Academic literature on the topic 'Dermatokinetics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dermatokinetics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dermatokinetics":

1

Narula, Priyanka, Komal Saini, Megha Saini, Dinesh Singla, Anurag Singh Chauhan, and Vandita Kakkar. "Assay and Dermatokinetics of Tetrahydrocurcumin Lipidic Nanostructures Using Reverse Phase-high Performance Liquid Chromatography." Pharmaceutical Nanotechnology 9, no. 2 (March 12, 2021): 130–40. http://dx.doi.org/10.2174/2211738509999210128203251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Background:: Envisaging the poor solubility (56 ngml1) and permeability of tetrahydrocurcumin (THCC), it was formulated into lipidic nanostructures to enhance its bioavailability upon topical application to promote the healing process for skin inflammatory disorders. Lack of literature on a suitable method for determining THCC per se and nanoformulations prompted us to develop an RP-HPLC method to detect the drug in its nanostructures and in pig ear skin post dermatokinetics. Objective:: The present investigation aimed to develop a simple, precise and RP-HPLC method for the quantitative estimation of THCC in prepared lipidic nanostructures, its ointment, and in skin homogenate obtained post dermatokinetic study. Method:: THCC encapsulated nanostructures and ointment were formulated using a modified emulsification method and embedded into an ointment base to enhance its spreadability and improve patient compliance. A fast and sensitive reverse-phase high-performance liquid chromatography method was developed using a Hypersil BDS reverse phase C18 column (4.6 mm × 250 mm, 5 μm) with mobile phase comprising tetrahydrofuran (THF) and 1 mgmL-1 citric acid (4:6), at a flow rate of 1.0 mLmin-1 with a run time of 20 min. Result:: THCC nanostructures were successfully prepared using the spontaneous microemulsification method. THCC was detected at 282 nm and revealed two peaks which were attributed to the keto-enol tautomerism in the molecule with retention times of 6.23 min and 11.06 min, respectively. The assay of THCC in nanostructures and ointment was found to be 98.30 % and 99.98 %, with an entrapment efficiency 77.00±2.74 %. The dermatokinetic studies revealed sufficient release of THCC from its ointment up to 24 hr with a concentration of 1382 μgcm-2, for causing a therapeutic effect. Conclusion:: The method was found to be reproducible and robust, as shown by the low coefficient of variation and a constant analyte/IS ratio. It was successfully employed for the estimation of THCC assay in nanostructures and its ointment and dermatokinetic analysis in the skin.
2

Nair, Anroop, Shery Jacob, Bandar Al-Dhubiab, Mahesh Attimarad, and Sree Harsha. "Basic considerations in the dermatokinetics of topical formulations." Brazilian Journal of Pharmaceutical Sciences 49, no. 3 (September 2013): 423–34. http://dx.doi.org/10.1590/s1984-82502013000300004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Assessing the bioavailability of drug molecules at the site of action provides better insight into the efficiency of a dosage form. However, determining drug concentration in the skin layers following topical application of dermatological formulations is a great challenge. The protocols followed in oral formulations could not be applied for topical dosage forms. The regulatory agencies are considering several possible approaches such as tape stripping, microdialysis etc. On the other hand, the skin bioavailability assessment of xenobiotics is equally important for topical formulations in order to evaluate the toxicity. It is always possible that drug molecules applied on the skin surface may transport thorough the skin and reaches systemic circulation. Thus the real time measurement of molecules in the skin layer has become obligatory. In the last two decades, quite a few investigations have been carried out to assess the skin bioavailability and toxicity of topical/dermatological products. This review provides current understanding on the basics of dermatokinetics, drug depot formation, skin metabolism and clearance of drug molecules from the skin layers following application of topical formulations.
3

Thotakura, Nagarani, Pramod Kumar, Sheetu Wadhwa, Kaisar Raza, and Prakash Katare. "Dermatokinetics as an Important Tool to Assess the Bioavailability of Drugs by Topical Nanocarriers." Current Drug Metabolism 18, no. 5 (May 23, 2017): 404–11. http://dx.doi.org/10.2174/1389200218666170306104042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thakur, Kanika, Gajanand Sharma, Bhupindar Singh, and Om Prakash Katare. "Topical Drug Delivery of Anti-infectives Employing Lipid-Based Nanocarriers: Dermatokinetics as an Important Tool." Current Pharmaceutical Design 24, no. 43 (March 28, 2019): 5108–28. http://dx.doi.org/10.2174/1381612825666190118155843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Background:The therapeutic approaches for the management of topical infections have always been a difficult approach due to lack of efficacy of conventional topical formulations, high frequency of topical applications and non-patient compliance. The major challenge in the management of topical infections lies in antibiotic resistance which leads to severe complications and hospitalizations resulting in economic burden and high mortality rates.Methods:Topical delivery employing lipid-based carriers has been a promising strategy to overcome the challenges of poor skin permeation and retention along with large doses which need to be administered systemically. The use of lipid-based delivery systems is a promising strategy for the effective topical delivery of antibiotics and overcoming drug-resistant strains in the skin. The major systems include transfersomes, niosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion and nanoemulsion as the most promising drug delivery approaches to treat infectious disorders. The main advantages of these systems include lipid bilayer structure which mimics the cell membrane and can fuse with infectious microbes. The numerous advantages associated with nanocarriers like enhanced efficacy, improvement in bioavailability, controlled drug release and ability to target the desired infectious pathogen have made these carriers successful.Conclusion:Despite the number of strides taken in the field of topical drug delivery in infectious diseases, it still requires extensive research efforts to have a better perspective of the factors that influence drug permeation along with the mechanism of action with regard to skin penetration and deposition. The final objective of the therapy is to provide a safe and effective therapeutic approach for the management of infectious diseases affecting topical sites leading to enhanced therapeutic efficacy and patient-compliance.
5

Saini, Komal, Nancy Modgill, Kamalinder Singh, and Vandita Kakkar. "Tetrahydrocurcumin Lipid Nanoparticle Based Gel Promotes Penetration into Deeper Skin Layers and Alleviates Atopic Dermatitis in 2,4-Dinitrochlorobenzene (DNCB) Mouse Model." Nanomaterials 12, no. 4 (February 14, 2022): 636. http://dx.doi.org/10.3390/nano12040636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Treatment of atopic dermatitis (AD) is challenging due to its complex pathophysiology. Tetrahydrocurcumin (THC) a polyphenolic, colorless compound that is more polar than curcumin. It possesses superior anti-inflammatory properties and has a clinical advantage over curcumin. The present study investigated the therapeutic effectiveness of THC solid lipid nanoparticle (THC-SLN)-based gels in AD. THC-SLNs prepared using microemulsification resulted in a particle size of 109.2 nm as determined by nanoparticle tracking, and FTIR confirmed the entrapment of drug within the lipid matrix. THC-SLNs greatly enhanced skin hydration when tested both ex vivo and in vivo in Lacca mice. Deeper skin penetration was clearly established using dermatokinetics and CLSM. The in vivo pharmacodynamics of THC-SLNs gel in 2,4-dinitrochlorobenzene (DNCB)-induced AD mice showed enhanced bioactivity; reduced levels of TNF-α and IL-6; and complete healing, as evident from histopathological studies. Thus, the novel topical THC-SLN gel has potential to emerge as a safe alternative to conventional corticosteroids for AD and other skin disorders with overbearing inflammation.
6

Leite, Marcel Nani, Juliana Santos Rosa Viegas, Fabíola Silva Garcia Praça, Natália Aparecida de Paula, Leandra Náira Zambelli Ramalho, Maria Vitória Lopes Badra Bentley, and Marco Andrey Cipriani Frade. "Ex vivo model of human skin (hOSEC) for assessing the dermatokinetics of the anti-melanoma drug Dacarbazine." European Journal of Pharmaceutical Sciences 160 (May 2021): 105769. http://dx.doi.org/10.1016/j.ejps.2021.105769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Negi, Poonam, Bhupinder Singh, Gajanand Sharma, Sarwar Beg, and Om Prakash Katare. "Biocompatible lidocaine and prilocaine loaded-nanoemulsion system for enhanced percutaneous absorption: QbD-based optimisation, dermatokinetics andin vivoevaluation." Journal of Microencapsulation 32, no. 5 (June 11, 2015): 419–31. http://dx.doi.org/10.3109/02652048.2015.1046513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Buist, Harrie E., Cees de Heer, Johan A. van Burgsteden, and Johannes J. M. van de Sandt. "Dermatokinetics of didecyldimethylammonium chloride and the influence of some commercial biocidal formulations on its dermal absorption in vitro." Regulatory Toxicology and Pharmacology 48, no. 1 (June 2007): 87–92. http://dx.doi.org/10.1016/j.yrtph.2007.01.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thakur, Kanika, Gajanand Sharma, Bhupinder Singh, Sanjay Chhibber, and Om Prakash Katare. "Nano-engineered lipid-polymer hybrid nanoparticles of fusidic acid: an investigative study on dermatokinetics profile and MRSA-infected burn wound model." Drug Delivery and Translational Research 9, no. 4 (January 16, 2019): 748–63. http://dx.doi.org/10.1007/s13346-019-00616-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Iqubal, Mohammad Kashif, Ashif Iqubal, Khalid Imtiyaz, M. Moshahid A. Rizvi, Madan Mohan Gupta, Javed Ali, and Sanjula Baboota. "Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis." European Journal of Pharmaceutics and Biopharmaceutics 163 (June 2021): 223–39. http://dx.doi.org/10.1016/j.ejpb.2021.04.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Dermatokinetics":

1

Quantin, Paul. "Étude du métabolisme cutané des xénobiotiques dans un contexte d’évaluation du risque pour l’Homme." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L’évaluation du devenir d’une substance appliquée sur la peau, ou dermatocinétique, est une étape importante pour décrire l’exposition de la molécule dans un organisme. Dans le cadre d’évaluation du risque toxicologique des produits cosmétiques, les mécanismes impliqués doivent être appréciés pour réduire le risque de développer des effets secondaires dermiques. Il est admis que le métabolisme de la peau peut jouer un rôle important dans la biotransformation de molécules capables de traverser la couche cornée. Même si l'activité basale est très faible, souvent proche des limites de détection, certaines enzymes peuvent être induites par divers composés chimiques. Les objectifs de cette thèse sont au nombre de deux : l’étude fondamentale de la régulation de l’induction du métabolisme et le développement d’un modèle appliqué à la simulation du métabolisme. A partir des différents modèles de peau disponibles en recherche, des études d’induction ont été menées à plusieurs échelles. In vitro, l’utilisation de méthodes de biologie moléculaire a permis d’étudier les mécanismes d’induction transcriptionnelle des cytochromes-P450 dans la peau. Les résultats d’induction transcriptomiques ont été confirmés par des études d’activité enzymatique. Le travail a été poursuivi par des études in vivo pour établir un mécanisme physiologique d’induction de l’expression d’enzymes dans la peau après une exposition systémique à un agent inducteur. Dans la deuxième partie du projet, un bioréacteur a été conçu pour simuler absorption et métabolisme afin de disposer d’un modèle prédictif de la dermatocinétique. Les expérimentations se sont concentrées sur la mise au point d’une puce enzymatique par autoassemblage couche-par-couche de fractions membranaires exprimaient des enzymes d’intérêt et d’un polymère. Les surfaces fonctionnalisées ont été caractérisées à l’aide de diverses méthodes physicochimiques. Une étude « preuve de concept » du bioréacteur en configuration complète a conclu le travail expérimental. Les savoir et savoir-faire acquis dans ce projet pourront être utilisés pour mieux comprendre l’impact du métabolisme cutané sur la biodisponibilité et les conséquences pour l’évaluation du risque pour l’homme
The assessment of the fate of a substance applied to the skin, or dermatokinetics, is a crucial step in describing the exposure of the molecule in an organism. For toxicological risk assessment of cosmetic products, this mechanism should be evaluated to reduce the risk of developing dermal side effects. It is increasingly recognized that skin metabolism can play a key role in the biotransformation of molecules capable to cross the stratum corneum. Although basal activity is very low, often close to detection limits, some enzymes can be induced by various compounds. The objectives of this thesis are twofold: the fundamental study of the induction regulation of metabolism and the development of a model applied to the simulation of skin metabolism. From the various skin models available for research, induction studies have been carried out at several scales. In vitro, the use of molecular biology methods allowed to study the mechanisms of transcriptional induction of cytochromes-P450 in the skin. Transcriptomic induction results were confirmed by enzymatic activity studies. The work was continued by in vivo studies to establish a physiological mechanism for induction of skin enzymes expression after a systemic exposure to an inducing agent. In the second part of the project, a bioreactor was designed to simulate absorption and metabolism in order to establish a predictive model of dermatokinetic. The experiments are concentrated on the development of an enzymatic chip using a layer-by-layer self-assembly of membrane fractions, expressing enzymes of interest and a polymer. Physicochemical methods were used to characterize the functionalized surfaces. A "proof of concept" study of the bioreactor in full configuration concluded the experimental work. The knowledge and expertise acquired in this project can be used to better understand the impact of cutaneous metabolism on the bioavailability and consequences for human risk assessment

Books on the topic "Dermatokinetics":

1

Murthy, S. Narasimha. Dermatokinetics of therapeutic agents. Boca Raton: Taylor & Francis, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murthy, S. Narasimha. Dermatokinetics of Therapeutic Agents. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murthy, S. Narasimha. Dermatokinetics of Therapeutic Agents. Taylor & Francis Group, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Murthy, S. Narasimha. Dermatokinetics of Therapeutic Agents. Taylor & Francis Group, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Murthy, S. Narasimha, and Narasimha Murthy S. Dermatokinetics of Therapeutic Agents. Taylor & Francis Group, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dermatokinetics":

1

Wu, Ya-Ting, Yuri Anissimov, and Michael Roberts. "Introduction to Dermatokinetics." In Dermatokinetics of Therapeutic Agents, 1–24. CRC Press, 2011. http://dx.doi.org/10.1201/b10845-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Introduction to Dermatokinetics." In Dermatokinetics of Therapeutic Agents, 13–36. CRC Press, 2011. http://dx.doi.org/10.1201/b10845-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Regulatory Perspective of Dermatokinetic Studies." In Dermatokinetics of Therapeutic Agents, 205–14. CRC Press, 2011. http://dx.doi.org/10.1201/b10845-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Theoretical Models for Dermatokinetics of Therapeutic Agents." In Dermatokinetics of Therapeutic Agents, 37–78. CRC Press, 2011. http://dx.doi.org/10.1201/b10845-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Formulation Approaches to Modulate the Dermatokinetics of Drugs." In Dermatokinetics of Therapeutic Agents, 79–92. CRC Press, 2011. http://dx.doi.org/10.1201/b10845-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Conventional Methods of Cutaneous Drug Sampling." In Dermatokinetics of Therapeutic Agents, 93–142. CRC Press, 2011. http://dx.doi.org/10.1201/b10845-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Cutaneous Microdialysis." In Dermatokinetics of Therapeutic Agents, 143–60. CRC Press, 2011. http://dx.doi.org/10.1201/b10845-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Sampling Substrates by Skin Permeabilization." In Dermatokinetics of Therapeutic Agents, 161–86. CRC Press, 2011. http://dx.doi.org/10.1201/b10845-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Spectroscopic Techniques in Dermatokinetic Studies." In Dermatokinetics of Therapeutic Agents, 187–204. CRC Press, 2011. http://dx.doi.org/10.1201/b10845-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography