity and derive analogues of classical probabilistic results such as the central limit theorem and large deviations principle.

Books on the topic "Density theorem":

1

Burris, Stanley. Number theoretic density and logical limit laws. Providence, RI: American Mathematical Society, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Danos, Michael. Irreducible density matrices. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Danos, Michael. Irreducible density matrices. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

A. J. H. van Es. Aspects of nonparametric density estimation. Amsterdam, The Netherlands: Centrum voor Wiskunde en Informatica, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Devroye, Luc. A course in density estimation. Boston: Birkhäuser, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Paštéka, Milan. On four approaches to density. Frankfurt am Main: Peter Lang, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sahni, Viraht. Quantal Density Functional Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Devroye, Luc. Nonparametric density estimation: The L₁ view. New York: Wiley, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Devroye, Luc. Nonparametric density estimation: The L1 view. New York: Wiley, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

W, Scott David. Multivariate density estimation: Theory, practice, and visualization. New York: Wiley, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Density theorem":

1

Schoof, René. "The Density Theorem." In Catalan's Conjecture, 1–12. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-185-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fried, Michael D., and Moshe Jarden. "The Čebotarev Density Theorem." In Field Arithmetic, 54–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-07216-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prömel, Hans Jürgen. "Density Hales-Jewett Theorem." In Ramsey Theory for Discrete Structures, 205–20. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01315-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van Leeuwen, R. "Beyond the Runge-Gross Theorem." In Time-Dependent Density Functional Theory, 17–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-35426-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ruggenthaler, Michael, and Robert van Leeuwen. "Beyond the Runge–Gross Theorem." In Fundamentals of Time-Dependent Density Functional Theory, 187–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23518-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moser, Philippe. "Generic Density and Small Span Theorem." In Fundamentals of Computation Theory, 92–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11537311_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lang, Serge. "Density of Primes and Tauberian Theorem." In Graduate Texts in Mathematics, 303–19. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4684-0296-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lang, Serge. "Density of Primes and Tauberian Theorem." In Graduate Texts in Mathematics, 303–19. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0853-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Farb, Benson, and R. Keith Dennis. "Primitive Rings and the Density Theorem." In Graduate Texts in Mathematics, 151–59. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0889-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gowers, W. T. "Polymath and The Density Hales-Jewett Theorem." In Bolyai Society Mathematical Studies, 659–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14444-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Density theorem":

1

Ma, Xiao. "Coding theorem for systematic low density generator matrix codes." In 2016 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC). IEEE, 2016. http://dx.doi.org/10.1109/istc.2016.7593067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fitrianto, Anwar, and Imam Hanafi. "Exploring central limit theorem on world population density data." In INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014): Proceedings of the 3rd International Conference on Quantitative Sciences and Its Applications. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cabrelli, Carlos, Ursula Molter, and Gotz E. Pfander. "An Amalgam Balian-Low Theorem for symplectic lattices of rational density." In 2015 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2015. http://dx.doi.org/10.1109/sampta.2015.7148866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jaeger, Benjamin, and Philippe de Forcrand. "Taylor expansion and the Cauchy Residue Theorem for finite-density QCD." In The 36th Annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Michopoulos, John G., and Athanasios Iliopoulos. "Symbolic Algebra and Theorem Proving for Failure Criteria Reduction." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The present paper reports on recent efforts of utilizing symbolic computing for identifying failure criteria cross reducibility from the perspective of theorem proving. Utilizing equational theorem proving algorithms and Gro¨bner Basis polynomial theorem provers implemented in Mathematica we have proven a number of interesting theorems related to the area of structural failure criteria for anisotropic and particularly orthotropic materials. The main contribution of this work is the demonstration of the tremendous utility of symbolic algebra for engineering applications as well as the demonstration of the idea that all failure criteria presented in the literature up to know can be proven under certain conditions to be special forms of general criteria relating to the strain energy density function associated with material continua. Two specific examples are presented and discussed along with a theorem proving the existence of a dual form of all stress space based criteria to equivalent one expressed in strain space.
6

Agrawal, Jitendra, Sanyogita Soni, Sanjeev Sharma, and Shikha Agrawal. "Modification of Density Based Spatial Clustering Algorithm for Large Database Using Naive's Bayes' Theorem." In 2014 International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2014. http://dx.doi.org/10.1109/csnt.2014.89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oates, William S. "Correlations Between Quantum Mechanics and Continuum Mechanics for Ferroelectric Material Simulations." In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Higher order effects in ferroelectric materials are investigated by integrating electron density calculations using quantum mechanics into a homogenized, nonlinear continuum modeling framework. Electrostatic stresses based on the Hellmann-Feynman theorem are used to identify connections with the higher order quadrupole density. These higher order relations are integrated into a nonlinear mechanics free energy function to simulate electromechanical coupling. A specific example is investigated by conducting density functional theory (DFT) calculations on barium titanate and fitting the results to a thermodynamic potential function. Through the use of nonlinear geometric effects, electromechanical coupling is obtained without the use of electrostrictive or piezoelectric coupling coefficients.
8

Rodríguez-Herrera, Oscar G., and J. Scott Tyo. "Generalized van Cittert-Zernike theorem for the cross-spectral density matrix of quasi-homogeneous planar electromagnetic sources." In Frontiers in Optics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/fio.2012.fth4e.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mezey, Paul G. "The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5012279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

A Mendonça, Carlos. "AUTOMATIC DETERMINATION OF THE MAGNETIZATION-TO-DENSITY RATIO AND THE MAGNETIZATION INCLINATION BASED ON THE POISSON THEOREM (2D SOURCES)." In 8th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.168.arq_251.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Density theorem":

1

Mattsson, Ann Elisabet, Normand Arthur Modine, Michael Paul Desjarlais, Richard Partain Muller, Mark P. Sears, and Alan Francis Wright. Beyond the local density approximation : improving density functional theory for high energy density physics applications. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/976954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Salsbury Jr., Freddie. Magnetic fields and density functional theory. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/753893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Jianzhong. Density Functional Theory for Phase-Ordering Transitions. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1244653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Desjarlais, Michael Paul, and Thomas Kjell Rene Mattsson. High energy-density water: density functional theory calculations of structure and electrical conductivity. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/902882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gal'perin, Yu M., V. G. Karpov, and Володимир Миколайович Соловйов. Density of vibrational states in glasses. Springer, November 1988. http://dx.doi.org/10.31812/0564/1005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A theory of the vibrational spectra of glasses, based on allowance for the statistical fluctuations of the local elastic constants, is proposed. The existence is established of two characteristic energies h, and h, , dividing the spectrum into regions of qualitatively different behavior of the density of states n (h). At low frequencices w 4 w, the increase of the density of states is determined by the additive contributions of phonons and mutually noninteracting quasilocal vibrations in random soft atomic potentials in the glass. In the intermediate region w , 5 w 5 w, the quasilocal vibrations interact strongly with phonons, and this makes their contributions superadditive. For w > w, the growth of n (h) slows down. As a result, n (h) increases at first more rapidly and then more slowly than the Debye density of states. An analytical expression for n (h) is obtained in the T-matrix formalism in the region w <a,, including the region of strong scattering. A numerical calculation of n (h) is performed in the coherent-potential approximation. The theory predicts qualitatively universal behavior of n (h) in different glasses.
6

Feinblum, David V., Daniel Burrill, Charles Edward Starrett, and Marc Robert Joseph Charest. Simulating Warm Dense Matter using Density Functional Theory. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1209460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ancona, M. G., and H. F. Tiersten. Density-Gradient Theory of Electron Transport in Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada206995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paul, J., and L. Molent. Applications of Energy Density Theory in Cyclic Plasticity. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada186947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ringnalda, Murco N. Novel Electron Correlation Methods: Multiconfigurational Density Functional Theory. Fort Belvoir, VA: Defense Technical Information Center, April 1997. http://dx.doi.org/10.21236/ada329569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klein, W., S. Redner, and H. E. Stanley. Percolation and Low Density Materials: Theory and Applications. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada169204.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography