Academic literature on the topic 'Depolymerization of cellulose fibres'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Depolymerization of cellulose fibres.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Depolymerization of cellulose fibres"
Pang, Suh Cem, Lee Ken Voon, and Suk Fun Chin. "Controlled Depolymerization of Cellulose Fibres Isolated from Lignocellulosic Biomass Wastes." International Journal of Polymer Science 2018 (July 19, 2018): 1–11. http://dx.doi.org/10.1155/2018/6872893.
Full textKashcheyeva, Ekaterina I., Yulia A. Gismatulina, Galina F. Mironova, Evgenia K. Gladysheva, Vera V. Budaeva, Ekaterina A. Skiba, Vladimir N. Zolotuhin, Nadezhda A. Shavyrkina, Aleksey N. Kortusov, and Anna A. Korchagina. "Properties and Hydrolysis Behavior of Celluloses of Different Origin." Polymers 14, no. 18 (September 18, 2022): 3899. http://dx.doi.org/10.3390/polym14183899.
Full textByrne, Nolene, Jingyu Chen, and Bronwyn Fox. "Enhancing the carbon yield of cellulose based carbon fibres with ionic liquid impregnates." J. Mater. Chem. A 2, no. 38 (2014): 15758–62. http://dx.doi.org/10.1039/c4ta04059g.
Full textTrinh, Hue Thi Kim, and Mai Hương Bùi. "The Improving properties of Viscose fabric by water repellent finish." Science & Technology Development Journal - Engineering and Technology 4, no. 1 (March 13, 2021): first. http://dx.doi.org/10.32508/stdjet.v4i1.788.
Full textWardhono, Endarto, Hadi Wahyudi, Sri Agustina, François Oudet, Mekro Pinem, Danièle Clausse, Khashayar Saleh, and Erwann Guénin. "Ultrasonic Irradiation Coupled with Microwave Treatment for Eco-friendly Process of Isolating Bacterial Cellulose Nanocrystals." Nanomaterials 8, no. 10 (October 20, 2018): 859. http://dx.doi.org/10.3390/nano8100859.
Full textKeskiväli, Laura, Pirjo Heikkilä, Eija Kenttä, Tommi Virtanen, Hille Rautkoski, Antti Pasanen, Mika Vähä-Nissi, and Matti Putkonen. "Comparison of the Growth and Thermal Properties of Nonwoven Polymers after Atomic Layer Deposition and Vapor Phase Infiltration." Coatings 11, no. 9 (August 26, 2021): 1028. http://dx.doi.org/10.3390/coatings11091028.
Full textBaty, John William, and Michael L. Sinnott. "The kinetics of the spontaneous, proton- and AlIII-catalysed hydrolysis of 1,5-anhydrocellobiitol Models for cellulose depolymerization in paper aging and alkaline pulping, and a benchmark for cellulase efficiency." Canadian Journal of Chemistry 83, no. 9 (September 1, 2005): 1516–24. http://dx.doi.org/10.1139/v05-168.
Full textFouad, H., Lau Kia Kian, Mohammad Jawaid, Majed D. Alotaibi, Othman Y. Alothman, and Mohamed Hashem. "Characterization of Microcrystalline Cellulose Isolated from Conocarpus Fiber." Polymers 12, no. 12 (December 7, 2020): 2926. http://dx.doi.org/10.3390/polym12122926.
Full textVoon, Lee Ken, Suh Cem Pang, and Suk Fun Chin. "Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes." Carbohydrate Polymers 142 (May 2016): 31–37. http://dx.doi.org/10.1016/j.carbpol.2016.01.027.
Full textMafa, Mpho S., Brett I. Pletschke, and Samkelo Malgas. "Defining the Frontiers of Synergism between Cellulolytic Enzymes for Improved Hydrolysis of Lignocellulosic Feedstocks." Catalysts 11, no. 11 (November 8, 2021): 1343. http://dx.doi.org/10.3390/catal11111343.
Full textDissertations / Theses on the topic "Depolymerization of cellulose fibres"
Bélanger, Karine. "Controlled depolymerization and decrystallization of cellulose-rich substrates into glucose." Mémoire, Université de Sherbrooke, 2005. http://savoirs.usherbrooke.ca/handle/11143/1483.
Full textYeoh, Sang Ju. "Electrospun cellulose fibres from kraft pulp." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12930.
Full textBengtsson, Andreas. "Carbon fibres from lignin-cellulose precursors." Licentiate thesis, KTH, Träkemi och massateknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244756.
Full textDet ligger i människans natur att hitta lösningar på komplexa tekniska problem, samt att alltid sträva efter förbättringar. Utvecklingen av nya material är inget undantag. Ett av flera material utvecklade av människan är kolfiber. Dess utmärkta mekaniska egenskaper samt låga densitet har gjort det attraktivt som förstärkningsmaterial i lättviktskompositer. Det höga priset på kolfiber, vilket härstammar ur en kostsam framställningsprocess, har förhindrat en mer utbredd användning i exempelvis bilindustrin. Det dominerande råmaterialet för kolfiberframställning är petroleumbaserad polyacrylonitril (PAN). Användandet av fossila råvaror och det höga priset på kolfiber förklarar den starka drivkraften att hitta billigare och förnyelsebara alternativ. Lignin och cellulosa är förnyelsebara makromolekyler som finns tillgängliga i stora kvantiteter. Det höga kolinnehållet i lignin gör det mycket attraktivt som råvara för kolfiberframställning, men dess heterogena struktur ger en kolfiber med otillräckliga mekaniska egenskaper. Däremot har cellulosa en molekylär orientering som är önskvärd vid framställning av kolfiber, men dess låga kolinehåll ger ett lågt processutbyte som i sin tur bidrar till höga produktionskostnader. Det här arbetet visar att många av de problem som uppstår med kolfiber från respektive råvara kan kringgås genom att utgå från blandningar av desamma. Prekursorfibrer från blandningar av kraftlignin och kraftmassa från barrved tillverkade med luftgapsspinning konverterades till kolfiber. Utbytet för kolfibrerna som framställdes var mycket högre än vid framställning från endast cellulosa. Ofraktionerat barrvedslignin och kraftmassa av papperskvalitet presterade lika bra som de dyrare retentatligninen och dissolvingmassan, vilket är fördelaktigt ur ett ekonomiskt perspektiv. Stabilisering är det mest tidskrävande processteget i kolfibertillverkning. I det här arbetet visades det att prekursorfibrerna kunde stabiliseras på kortare än två timmar, eller direktkarboniseras utan någon sammansmältning av fibrerna. Detta indikerar att en tidseffektiv produktion kan vara möjligt. Impregnering av prekursorfibrerna med ammoniumdivätefosfat ökade utbytet avsevärt, men med lägre mekaniska egenskaper som bieffekt. Kolfibrernas mekaniska egenskaper ökade vid en diameterreduktion. En kort oxidativ stabilisering under två timmar i kombination med tunna prekursorfibrer gav kolfiber med en elasticitetsmodul på 76 GPa och dragstyrka på 1070 MPa. Att göra kolfiber från blandningar av lignin och cellulosa är ett lovande koncept om det höga utbytet (39%), den korta stabiliseringstiden samt de lovande mekaniska egenskaperna tas i beaktande.
QC 20190226
Hilgert, Jakob [Verfasser], Ferdi [Akademischer Betreuer] Schüth, and Martin [Akademischer Betreuer] Muhler. "Mechanocatalytic depolymerization of cellulose and subsequent hydrogenation / Jakob Hilgert. Gutachter: Ferdi Schüth ; Martin Muhler." Bochum : Ruhr-Universität Bochum, 2015. http://d-nb.info/1079843728/34.
Full textLi, Yingjie. "Emulsion electrospinning of nanocrystalline cellulose reinforced nanocomposite fibres." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/30474.
Full textQi, Haisong, Jianwen Liu, Yinhu Deng, Shanglin Gao, and Edith Mäder. "Cellulose fibres with carbon nanotube networks for water sensing." Royal Society of Chemistry, 2014. https://tud.qucosa.de/id/qucosa%3A36157.
Full textBenoit, Maud. "Dépolymérisation catalytique de la cellulose couplée à des techniques d’activation non thermiques." Thesis, Poitiers, 2012. http://www.theses.fr/2012POIT2270.
Full textWith the depletion of fossil carbon resources, biomass (including cellulose) is widely introduced in the chemical industry, as a renewable source of carbon. Cellulose is a huge reservoir (1,3 Million tons) of cheap (< 10 €/kg) and non-edible carbon. So use cellulose as raw material has many advantages, as much as economic plan than environmental one. However, due to important inter and intra hydrogen bonds network, cellulose is highly crystalline and thus insoluble in common solvents (including water) and recalcitrant to hydrolysis by heterogeneous catalysis, due to solid/solid interactions. A preliminary step consists in the activation of cellulose to enhance the solid/solid interactions. However, the pretreatments used in the literature are limited by the cost, corrosiveness, and toxicity. The aim of this study is to develop physical pretreatments of cellulose in order to be environmentally friendly and promote cellulose/catalyst interactions. In this manuscript, two physical methods of cellulose activation will be explored. The first involves a sonic treatment and the second implies non-thermal atmospheric plasma technology. These methods lead to an increase of the glucose yield due to the change of i) the particle size, or/and ii) the degree of polymerization or/and iii) the cristallinity. From carbohydrate obtained via the depolymerisation of cellulose, 5-hydroxymethylfurfural (platform molecule) is achieved. This synthesis, including dehydration of fructose, will be studied and especially, the nature of the solvent which is a key point ofthis conversion will be discussed. In this work glycerol or glycerol carbonate-based media were studied, as co-solvent from renewable carbon
Le, Moigne Nicolas. "Mécanismes de gonflement et de dissolution des fibres de cellulose." Phd thesis, École Nationale Supérieure des Mines de Paris, 2008. http://tel.archives-ouvertes.fr/tel-00353429.
Full textLy, El Hadji Babacar. "Nouveaux matériaux composites thermoformables à base de fibres de cellulose." Phd thesis, Grenoble INPG, 2008. http://tel.archives-ouvertes.fr/tel-00268828.
Full textQuajai, Sirisart, and soj@kmitnb ac th. "Biopolymer Composite based on Natural and Derived Hemp Cellulose Fibres." RMIT University. Applied Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20061222.111612.
Full textBooks on the topic "Depolymerization of cellulose fibres"
Calvin, Woodings, and Textile Institute (Manchester England), eds. Regenerated cellulose fibres. Boca Raton, FL: CRC Press, 2001.
Find full textSfiligoj Smole, Majda, Silvo Hribernik, Manja Kurečič, Andreja Urbanek Krajnc, Tatjana Kreže, and Karin Stana Kleinschek. Surface Properties of Non-conventional Cellulose Fibres. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10407-8.
Full text1942-, Kennedy John F., Phillips Glyn O, Williams Peter A, and Cellucon '98 Finland (1998 : Turku, Finland), eds. Cellulosic pulps, fibres and materials. Cambridge, England: Woodhead Pub., 2000.
Find full textClifford, Preston, and Society of Dyers and Colourists., eds. The dyeing of cellulosic fibres. Bradford, West Yorkshire: Dyers' Company Publications Trust, 1986.
Find full textCellulosic materials: Fibers, networks, and composites. Boston, Mass: Kluwer Academic Publishers, 2002.
Find full textPeltonen, Petri. Asphalt mixtures modified with tall oil pitches and cellulose fibres. Espoo, Finland: VTT, Technical Research Centre of Finland, 1992.
Find full textS, Kaith B., Kaur Inderjeet, and SpringerLink (Online service), eds. Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textW, Perkins Richard, American Society of Mechanical Engineers. Applied Mechanics Division., American Society of Mechanical Engineers. Materials Division., and ASME Joint Applied Mechanics and Materials Division Meeting (1999 : Syracuse, New York), eds. Mechanics of cellulosic materials, 1999: Presented at the 1999 ASME Joint Applied Mechanics and Materials Division Meeting : June 27-30, 1999, Blacksburg, Virginia. New York: American Society of Mechanical Engineers, 1999.
Find full textWoodings, Calvin. Regenerated cellulose fibres. Woodhead Publishing Limited, 2001. http://dx.doi.org/10.1533/9781855737587.
Full textBook chapters on the topic "Depolymerization of cellulose fibres"
Shimamoto, Shu, Takayuki Kohmoto, and Tohru Shibata. "Depolymerization of Cellulose and Cellulose Triacetate in Conventional Acetylation System." In ACS Symposium Series, 194–200. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0688.ch014.
Full textPrado, Karen S., Asaph A. Jacinto, and Márcia A. S. Spinacé. "Cellulose Nanostructures Extracted from Pineapple Fibres." In Pineapple Leaf Fibers, 185–234. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1416-6_10.
Full textAdusumalli, Ramesh Babu, Karthik Chethan Venkateshan, and Wolfgang Gindl-Altmutter. "Micromechanics of Cellulose Fibres and Their Composites." In Wood is Good, 299–321. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3115-1_28.
Full textNortholt, M. G. "The Similarity Between Cellulose and Aramid Fibres." In Integration of Fundamental Polymer Science and Technology, 567–72. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4185-4_70.
Full textThomas, S., S. A. Paul, L. A. Pothan, and B. Deepa. "Natural Fibres: Structure, Properties and Applications." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 3–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_1.
Full textSfiligoj Smole, Majda, Silvo Hribernik, Manja Kurečič, Andreja Urbanek Krajnc, Tatjana Kreže, and Karin Stana Kleinschek. "Structure and Properties of Non-conventional Cellulose Fibres." In SpringerBriefs in Molecular Science, 49–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10407-8_4.
Full textWendler, Frank, Thomas Schulze, Danuta Ciechanska, Ewa Wesolowska, Dariusz Wawro, Frank Meister, Tatiana Budtova, and Falk Liebner. "Cellulose Products from Solutions: Film, Fibres and Aerogels." In The European Polysaccharide Network of Excellence (EPNOE), 153–85. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0421-7_6.
Full textRamesh, M., and C. Deepa. "Properties of Cellulose Based Bio-fibres Reinforced Polymer Composites." In Biofibers and Biopolymers for Biocomposites, 71–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40301-0_3.
Full textLee, Y. A. "Case Study of Renewable Bacteria Cellulose Fiber and Biopolymer Composites in Sustainable Design Practices." In Sustainable Fibres for Fashion Industry, 141–62. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0522-0_6.
Full textBoufi, Sami, and Sabrine Alila. "Modified Cellulose Fibres as a Biosorbent for the Organic Pollutants." In Biopolymers, 483–524. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118164792.ch17.
Full textConference papers on the topic "Depolymerization of cellulose fibres"
Stevulova, Nadezda, and Viola Hospodarova. "Cellulose Fibres Used in Building Materials." In Advanced HVAC and Natural Gas Technologies. Riga: Riga Technical University, 2015. http://dx.doi.org/10.7250/rehvaconf.2015.031.
Full textMissaoui, Mohamed, Evelyne Mauret, Mohamed Naceur Belgacem, Alberto D’Amore, Domenico Acierno, and Luigi Grassia. "RETENTION OF CATIONIC STARCH ONTO CELLULOSE FIBRES." In IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2989078.
Full textAxelsson, Maria. "3D Tracking of Cellulose Fibres in Volume Images." In 2007 IEEE International Conference on Image Processing. IEEE, 2007. http://dx.doi.org/10.1109/icip.2007.4380016.
Full textHospodarova, Viola, Nadezda Stevulova, Vojtech Vaclavik, Tomas Dvorsky, and Jaroslav Briancin. "Cellulose Fibres as a Reinforcing Element in Building Materials." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.104.
Full textMilestone, N. B. "Interactions of cellulose fibres in an autoclaved cement matrix." In International RILEM Symposium on Concrete Science and Engineering: A Tribute to Arnon Bentur. RILEM Publications SARL, 2004. http://dx.doi.org/10.1617/2912143586.014.
Full textWang, Z., H. Xiao, and M. Sain. "Poly (butyl acrylate)-Modified Cellulose Fibres for Toughening WPC." In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-0574.
Full textGaiolas, Carla, Maria Emilia Amaral, Ana Paula Costa, Manuel José Santos Silva, and Mohamed Naceur Belgacem. "Cold-plasma assisted grafting of cellulose fibres by acrylic monomers." In 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738475.
Full textGaiolas, C., A. P. Costa, M. J. Santos Silva, and M. N. Belgacem. "Cold-plasma assisted hydrophobisation of cellulose fibres with styrene and para-halogenated homologues." In 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738471.
Full textPavlin, Majda, Barbara Horvat, and Vilma Ducman. "Fibre Reinforced Alkali-Activated Rock Wool." In International Conference on Technologies & Business Models for Circular Economy. University of Maribor Press, 2022. http://dx.doi.org/10.18690/um.fkkt.2.2022.6.
Full textKovalovs, Andrejs, Kaspars Kalnins, Piotr Franciszczak, and Andrzej Bledzki. "Low velocity impact response of polypropylene biocomposites reinforced with man-made cellulose and soft wood fibres." In 19th International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2020. http://dx.doi.org/10.22616/erdev.2020.19.tf369.
Full text