Academic literature on the topic 'Dental impression materials Elastomers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dental impression materials Elastomers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dental impression materials Elastomers"
Carlo, Hugo Lemes, Rodrigo Borges Fonseca, Carlos José Soares, Américo Bortolazzo Correr, Lourenço Correr-Sobrinho, and Mário Alexandre Coelho Sinhoreti. "Inorganic particle analysis of dental impression elastomers." Brazilian Dental Journal 21, no. 6 (2010): 520–27. http://dx.doi.org/10.1590/s0103-64402010000600007.
Full textGuiraldo, Ricardo Danil, Eric Yudi Harada, Sandrine Bittencourt Berger, Flaviana Alves Dias, Danielle Gregorio, Lucia Gloria Diana Aguilar Pizzurno, Nayra Kawana Turini, and Murilo Baena Lopes. "Influence of expiration date on detail reproduction of dental elastomers." Research, Society and Development 10, no. 11 (September 2, 2021): e306101118837. http://dx.doi.org/10.33448/rsd-v10i11.18837.
Full textZulkarnain, M., and Sarah Devina. "Pengaruh Penyemprotan Daun Sirih dan sodium Hipoklorit Pada Cetakan Elastomer Terhadap Perubahan Dimensi." Jurnal Material Kedokteran Gigi 5, no. 2 (September 1, 2016): 36. http://dx.doi.org/10.32793/jmkg.v5i2.252.
Full textCervino, Gabriele, Luca Fiorillo, Alan Herford, Luigi Laino, Giuseppe Troiano, Giulia Amoroso, Salvatore Crimi, et al. "Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice." Marine Drugs 17, no. 1 (December 29, 2018): 18. http://dx.doi.org/10.3390/md17010018.
Full textKollefrath, Ralf, Marcel Savary, and Jörg Schwela. "An Evaluation of the Fit of Metal-Ceramic Restorations Made with an Autoclaved Silicone-Based Impression Material." Journal of Contemporary Dental Practice 11, no. 4 (2010): 63–70. http://dx.doi.org/10.5005/jcdp-11-4-63.
Full textAndreescu, Claudia Florina, Oana Botoaca, Horia Mihail Barbu, Doina Lucia Ghergic, Anamaria Bechir, and Anne Marie Rauten. "Deficiencies in Silicone Impression for Crowns and Bridges." Revista de Chimie 68, no. 10 (November 15, 2017): 2317–19. http://dx.doi.org/10.37358/rc.17.10.5876.
Full textBraden, M., and A. T. Inglis. "Visco-elastic properties of dental elastomeric impression materials." Biomaterials 7, no. 1 (January 1986): 45–48. http://dx.doi.org/10.1016/0142-9612(86)90088-8.
Full textH. Mohammed, Dhuha, Abdalbseet A. Fatalla, and Ghassak H. Jani. "Comparison of Some Mechanical and Physical Properties of three Types of Impression Materials with Different Dental Implant Angulations." Biomedical and Pharmacology Journal 11, no. 3 (August 29, 2018): 1359–68. http://dx.doi.org/10.13005/bpj/1499.
Full textHaralur, Satheesh B., Majed S. Toman, Abdullah A. Al-Shahrani, and Abdullah A. Al-Qarni. "Dimensional Accuracy of Multiple Pour Cast from Different Elastomer Impression Techniques." International Journal of Prosthodontics and Restorative Dentistry 6, no. 3 (2016): 51–56. http://dx.doi.org/10.5005/jp-journals-10019-1155.
Full textMehta, Deepak, Rohit Shetty, and Ganesh R. Bhandari. "Vinyl Polysiloxane Ether: A Breakthrough in Elastomeric Impression Material." World Journal of Dentistry 5, no. 2 (2014): 134–37. http://dx.doi.org/10.5005/jp-journals-10015-1274.
Full textDissertations / Theses on the topic "Dental impression materials Elastomers"
Lawson, Nathaniel C. "Mechanical properties of dental impression materials." Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2008r/lawson.pdf.
Full textShah, Amit. "Surface reproducibility of impression materials." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2007. http://www.mhsl.uab.edu/dt/2007m/shah.pdf.
Full textPamenius, Madeleine Jansson. "Rubber impression materials, a mechanical approach an investigation of material properties and their application in computer simulation of dimensional stability /." Stockholm : Division of Dental Materials and Technology, Dept. of Clinical Oral Sciences, School of Dentistry, Karolinska Institutet, 1994. http://catalog.hathitrust.org/api/volumes/oclc/30989203.html.
Full textOsio, Mary A. "The effect of storage time on dimensional accuracy of elastomeric impression materials." Thesis, University of the Western Cape, 2008. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1324_1259228236.
Full text"
Several factors play a role in stability of impressions made from elastomeric impression materials. These include
polymerization shrinkage, loss of by-products during condensation, thermal contraction from oral temperature to room temperature, imbibition when exposed to water, disinfectant or high humidity and incomplete recovery from deformation due to viscoelastic behavior. An ideal impression material should be dimensionally stable over time to allow for pour at the convenience of the operator. Several studies evaluated the dimensional accuracy of elastomeric impression materials based on various factors including effects of repeat pour, temperature, humidity, disinfectants, impression techniques, and filler loading amongst others. Most of the previous studies did not use the standardized method described by the ADA specification for elastomeric impression materials..."
Monteiro, Jaiane Bandoli. "Avaliação da alteração dimensional de quatro siliconas por condensação através da medição tridimensional por coordenadas." Universidade Federal de Juiz de Fora, 2015. https://repositorio.ufjf.br/jspui/handle/ufjf/87.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2015-12-03T21:29:38Z (GMT) No. of bitstreams: 1 jaianebandolimonteiro.pdf: 2039791 bytes, checksum: c3f28c1a95fdef73d0cc0190a9dfa169 (MD5)
Made available in DSpace on 2015-12-03T21:29:38Z (GMT). No. of bitstreams: 1 jaianebandolimonteiro.pdf: 2039791 bytes, checksum: c3f28c1a95fdef73d0cc0190a9dfa169 (MD5) Previous issue date: 2015-04-30
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
O objetivo foi avaliar a alteração dimensional dos moldes de silicona por condensação imediatamente, 30min, 1h e 7 dias após a moldagem, com o auxílio da máquina de medição tridimensional por coordenadas. Os grupos foram divididos em: G1: Speedex Putty/Speedex Light Body (Coltene/Vigodent AS Indústria e Comércio), G2: Optosil P Plus/Xantopren L Blue (Heraeus Kulzer GmbH), G3: Zetaplus Putty/Oranwash L (Zhermack SpA) e G4: Precise SX (Dentsply Indústria e Comércio Ltda). Para a obtenção das 80 medições dos 4 materiais (n=20), foi usado um dispositivo composto por uma moldeira perfurada e uma outra parte com 3 edentações pré-estabelecidas. Para a avaliação dimensional, a máquina Crysta-Plus M 574 (Mitutoyo) realizou cada medida 3 vezes nos tempos estabelecidos e obteve-se a média aritmética. A média final das 4 distâncias I, II, III e IV do dispositivo edentado foi novamente aplicada. A análise estatística foi realizada com o teste de Kolmogorov-Smirnov que rejeitou a hipótese nula de distribuição assimétrica. Posteriormente, foi feita a ANOVA para comparar os 4 materiais simultaneamente e o teste paramétrico t de Student para comparar os materiais 2 a 2. O nível de significância global foi de p≤0,05. A maior contração linear foi observada na Speedex, mas não foi significante (p=0,08). A Zetaplus Putty/Oranwash L parece ser a mais estável (p=0,99), mas não foi significante. Não houve diferença estatisticamente significante entre nenhuma silicona por condensação quando comparadas simultaneamente nos 4 tempos ou quando comparadas 2 a 2, à exceção, Precise SX e a Speedex (p=0,05) no tempo T3. Todas as siliconas por condensação testadas apresentam alteração dimensional clinicamente aceitável e podem ser vazadas imediatamente, 30min, 1h e 7 dias após a moldagem.
The purpose was to evaluate the dimensional changes of condensation silicone impressions by immediately, 30min, 1h and 7 days after impression, with the help of threedimensional measuring coordinate machine. The groups were divided in: G1: Speedex Putty/Speedex Light Body (Coltène/Vigodent S/A Ind and Com), G2: Optosil P Plus/Xantopren L Blue (Heraeus Kulzer GmbH), G3: Zetaplus Putty/Oranwash L (Zhermack SpA) and G4: Precise SX (Dentsply Ind and Com Ltda). To obtain 80 measurements of 4 material (n=20) was used a device consisting of a perforated tray and one another part with 3 pre-established indentations. For dimensional evaluation, the Crysta-Plus M574 machine (Mitutoyo) held each measurement 3 times at the established times and obtained the arithmetic mean. The final average of the 4 distances of I, II, III and IV the edentulous device was again applied. Statistical analysis was performed using the Kolmogorov-Smirnov test to reject the null hypothesis of asymmetric distribution. Subsequently, ANOVA was performed to compare the four materials simultaneously and Student's t parametric test to compare the 2 by 2 materials. The overall significance level of p≤0,05. The higher linear contraction was observed in Speedex, but was not significant (p=0,08). The Zetaplus Putty/Oranwash L seems to be more stable (p=0,99) but was not significant. There was no significant difference between any silicone condensation compared simultaneously in 4 times or compared 2 by 2, except, Precise SX and Speedex (p=0,05) in T3 time. All tested condensation silicones exhibit clinically acceptable dimensional change and can be leaked immediately, 30min, 1h and 7 days after impression.
Carlo, Hugo Lemes. "Influencia do conteudo volumetrico das particulas de cargas nas propriedades mecanicas de diferentes materiais de moldagem." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/288141.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-11T16:18:48Z (GMT). No. of bitstreams: 1 Carlo_HugoLemes_D.pdf: 4484901 bytes, checksum: b6c246e6e05cdf7633210adfa7b73c84 (MD5) Previous issue date: 2008
Resumo: Baseado no entendimento incompleto de como o conteúdo de partículas de carga influencia nas propriedades mecânicas dos materiais de moldagem este estudo avaliou quantitativa e qualitativamente o conteúdo de partículas de carga inorgânicas presente em cinco marcas comerciais de alginatos (Jeltrate; Jeltrate Plus, Jeltrate Chromatic Ortho, Hydrogum e Ezact Krom) e nove marcas comerciais de siliconas de adição e/ou condensação nas consistências massa e/ou fluida (Clonage, Elite HD+ Light Body, Express Light Body, Flexitime, Optosil P Confort/Xantopren VL Plus, Oranwash L, Reprosil A+, Silon 2 APS e Virtual Extra Light Body). Foram realizados testes para determinar recuperação elástica e deformação sob compressão dos alginatos e dos elastômeros e estabelecer, dessa forma, uma correlação entre os resultados para partículas de carga e os testes mecânicos. O conteúdo volumétrico das partículas de carga foi determinado pesando-se as amostras submersas em água antes e após a queima das mesmas durante 3h a 450°C (alginatos) e a 600°C (siliconas). Quantidades determinadas de materiais não polimerizados foram lavadas em acetona e clorofórmio e recobertas com ouro para avaliação da morfologia e tamanho das partículas em M.E.V. A composição foi determinada por EDX. A recuperação elástica e a deformação sob compressão foram determinadas de acordo as especificações ? 1563 (alginatos) e 4823 (elastômeros) da ISO. O alginatos Jeltrate e Jeltrate Plus apresentaram os maiores valores médios para quantidade volumétrica de partículas de carga (%) enquanto o material Hydrogum apresentou os menores valores. A silicone de adição Flexitime Easy Putty apresentou os maiores valores de quantidade volumétrica de partículas, enquanto que a silicone de condensação Xantopren VL Plus apresentou os menores. As partículas de carga dos alginatos apresentaram-se, de forma geral, como objetos esféricos e com perfurações. O material Hydrogum apresentou forma de bastões cilíndricos e perfurados. As siliconas apresentaram morfologias variadas ¿ partículas trituradas, esféricas, esferóides, bastões cilíndricos perfurados e bastões misturados a partículas usinadas. O alginato Ezact Krom apresentou os maiores valores médios de tamanho de partícula, enquanto que o alginato Hydrogum as menores. A silicone de condensação Clonage massa apresentou os maiores valores médios de tamanho de partícula, enquanto a silicone de adição Elite HD os menores. A análise da composição das partículas apresentou o silício como o elemento em maior quantidade. Com relação aos resultados de recuperação elástica, o alginato Ezact Krom e as siliconas Reprosil A+ massa e Flexitime fluida apresentaram os maiores valores de recuperação elástica, enquanto o alginato Jeltrate Plus e as siliconas Optosil P Confort e Clonage fluida apresentaram os menores. Os resultados de deformação sob compressão foram maiores para o alginato Jeltrate Plus e para as siliconas Silon 2 APS massa e fluida. Os menores resultados foram apresentados pelo alginato Ezact Krom e as siliconas Reprosil A+ massa e Xantopren VL Plus. Todos os materiais estão em conformidade com a norma ISO ?1563, mas nem todos estão em relação à norma ?4823
Abstract: Based on the incomplete understanding on how filler features influence the properties of elastomeric impression materials, the purpose of this study was to determine the inorganic filler fraction and size of five commercially available alginates (Jeltrate; Jeltrate Plus, Jeltrate Chromatic Ortho, Hydrogum e Ezact Krom) and nine addition/condensation silicones using the putty/light consistence (Clonage, Elite HD+ Light Body, Express Light Body, Flexitime, Optosil P Confort/Xantopren VL Plus, Oranwash L, Reprosil A+, Silon 2 APS e Virtual Extra Light Body). A SEM/EDX analysis was done to qualitatively characterize the materials. Soon afterwards elastic recovery and strain in compression of the alginates and some the silicones was carried. The inorganic particles volumetric fractions were accessed by weighing a previously determined mass of each material in water before and after burning samples for 3 hours at 450ºC (alginates) and 600ºC (silicones). Unsettled materials were soaked in acetone and chloroform and sputter-coated with gold for SEM evaluation of fillers¿ morphology and size. The filler composition was determined by EDX. Elastic recovery and strain in compression tests were conducted according to ISO specification number 1563 and 4823. Jeltrate and Jeltrate Plus presented the highest mean values of percentage content of inorganic particles in volume, while Jeltrate Chromatic Ortho presented the lowest values. Flexitime Easy Putty was the silicone with the highest mean value, while Xantopren VL Plus had the lowest value. The alginate fillers presented a circular appearance with helical form and various perforations. Hydrogum fillers looked like cylindrical, perforated sticks. SEM pictures of the silicone inorganic particles showed numerous morphologies ¿ lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. Ezact Krom was the alginate with the highest values for diameter size, while Hydrogum had the lowest. Clonage Putty showed the highest values, while Elite HD+ Light Body presented the lowest values. The component in higher concentration in the materials is silicon. The alginate Ezact Krom, and the addition cure silicones Reprosil A+ putty and Flexitime Correct Flow had the highest mean values of elastic recovery, while the alginate Jeltrate Plus and the condensation cured silicones Optosil P Confort and Clonage Putty presented the lowest values. Strain in compression test showed the alginate Jeltrate Plus and the condensation cured silicones Silon 2APS Putty and Fluid as the materials with the highest values. The alginate Ezact Krom and the silicones Reprosil A+ Putty and Xantopren VL Plus had lowest values. All materials are in conformity with the requirements of ISO specification number 1563, but not all materials are in conformity with the requirements of ISO specification number 4823
Doutorado
Materiais Dentarios
Doutor em Materiais Dentários
Cid, Galano Marcos. "Linear expansion of dental stone after its final set and beyond two hours." Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=2935.
Full textTitle from document title page. Document formatted into pages; contains viii, 43 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 41-42).
Zeiaei-Nafchi, Saeid. "Dimensional changes of poysulfide [sic] impression materials over time." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1300.
Full textTitle from document title page. Document formatted into pages; contains vii, 47 p. : ill. (some col.) Vita. Includes abstract. Includes bibliographical references (p. 41-46).
Muller, Susan Sanette. "The effect of temperature on the linear dimensional stability of elastomers." University of the Western Cape, 2012. http://hdl.handle.net/11394/4624.
Full textSometimes, dental impressions need to be transported to distant laboratories. It has been reported that the temperature in a vehicle can reach up to 66C when the outdoor temperature is 38C. These temperatures may be reached during South African summers. The objective of this in vitro study was to investigate the effect of temperature and time on the dimensional stability of two elastomeric impression materials. Methodology: Specimens consisted of impressions made of an ISO-specified test-block featuring a pattern of grooves. Materials used were polyether (Impregum Penta) and polyvinylsiloxane (Affinis Precious regular body). Using an SLR camera and standardized technique, the specimens were photographed at 2 different temperatures (21°C and 66°C) and 3 time intervals (30min, 8hrs and 14 days). This resulted in a total of 12 groups (n=10) to be compared. Digital images of the impressions were calibrated and measured using digital analyzing software. These distances were used to evaluate the mean % dimensional change (%DC) for each group. VEPAC module of Statistica 10 was used for the statistical analysis. To analyze exactly where the differences lied, a Fisher LSD correction was applied to correct for multiple pair wise comparisons. Results: Comparing polyether with silicone, there was no difference in the mean %DC for specimens kept at 21°C for 8hrs (polyether=0.364; silicone=0.237). Neither was there a difference between polyether and silicone when heated to 66°C, cooled off, and measured after 8hrs (polyether=0.306; silicone=0.297) or after 14 days (polyether=-0.272; silicone=-0.093). For both polyether and silicone, the mean %DC of the groups exposed to 66°C, cooled off and measured after 8hrs (polyether=0.306; silicone=0.297) differed significantly when compared to the group measured after 14 days (polyether=-0.2723; silicone=-0.092) (P<0.0001 and P=0.0029 resp). For both polyether and silicone, the mean %DC of the groups exposed to 66°C, cooled off and measured after 8hrs (polyether=0.306; silicone=0.297) did not differ when compared to the 21°C (polyether=0.364; silicone=0.237). Conclusions: Within limitations of this study, both materials were heat-sensitive. It is recommended that materials return to 21°C before casting. Despite statistical differences, all results were within ISO specifications of maximum 1.5%DC.
Walmsley, P. G. S. "Surface characteristics of vinyl polysiloxane impression materials /." Title page, summary and contents only, 1991. http://web4.library.adelaide.edu.au/theses/09DM/09dmw216.pdf.
Full textBooks on the topic "Dental impression materials Elastomers"
DiGiacomo, Ellen G. Alginate impression and diagnostic study model techniques. Chicago, IL: American Dental Assistants Association, 1997.
Find full textD, Bagby Michael, ed. Clinical aspects of dental materials: Theory, practice, and cases. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2011.
Find full textGladwin, Marcia A. Clinical aspects of dental materials: Theory, practice, and cases. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2009.
Find full textGladwin, Marcia A. Clinical aspects of dental materials: Theory, practice, and cases. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2009.
Find full textTaylor, Ross L. Laboratory techniques for the Brånemark System. Chicago: Quintessence Pub. Co., 1990.
Find full textZardiackas, L., T. Dellinger, and M. Livingston. Dental Materials, An Issue of Dental Clinics (The Clinics: Dentistry). Saunders, 2007.
Find full textLearning, Thomson Delmar. Delmar's Dental Assisting Video 5-Laboratory Impression, Materials & Techniques (Delmar's Dental Assisting Video). Delmar Learning, 1999.
Find full textClinical Aspects of Dental Materials: Theory, Practice, and Cases (Clinical Aspects of Dental Materials). 3rd ed. Lippincott Williams & Wilkins, 2008.
Find full textBagby, Michael, and Marcia A Gladwin RDH Ed.D. Clinical Aspects of Dental Materials: Theory, Practice, and Cases. Lippincott Williams and Wilkins, 2017.
Find full textBook chapters on the topic "Dental impression materials Elastomers"
Manappallil, John. "Elastomeric Impression Materials." In Basic Dental Materials, 191. Jaypee Brothers Medical Publishers (P) Ltd., 2010. http://dx.doi.org/10.5005/jp/books/11146_13.
Full textManappallil, John. "Elastomeric Impression Materials." In Basic Dental Materials, 277. Jaypee Brothers Medical Publishers (P) Ltd., 2016. http://dx.doi.org/10.5005/jp/books/12669_17.
Full textQadeer, BDS, MSD, Sarah. "The Limitations of Traditional Non-Digital Occlusal Indicators When Compared to the T-Scan Computerized Occlusal Analysis Technology." In Handbook of Research on Computerized Occlusal Analysis Technology Applications in Dental Medicine, 36–64. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-6587-3.ch002.
Full textQadeer, BDS, MSD, Sarah. "The Limitations of Traditional Non-Digital Occlusal Indicators When Compared to the T-Scan Computerized Occlusal Analysis Technology." In Medical Imaging, 1528–55. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0571-6.ch065.
Full textQadeer, BDS, MSD, Sarah, and Lertrit Sarinnaphakorn, DDS. "Comparing the Force and Timing Limitations of Traditional Non-Digital Occlusal Indicators to the T-Scan Computerized Occlusal Analysis Technology." In Advances in Medical Technologies and Clinical Practice, 55–99. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9254-9.ch002.
Full textAlla, Rama. "Impression Materials." In Dental Materials Science, 158. Jaypee Brothers Medical Publishers (P) Ltd., 2013. http://dx.doi.org/10.5005/jp/books/12018_7.
Full textSolomon, Charlene S. "Flexible Impression Materials." In Dental Biomaterials, 371–400. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813225688_0013.
Full textSoratur, SH. "Impression Materials." In Viva in Dental Materials, 41. Jaypee Brothers Medical Publishers (P) Ltd., 2004. http://dx.doi.org/10.5005/jp/books/11005_10.
Full textManappallil, John. "Rigid Impression Materials." In Basic Dental Materials, 159. Jaypee Brothers Medical Publishers (P) Ltd., 2010. http://dx.doi.org/10.5005/jp/books/11146_11.
Full textManappallil, John. "Rigid Impression Materials—Impression Compound and ZOE Paste." In Basic Dental Materials, 241. Jaypee Brothers Medical Publishers (P) Ltd., 2016. http://dx.doi.org/10.5005/jp/books/12669_15.
Full textConference papers on the topic "Dental impression materials Elastomers"
Jeremic Knezevic, Milica, Aleksandar Knezevic, Daniela Djurovic Koprivica, Aleksandra Maletin, Bojana Milekic, and Tatjana Puskar. "Analysis of elastic properties of dental impression materials." In RAD Conference. RAD Centre, 2021. http://dx.doi.org/10.21175/rad.abstr.book.2021.4.1.
Full textPark, W. S., K. D. Kim, H. K. Shin, and S. H. Lee. "Reduction of Metal Artifact in Three-Dimensional Computed Tomography (3D CT) with Dental Impression Materials." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353084.
Full text