Academic literature on the topic 'Descripteur audio'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Descripteur audio.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Descripteur audio"
Li, Francis F. "Soft-Computing Audio Classification as a Pre-Processor for Automated Content Descriptor Generation." International Journal of Computer and Communication Engineering 3, no. 2 (2014): 101–4. http://dx.doi.org/10.7763/ijcce.2014.v3.300.
Full textWątrobiński, Damian. "Dylemat audiodeskryptora w procesie przekładu audiowizualnego." Investigationes Linguisticae 39 (May 31, 2019): 140–50. http://dx.doi.org/10.14746/il.2018.39.11.
Full textMoore, Austin. "Dynamic Range Compression and the Semantic Descriptor Aggressive." Applied Sciences 10, no. 7 (March 30, 2020): 2350. http://dx.doi.org/10.3390/app10072350.
Full textBloit, Julien, Nicolas Rasamimanana, and Frédéric Bevilacqua. "Modeling and segmentation of audio descriptor profiles with segmental models." Pattern Recognition Letters 31, no. 12 (September 2010): 1507–13. http://dx.doi.org/10.1016/j.patrec.2009.11.003.
Full textPeng, Yu Qing, Wei Liu, Cui Cui Zhao, and Tie Jun Li. "Detection of Violent Video with Audio-Visual Features Based on MPEG-7." Applied Mechanics and Materials 411-414 (September 2013): 1002–7. http://dx.doi.org/10.4028/www.scientific.net/amm.411-414.1002.
Full textWu, Pingping, Hong Liu, Xiaofei Li, Ting Fan, and Xuewu Zhang. "A Novel Lip Descriptor for Audio-Visual Keyword Spotting Based on Adaptive Decision Fusion." IEEE Transactions on Multimedia 18, no. 3 (March 2016): 326–38. http://dx.doi.org/10.1109/tmm.2016.2520091.
Full textXIE, ZHIBING, and LING GUAN. "MULTIMODAL INFORMATION FUSION OF AUDIO EMOTION RECOGNITION BASED ON KERNEL ENTROPY COMPONENT ANALYSIS." International Journal of Semantic Computing 07, no. 01 (March 2013): 25–42. http://dx.doi.org/10.1142/s1793351x13400023.
Full textNanni, Loris, Sheryl Brahnam, Alessandra Lumini, and Gianluca Maguolo. "Animal Sound Classification Using Dissimilarity Spaces." Applied Sciences 10, no. 23 (November 30, 2020): 8578. http://dx.doi.org/10.3390/app10238578.
Full textCastro, F. M., M. J. Marín-Jiménez, N. Guil Mata, and R. Muñoz-Salinas. "Fisher Motion Descriptor for Multiview Gait Recognition." International Journal of Pattern Recognition and Artificial Intelligence 31, no. 01 (January 2017): 1756002. http://dx.doi.org/10.1142/s021800141756002x.
Full textYang, Ming Liang, and Wei Ping Ding. "The Exploration of Evaluation Method about the Driving Electromotor Acoustic Comfort of the Pure Electric Vehicles." Applied Mechanics and Materials 224 (November 2012): 113–18. http://dx.doi.org/10.4028/www.scientific.net/amm.224.113.
Full textDissertations / Theses on the topic "Descripteur audio"
Tardieu, Damien. "Modèles d'instruments pour l'aide à l'orchestration." Paris 6, 2008. http://www.theses.fr/2008PA066522.
Full textBloit, Julien. "Intéraction musicale et geste sonore : modélisation temporelle de descripteurs audio." Paris 6, 2010. http://www.theses.fr/2010PA066614.
Full textColeman, Graham Keith. "Descriptor control of sound transformations and mosaicing synthesis." Doctoral thesis, Universitat Pompeu Fabra, 2016. http://hdl.handle.net/10803/392138.
Full textEl mostreig, com a tècnica musical o de síntesi, és una manera de reutilitzar expressions musicals enregistrades. En aquesta dissertació s’exploren estratègies d’ampliar la síntesi de mostreig, sobretot la síntesi de “mosaicing”. Aquesta última tracta d’imitar un senyal objectiu a partir d’un conjunt de senyals font, transformant i ordenant aquests senyals en el temps, de la mateixa manera que es faria un mosaic amb rajoles trencades. Una d’aquestes ampliacions de síntesi consisteix en el control automàtic de transformacions de so cap a objectius definits a l’espai perceptiu. L’estratègia elegida utilitza models que prediuen com es transformarà el so d’entrada en funció d’uns paràmetres seleccionats. En un cas, els models són coneguts, i cerques númeriques es poden fer servir per trobar paràmetres suficients; en l’altre, els models són desconeguts i s’han d’aprendre a partir de les dades. Una altra ampliació es centra en el mostreig en si. Mesclant múltiples sons a la vegada, potser és possible fer millors imitacions, més específicament millorar l’harmonia del resultat, entre d’altres. Tot i així, utilitzar múltiples mescles crea nous problemes computacionals, especialment si propietats com la continuïtat, important per a la síntesis de mostreig d’alta qualitat, han de ser preservades. En aquesta tesi es presenta un nou sintetitzador mosaicing que incorpora tots aquests elements: control automàtic de transformacions de so fent servir models, mescles a partir de descriptors d’harmonia i timbre perceptuals, i preservació de la continuïtat del context de mostreig i dels paràmetres de transformació. Fent servir proves d’escolta, l’algorisme híbrid proposat va ser comparat amb algorismes clàssics i contemporanis: l’algorisme híbrid va donar resultats positius a una varietat de mesures de qualitat.
Essid, Slim. "Classification automatique des signaux audio-fréquences : reconnaissance des instruments de musique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://pastel.archives-ouvertes.fr/pastel-00002738.
Full textRamona, Mathieu. "Classification automatique de flux radiophoniques par Machines à Vecteurs de Support." Phd thesis, Télécom ParisTech, 2010. http://pastel.archives-ouvertes.fr/pastel-00529331.
Full textRoche, Fanny. "Music sound synthesis using machine learning : Towards a perceptually relevant control space." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALT034.
Full textOne of the main challenges of the synthesizer market and the research in sound synthesis nowadays lies in proposing new forms of synthesis allowing the creation of brand new sonorities while offering musicians more intuitive and perceptually meaningful controls to help them reach the perfect sound more easily. Indeed, today's synthesizers are very powerful tools that provide musicians with a considerable amount of possibilities for creating sonic textures, but the control of parameters still lacks user-friendliness and may require some expert knowledge about the underlying generative processes. In this thesis, we are interested in developing and evaluating new data-driven machine learning methods for music sound synthesis allowing the generation of brand new high-quality sounds while providing high-level perceptually meaningful control parameters.The first challenge of this thesis was thus to characterize the musical synthetic timbre by evidencing a set of perceptual verbal descriptors that are both frequently and consensually used by musicians. Two perceptual studies were then conducted: a free verbalization test enabling us to select eight different commonly used terms for describing synthesizer sounds, and a semantic scale analysis enabling us to quantitatively evaluate the use of these terms to characterize a subset of synthetic sounds, as well as analyze how consensual they were.In a second phase, we investigated the use of machine learning algorithms to extract a high-level representation space with interesting interpolation and extrapolation properties from a dataset of sounds, the goal being to relate this space with the perceptual dimensions evidenced earlier. Following previous studies interested in using deep learning for music sound synthesis, we focused on autoencoder models and realized an extensive comparative study of several kinds of autoencoders on two different datasets. These experiments, together with a qualitative analysis made with a non real-time prototype developed during the thesis, allowed us to validate the use of such models, and in particular the use of the variational autoencoder (VAE), as relevant tools for extracting a high-level latent space in which we can navigate smoothly and create new sounds. However, so far, no link between this latent space and the perceptual dimensions evidenced by the perceptual tests emerged naturally.As a final step, we thus tried to enforce perceptual supervision of the VAE by adding a regularization during the training phase. Using the subset of synthetic sounds used in the second perceptual test and the corresponding perceptual grades along the eight perceptual dimensions provided by the semantic scale analysis, it was possible to constraint, to a certain extent, some dimensions of the VAE high-level latent space so as to match these perceptual dimensions. A final comparative test was then conducted in order to evaluate the efficiency of this additional regularization for conditioning the model and (partially) leading to a perceptual control of music sound synthesis
Jui-Yu, Lee, and 李瑞育. "Music Identification Using MPEG-7 Audio Descriptor." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/94294621961519732529.
Full text國立臺北科技大學
資訊工程系碩士班
92
Unlike MPEG-1, MPEG-2, or MPEG-4, MPEG-7 focuses on describing the multimedia data instead of compressing multimedia data. Using MPEG-7, one can create a multimedia database to ease the search of multimedia content. This thesis investigates the use of the Audio Signature Descriptor in MPEG-7 Audio part for music identification. In order to evaluate the discrimination power of the descriptors, the test sound tracks are distorted due to cropping, resampling, perceptual audio coding(MPEG-1 Layer-3 coded Signal, 96Kbps/stereo, 128Kbps/stereo, 192Kbps/stereo), volume change, and adding noise. In terms of fast search methods, we discuss how to reduce the computational complexity using a multi-resolution scheme. The experimental results show that the proposal approach is promising.
Chen, Wei-Hua, and 陳威華. "Music Retrieval System Using MPEG-7 Audio Descriptor." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/y2d9h7.
Full text國立臺北科技大學
資訊工程系研究所
95
In this thesis, we propose a musical retrieval system. The main concept is to identify whether one piece of sound track is the same as another one in the song database by using MPEG-7 audio descriptor. However, the practicability of this system is based on whether it has some efficient searching method. If the comparison between query song and songs in database costs too much time, it will decrease system’s practicability. Based on Audio Signature Descriptor, we propose some methods about dimension reduction and the use of KD-tree for multidimensional nearest neighbor searching. It decreases the overall comparison time to increases practical value of our system. We also use some methods to improve system’s false alarm rate (i.e., decrease FAR and FRR) and benchmark those methods by ROC graph. Finally, we use multi-resolution search to implement our system.
Lin, Yu-Chu, and 林祐竹. "Performance Evaluation of a Musical Retrieval System based on MPEG-7 Audio Signature Descriptor for Mobile Phone Recorded Audio." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/49f57m.
Full text國立臺北科技大學
資訊工程系研究所
102
This thesis studies the performance of a music database system, which accepts mobile-phone recorded audio as the query, based on MPEG-7 audio signature descriptors. In this study, we firstly investigate the possibility of convolving room impulse response with the reference audio to replace the mobile-phone recorded audio. By comparing the waveforms, we conclude that this approach is highly possible.. We next add environmental noise to the simulated recorded audio as the test audio to examine various strategies to improve the identification accuracy. Simulation results reveal that filtering on the frequency-axis provides higher accuracy for noisy environment. Next, we find that comparing 8 to 12 subbands are sufficient. Our last experiment concerns the accuracy versus the number of (dimension-reduced) descriptors. The results show that the identification accuracy dramatically reduced if the number of dimension-reduced features below a certain level.
Hung, Ming-Jen, and 洪名人. "Music identification and retrieval using MPEG-7 audio signature descriptor with dimensionality reduction by ICA and factor analysis." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/5c88r4.
Full text國立臺北科技大學
資訊工程系研究所
98
The thesis studies the use of MPEG-7 audio descriptor as features for music retrieval system. Since the MPEG-7 audio descriptors representing a song contains a large number of data points, this thesis uses ICA (Independent Component Analysis) and FA(Factor Analysis) for dimension reduction to reduce the search time and to maintain a good recognition rate. In addition, we also test the indentification capabilities of the audio descriptors with speaker-mic recorded music and music with artifical noise. To be a retrieval system, we also propose a method to determine whether a piece of music is in the database or not.
Conference papers on the topic "Descripteur audio"
Luo, Ruwei, and Yun Cheng. "The algorithm of descriptor based on LPP and SIFT." In 2014 International Conference on Audio, Language and Image Processing (ICALIP). IEEE, 2014. http://dx.doi.org/10.1109/icalip.2014.7009795.
Full textKarpaka Murthy, M., S. Seetha, and Flavio L. C. Padua. "Generating MPEG 7 audio descriptor for content-based retrieval." In 2011 IEEE Recent Advances in Intelligent Computational Systems (RAICS). IEEE, 2011. http://dx.doi.org/10.1109/raics.2011.6069356.
Full textPeng, Yong Kang, Yi Lai Zhang, Xi En Cheng, Yi Cheng Li, and Shi Dong Zhao. "An Object Detection Method Based on the Joint Feature of the H-S Color Descriptor and the SIFT Feature." In 2018 International Conference on Audio, Language and Image Processing (ICALIP). IEEE, 2018. http://dx.doi.org/10.1109/icalip.2018.8455641.
Full textJia-Ching Wang, Jhing-Fa Wang, Kuok Wai He, and Cheng-Shu Hsu. "Environmental Sound Classification using Hybrid SVM/KNN Classifier and MPEG-7 Audio Low-Level Descriptor." In The 2006 IEEE International Joint Conference on Neural Network Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/ijcnn.2006.246644.
Full text