Journal articles on the topic 'Descente en mirroir'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Descente en mirroir.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Duchi, John C., Alekh Agarwal, Mikael Johansson, and Michael I. Jordan. "Ergodic Mirror Descent." SIAM Journal on Optimization 22, no. 4 (2012): 1549–78. http://dx.doi.org/10.1137/110836043.
Full textLei, Yunwen, and Ding-Xuan Zhou. "Convergence of online mirror descent." Applied and Computational Harmonic Analysis 48, no. 1 (2020): 343–73. http://dx.doi.org/10.1016/j.acha.2018.05.005.
Full textChen, Po-An, and Chi-Jen Lu. "Generalized mirror descents in congestion games." Artificial Intelligence 241 (December 2016): 217–43. http://dx.doi.org/10.1016/j.artint.2016.09.002.
Full textLei, Yunwen, and Ding-Xuan Zhou. "Analysis of Online Composite Mirror Descent Algorithm." Neural Computation 29, no. 3 (2017): 825–60. http://dx.doi.org/10.1162/neco_a_00930.
Full textMiyashita, Megumi, Shiro Yano, and Toshiyuki Kondo. "Mirror descent search and its acceleration." Robotics and Autonomous Systems 106 (August 2018): 107–16. http://dx.doi.org/10.1016/j.robot.2018.04.009.
Full textRaskutti, Garvesh, and Sayan Mukherjee. "The Information Geometry of Mirror Descent." IEEE Transactions on Information Theory 61, no. 3 (2015): 1451–57. http://dx.doi.org/10.1109/tit.2015.2388583.
Full textYu, Yue, and Behcet Acikmese. "RLC Circuits-Based Distributed Mirror Descent Method." IEEE Control Systems Letters 4, no. 3 (2020): 548–53. http://dx.doi.org/10.1109/lcsys.2020.2972908.
Full textHanzely, Filip, and Peter Richtárik. "Fastest rates for stochastic mirror descent methods." Computational Optimization and Applications 79, no. 3 (2021): 717–66. http://dx.doi.org/10.1007/s10589-021-00284-5.
Full textWei, Xiaohan, Hao Yu, and Michael J. Neely. "Online Primal-Dual Mirror Descent under Stochastic Constraints." ACM SIGMETRICS Performance Evaluation Review 48, no. 1 (2020): 3–4. http://dx.doi.org/10.1145/3410048.3410051.
Full textWei, Xiaohan, Hao Yu, and Michael J. Neely. "Online Primal-Dual Mirror Descent under Stochastic Constraints." Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, no. 2 (2020): 1–36. http://dx.doi.org/10.1145/3392157.
Full textDoan, Thinh T., Subhonmesh Bose, D. Hoa Nguyen, and Carolyn L. Beck. "Convergence of the Iterates in Mirror Descent Methods." IEEE Control Systems Letters 3, no. 1 (2019): 114–19. http://dx.doi.org/10.1109/lcsys.2018.2854889.
Full textLan, Guanghui, Arkadi Nemirovski, and Alexander Shapiro. "Validation analysis of mirror descent stochastic approximation method." Mathematical Programming 134, no. 2 (2011): 425–58. http://dx.doi.org/10.1007/s10107-011-0442-6.
Full textWang, Yinghui, Zhipeng Tu, and Huashu Qin. "Distributed stochastic mirror descent algorithm for resource allocation problem." Control Theory and Technology 18, no. 4 (2020): 339–47. http://dx.doi.org/10.1007/s11768-020-00018-8.
Full textShahrampour, Shahin, and Ali Jadbabaie. "Distributed Online Optimization in Dynamic Environments Using Mirror Descent." IEEE Transactions on Automatic Control 63, no. 3 (2018): 714–25. http://dx.doi.org/10.1109/tac.2017.2743462.
Full textSAHU, O. P., M. K. SONI, and I. M. TALWAR. "DESIGNING QUADRATURE MIRROR FILTER BANKS USING STEEPEST DESCENT METHOD." Journal of Circuits, Systems and Computers 15, no. 01 (2006): 29–41. http://dx.doi.org/10.1142/s0218126606002903.
Full textNedić, Angelia, and Soomin Lee. "On Stochastic Subgradient Mirror-Descent Algorithm with Weighted Averaging." SIAM Journal on Optimization 24, no. 1 (2014): 84–107. http://dx.doi.org/10.1137/120894464.
Full textHalder, Abhishek. "DeGroot–Friedkin Map in Opinion Dynamics Is Mirror Descent." IEEE Control Systems Letters 3, no. 2 (2019): 463–68. http://dx.doi.org/10.1109/lcsys.2019.2900452.
Full textYuan, Deming, Yiguang Hong, Daniel W. C. Ho, and Guoping Jiang. "Optimal distributed stochastic mirror descent for strongly convex optimization." Automatica 90 (April 2018): 196–203. http://dx.doi.org/10.1016/j.automatica.2017.12.053.
Full textLi, Jueyou, Guoquan Li, Zhiyou Wu, and Changzhi Wu. "Stochastic mirror descent method for distributed multi-agent optimization." Optimization Letters 12, no. 6 (2016): 1179–97. http://dx.doi.org/10.1007/s11590-016-1071-z.
Full textIvanova, Anastasiya, Fedor Stonyakin, Dmitry Pasechnyuk, Evgeniya Vorontsova, and Alexander Gasnikov. "Adaptive Mirror Descent for the Network Utility Maximization Problem." IFAC-PapersOnLine 53, no. 2 (2020): 7851–56. http://dx.doi.org/10.1016/j.ifacol.2020.12.1958.
Full textMiyashita, Megumi, Toshiyuki Kondo, and Shiro Yano. "Reinforcement learning with constraint based on mirror descent algorithm." Results in Control and Optimization 4 (September 2021): 100048. http://dx.doi.org/10.1016/j.rico.2021.100048.
Full textHan Xingzi, 韩杏子, 俞信 Yu Xin, and 董冰 Dong Bing. "Using Stochastic Parallel Gradient Descent Control Algorithm to Calibrate Sencond Mirror in Three-Mirror System." Laser & Optoelectronics Progress 47, no. 4 (2010): 042201. http://dx.doi.org/10.3788/lop47.042201.
Full textLuong, Duy V. N., Panos Parpas, Daniel Rueckert, and Berç Rustem. "A Weighted Mirror Descent Algorithm for Nonsmooth Convex Optimization Problem." Journal of Optimization Theory and Applications 170, no. 3 (2016): 900–915. http://dx.doi.org/10.1007/s10957-016-0963-5.
Full textBeck, Amir, and Marc Teboulle. "Mirror descent and nonlinear projected subgradient methods for convex optimization." Operations Research Letters 31, no. 3 (2003): 167–75. http://dx.doi.org/10.1016/s0167-6377(02)00231-6.
Full textLi, Jueyou, Guo Chen, Zhaoyang Dong, and Zhiyou Wu. "Distributed mirror descent method for multi-agent optimization with delay." Neurocomputing 177 (February 2016): 643–50. http://dx.doi.org/10.1016/j.neucom.2015.12.017.
Full textNazin, A. V., and A. A. Tremba. "Saddle point mirror descent algorithm for the robust PageRank problem." Automation and Remote Control 77, no. 8 (2016): 1403–18. http://dx.doi.org/10.1134/s0005117916080075.
Full textBayandina, A. S., A. V. Gasnikov, E. V. Gasnikova, and S. V. Matsievskii. "Primal–Dual Mirror Descent Method for Constraint Stochastic Optimization Problems." Computational Mathematics and Mathematical Physics 58, no. 11 (2018): 1728–36. http://dx.doi.org/10.1134/s0965542518110039.
Full textDang, Cong D., and Guanghui Lan. "Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization." SIAM Journal on Optimization 25, no. 2 (2015): 856–81. http://dx.doi.org/10.1137/130936361.
Full textZhou, Zhengyuan, Panayotis Mertikopoulos, Nicholas Bambos, Stephen P. Boyd, and Peter W. Glynn. "On the Convergence of Mirror Descent beyond Stochastic Convex Programming." SIAM Journal on Optimization 30, no. 1 (2020): 687–716. http://dx.doi.org/10.1137/17m1134925.
Full textNazin, A. V., A. S. Nemirovsky, A. B. Tsybakov, and A. B. Juditsky. "Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method." Automation and Remote Control 80, no. 9 (2019): 1607–27. http://dx.doi.org/10.1134/s0005117919090042.
Full textNazin, A. V. "Search for a saddle point of a convex-concave stochastic game by the adaptive method of mirror descent." Transaction Kola Science Centre 11, no. 8-2020 (2020): 182–84. http://dx.doi.org/10.37614/2307-5252.2020.8.11.025.
Full textBoffi, Nicholas M., and Jean-Jacques E. Slotine. "Implicit Regularization and Momentum Algorithms in Nonlinearly Parameterized Adaptive Control and Prediction." Neural Computation 33, no. 3 (2021): 590–673. http://dx.doi.org/10.1162/neco_a_01360.
Full textAlkousa, Mohammad S. "On some stochastic mirror descent methods for constrained online optimization problems." Computer Research and Modeling 11, no. 2 (2019): 205–17. http://dx.doi.org/10.20537/2076-7633-2019-11-2-205-217.
Full textHien, Le Thi Khanh, Cuong V. Nguyen, Huan Xu, Canyi Lu, and Jiashi Feng. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization." Journal of Optimization Theory and Applications 181, no. 2 (2019): 541–66. http://dx.doi.org/10.1007/s10957-018-01469-5.
Full textMertikopoulos, Panayotis, and Mathias Staudigl. "Stochastic Mirror Descent Dynamics and Their Convergence in Monotone Variational Inequalities." Journal of Optimization Theory and Applications 179, no. 3 (2018): 838–67. http://dx.doi.org/10.1007/s10957-018-1346-x.
Full textLi, Jueyou, Guo Chen, Zhaoyang Dong, Zhiyou Wu, and Minghai Yao. "Distributed mirror descent method for saddle point problems over directed graphs." Complexity 21, S2 (2016): 178–90. http://dx.doi.org/10.1002/cplx.21794.
Full textBen-Tal, Aharon, Tamar Margalit, and Arkadi Nemirovski. "The Ordered Subsets Mirror Descent Optimization Method with Applications to Tomography." SIAM Journal on Optimization 12, no. 1 (2001): 79–108. http://dx.doi.org/10.1137/s1052623499354564.
Full textShiyan, D. N., and A. V. Kolnogorov. "Simulation of the mirror descent algorithm on distributions with different variances." Journal of Physics: Conference Series 1658 (October 2020): 012051. http://dx.doi.org/10.1088/1742-6596/1658/1/012051.
Full textNazin, A. V. "Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization." Automation and Remote Control 79, no. 1 (2018): 78–88. http://dx.doi.org/10.1134/s0005117918010071.
Full textOrabona, Francesco, Koby Crammer, and Nicolò Cesa-Bianchi. "A generalized online mirror descent with applications to classification and regression." Machine Learning 99, no. 3 (2014): 411–35. http://dx.doi.org/10.1007/s10994-014-5474-8.
Full textJuditsky, A. B., A. V. Nazin, A. B. Tsybakov, and N. Vayatis. "Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging." Problems of Information Transmission 41, no. 4 (2005): 368–84. http://dx.doi.org/10.1007/s11122-006-0005-2.
Full textSemenov, V. V. "A Version of the Mirror descent Method to Solve Variational Inequalities*." Cybernetics and Systems Analysis 53, no. 2 (2017): 234–43. http://dx.doi.org/10.1007/s10559-017-9923-9.
Full textBubeck, Sébastien, Michael B. Cohen, James R. Lee, and Yin Tat Lee. "Metrical Task Systems on Trees via Mirror Descent and Unfair Gluing." SIAM Journal on Computing 50, no. 3 (2021): 909–23. http://dx.doi.org/10.1137/19m1237879.
Full textNazin, A. V., S. V. Anulova, and A. A. Tremba. "A mirror descent algorithm for minimization of mean Poisson flow driven losses." Automation and Remote Control 75, no. 6 (2014): 1010–16. http://dx.doi.org/10.1134/s0005117914060022.
Full textBoţ, Radu Ioan, and Axel Böhm. "An incremental mirror descent subgradient algorithm with random sweeping and proximal step." Optimization 68, no. 1 (2018): 33–50. http://dx.doi.org/10.1080/02331934.2018.1482491.
Full textBayadina, A., A. Gasnikov, E. Gasnikova, and S. Matsiyevsky. "Direct-dual method of mirror descent for conditional problems of stochastic optimization." Журнал вычислительной математики и математической физики 58, no. 11 (2018): 1794–803. http://dx.doi.org/10.31857/s004446690003533-7.
Full textBorovykh, A., N. Kantas, P. Parpas, and G. A. Pavliotis. "On stochastic mirror descent with interacting particles: Convergence properties and variance reduction." Physica D: Nonlinear Phenomena 418 (April 2021): 132844. http://dx.doi.org/10.1016/j.physd.2021.132844.
Full textStonyakin, Fedor Sergeevich, Aleksej N. Stepanov, Alexander Vladimirovich Gasnikov, and Alexander A. Titov. "Mirror descent for constrained optimization problems with large subgradient values of functional constraints." Computer Research and Modeling 12, no. 2 (2020): 301–17. http://dx.doi.org/10.20537/2076-7633-2020-12-2-301-317.
Full textMajlesinasab, Nahidsadat, Farzad Yousefian, and Arash Pourhabib. "Self-Tuned Mirror Descent Schemes for Smooth and Nonsmooth High-Dimensional Stochastic Optimization." IEEE Transactions on Automatic Control 64, no. 10 (2019): 4377–84. http://dx.doi.org/10.1109/tac.2019.2897889.
Full textGasnikov, A. V., Yu E. Nesterov, and V. G. Spokoiny. "On the efficiency of a randomized mirror descent algorithm in online optimization problems." Computational Mathematics and Mathematical Physics 55, no. 4 (2015): 580–96. http://dx.doi.org/10.1134/s0965542515040041.
Full text