To see the other types of publications on this topic, follow the link: Design and 3D printing.

Dissertations / Theses on the topic 'Design and 3D printing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Design and 3D printing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Börjesson, Christopher. "3D-printing : För effektivisering av produkter." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-86007.

Full text
Abstract:
In this report, my work on 3D-printing will be presented. This project is what constitutes my examination project in the education of industrial design engineering.   3D-printers are tools that have undergone great development in recent years. Through this development, the machines have become increasingly accessible to private individuals thanks to reduced prices, easyer use and higher quality. Through an increased use of the tool on a more private level, new opportunities are created for how we manufacture products, as well as how our attitude to its components are viewed.   The purpose of the work was to investigate how 3D-printing can be used to create more efficient and sustainable products with a focus on users, manufacturers and the environment. The goal was to develop an approach to utilize the function of a 3D-printer in a way that contributes to higher sustainability and efficiency, where the end result should contribute to this without forcing the user to make any decisive sacrifices.   The work has been carried out with a three-part process, divided into the phases Inspiration, Ideation and implementation, which together constitute an iterative design process. Initially in the inspiration phase, inspiration was created for the work with the help of a literature study, theory collection and a context analysis. Then began the ideation phase, whose purpose was to start creating ideas and conceptualize the inspiration that has previously been collected in the inspiration phase. To implement these ideas and concepts, the implementation phase was carried out to achieve a more completed and implemented concept.   The work resulted in the concept TonePrint. TonePrint is a speaker and a pair of headphones that work together in a form of ecosystem to make the interaction smoother for the user when changing audio source. The product TonePrint is a product that the user 3D-prints by oneself. This contributes to a more efficient and sustainable product as well as production. The product is designed in a way that enables the user to configure the product based on their own needs, which contributes to increased personalization. It allows the user to reuse components from previous devices that would otherwise be discarded, or select components based on their own liking and taste.<br>I den här rapporten kommer mitt arbete rörande 3D-printeing presenteras. Det här projektet är det som utgör mitt examensarbete i utbildningen högskoleingenjör inom teknisk design.   3D-printers är verktyg som har genomgått stor utveckling de senaste åren. Genom den här utvecklingen har maskinerna blivit allt mer tillgängliga för privatpersoner tack vare lägre priser, smidigare användning och högre kvalitet. Genom en ökad användning av verktyget på mer privata plan skapas nya möjligheter för hur vi tillverkar produkter, samt hur vi ser på produkter och dess uppbyggande komponenter.   Syftet med arbetet var att undersöka hur 3D-printing kan användas för att skapa mer effektiva och hållbara produkter med fokus på användare, tillverkare och miljön. Målet var att ta fram ett tillvägagångssätt att nyttja de egenskaper en 3D-printer medför på ett sätt som bidrar till en högre hållbarhet och effektivitet, där det slutliga resultatet ska bidra till detta utan att tvinga användaren att göra några avgörande uppoffringar.    Arbetet har genomförts med en tre delad process, indelad i faserna Inspiration, Ideation och implementation som tillsammans utgör en iterativ designprocess. Initialt i inspirationsfasen skapades inspiration för arbetet med hjälp av en litteraturstudie, teoriinsamling samt en kontextanalys. Därefter påbörjades ideationsfasen, vars syfte var att börja skapa idéer och konceptualisera den inspirationen som tidigare blivit insamlad i inspirationsfasen. För att implementera dessa idéer och koncept utfördes implementationsfasen för att nå ett mer färdigställt och förverkligat koncept.   Arbetet resulterade i konceptet TonePrint. TonePrint är en högtalare och ett par hörlurar som samverkar i ett form av ekosystem för att göra interaktionen smidigare för användaren vid byte av ljudkälla. Produkten TonePrint är en produkt som användaren själv 3D-printar. Detta bidrar till en mer effektiv och hållbar produkt samt produktion. Produkten är utformad på ett sätt som möjliggör för användaren att konfigurera produkten utifrån eget behov vilket bidrar till en ökad personalisering. Det möjliggör för användaren att återanvända komponenter från tidigare enheter som annars skulle slängas, eller välja komponenter utifrån eget tycke och smak.
APA, Harvard, Vancouver, ISO, and other styles
2

Tanwilaisiri, Anan. "Design and fabrication of supercapacitors using 3D printing." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16338.

Full text
Abstract:
Supercapacitors, also known as electrochemical capacitors, have shown great potential as energy storage devices; and 3D printing likewise as a manufacturing technique. This research progressively investigates combining these two technologies to fabricate 3D-printed, electrochemical double-layer capacitors (EDLCs). Small EDLCs were designed in a sandwich structure with an FDM-printed plastic frame and carbon electrodes. Inkjet printing was initially combined with FDM printing to produce a pilot sample with a silver ink current collector, however this performed poorly (Cs = 6 mF/g). Henceforth a paste extrusion system was added to the FDM printer to deposit the current collectors and electrodes, fabricating the entire device in a single continuous process. This process was progressively developed and tested, ultimately attaining specific capacitances of 200 mF/g. The fully integrated 3D printing process used to manufacture the EDLCs was a novel approach. Combining the FDM printer with a paste extruder allowed for a high degree of dimensional accuracy, as well as simplifying the production process. This aspect of the design functioned successfully, without significant faults, and proved a reliable fabrication method. The later designs used in this study provided the EDLCs extendable by incorporating connection jacks. This was to create the possibility to increase capacitance simply by connecting multiple EDLCs together. Tests of this feature showed that it worked well, with the extendable EDLCs delivering outputs very close to the theoretical maximum efficiency of the unit. Carbon conductive paint was applied as a current collector and electrode for the 3D printed EDLCs in an exploration of metal-free 3D printed supercapacitors. These metal-free EDLCs were found to provide around 60% of the specific capacitance of the best performing EDLC variant produced (silver paint current collectors with activated carbon and carbon paint mixture electrodes). Although considerable improvement is required to produce EDLC samples with comparable capacitances to existing commercial manufacturing techniques, this study lays important groundwork in this area, and has introduces effective and innovative design ideas for supercapacitors and integrated 3D printing processes.
APA, Harvard, Vancouver, ISO, and other styles
3

JOHANSSON, ANNA. "3D-2D-3D." Thesis, Högskolan i Borås, Institutionen Textilhögskolan, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-18108.

Full text
Abstract:
The area of this work is a combination of draping and printing. It strives towards the technique that dazzles the eye with illusions of more than one dimension. As a viewer you will believe that the prints are real drapings while they are flat surfaces. Today prints in fashion are categorized as placed prints or all-over prints, and generally created as a flat surface to decorate the garments. In this work the idea is to manipulate and challenge the boundaries of print and give it life through the body shapes and in the movement. Potentially this work could be an introduction to a new way of working with prints in fashion. This work could poosibly be presented as a new technique where placed- print and all-over prints comes together- called placed all-over prints. Also, it could develop into further techniques in using two-dimensional flatness and save fabric in using photography as an option to the real three-dimensional drapings. Furthermore could it mean savings in material as a conscious choice in the process ? This investigation explores two particular kinds of techniques, - print and draping, that are merged into one expression. The aims of this work is to find new ways of using print in combination with draping in dress and explore the possibilities to find a new technique to create interesting womenswear. To unite dimensions like two-dimensional and three-dimensional as a method of finding new forms and expressions. Through experiments with striped textiles the focus is to investigate the possibilities of greater visual effects on two-dimensional prints. For a depth and to exaggerate the directions in the fabric before translating it into a flat surface the striped textile can be a tool for further design. The striped textile has the potential to help the eye to understand the directions in the print and can be used in more than one dimension and color. To explore how to create 3D effect on 2D in print design through draping in dress is the aim of this work.<br>Program: Modedesignutbildningen
APA, Harvard, Vancouver, ISO, and other styles
4

Granath, Victor. "3D Printing for Computer Graphics Industry." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-10439.

Full text
Abstract:
Rapid prototyping is a relativity new technology and is based on layered manufacturing which has similarities to the method an ordinary desktop paper printer works. This research is to obtain a better understanding on how to use computer graphics software, in this particular case Autodesk Maya, to create a model. The goal is to understand how to create a suitable mesh of a 3D model for use with a 3D printer and produce a printed model that is equivalent to the CAD software 3D model. This specific topic has not been scientifically documented which has resulted in an actual 3D model.
APA, Harvard, Vancouver, ISO, and other styles
5

Sabbaghi, Arman. "Dilemmas in Design: From Neyman and Fisher to 3D Printing." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ariadi, Yudhi. "Facilitating consumer involvement in design for additive manufacturing/3D printing products." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/21763.

Full text
Abstract:
This research investigates the potential of the general public to actively design their own products and let consumers either manufacture by themselves or send the files to manufacturers to be produced. This approach anticipates the rapid growth of fabrication technology, particularly in Additive Manufacturing (AM)/3D printing. Recent developments in the field of AM/3D printing have led to renewed interest in how to manufacture customised products and in a way that will allow consumers to create bespoke products more easily. These technologies can enhance the understanding of non-technology compliant consumers and bring the manufacturing process closer to them. Consequently, to make AM/3D printing more accessible and easier to employ by the general public, design aspects need to be developed to be as simple to operate in the same manner as AM/3D printing technologies. These technologies will then attract consumers who want to produce Do-It-Yourself (DIY) products. This study suggests a Computer-aided Consumer Design (CaCODE) system as user- friendly design software to simplify the Computer Aided Design (CAD) stages that are required to produce 3D model data required by the AM/3D printing process. This software will be an easy-to-operate design system where consumers interact with parameters of designed forms easily instead of operating conventional CAD. In addition, this research investigates the current capabilities of AM/3D printing technologies in producing consumer products. To uncover the potential of consumer-led design and manufacturing, CaCODE has been developed for consumer evaluation, which is needed to measure the appropriateness of the tool. In addition, a range of consumer product samples as pens has been built using a range of different materials, AM/3D printing technologies and additional post-processing methods. This was undertaken to evaluate consumer acceptance of the AM/3D printed product based on products perceived quality. Forty non-designer participants, 50% male and 50% female, from 5 to 64 years old, 6-7 participants per ten-year age groups in 6 groups, were recruited. The results indicated that 75% of the participants would like to design their own product using consumer design software. The study compared how consumers interacted with the 3D model to manipulate the shape by using two methods: indirect manipulation (sliders) and direct manipulation (drag points). The majority of the participants would prefer to use the direct manipulation because they felt it was easy to use and enabled them to enjoy the design process. The study concluded that the direct manipulation was more acceptable because it enabled users to touch the digital product and manipulate it, making it more intuitive and natural. The research finds that there is a potential for consumers to design a product using user-friendly design tools. Using these findings, a consumer design tool concept was created for future development. The study indicated that 53% of participants would like to use products made by AM/3D printing although they still wanted the surface finish of injection moulded parts. However, the AM/3D printing has advantages that can fulfil the participants preference such as multi-materials from the material jetting method and it is proved that additional post-processing can increase participants acceptance level.
APA, Harvard, Vancouver, ISO, and other styles
7

Gao, Ming. "Design and feasibility evaluation of low-cost 3D printing of Horn Antennas." Master's thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/31196.

Full text
Abstract:
This dissertation investigates advances in additive manufacturing (AM) technology to determine the feasibility of low-cost 3D printing of horn antennas. Relevant antenna theory and current 3D printing technologies are reviewed and a literature review is conducted looking specifically at microwave and RF devices that have been fabricated using 3D printing technologies. The literature indicates that the fabrication of antennas using AM and metallisation techniques is realisable. One of the objectives of this study has been to design, fabricate and test the performance of lowcost 3D printed antennas to determine their feasibility. To achieve this, a commercial X-band pyramidal horn has been replicated using the microwave simulation package FEKO. The X-band horn has been fabricated using an FDM-based 3D printer and metallised using conductive paint. Ku-band pyramidal and conical horns have also been designed and 3D printed using the same method and have been metallised using both conductive paint and electroplating. The fabricated horns have been measured and tested in an anechoic chamber with the measured results analysed. The fabricated X-band pyramidal horn achieved a gain of 9.2 dBi with an input reflection coefficient of −11.9 dB at a centre frequency of 10 GHz. This is in agreement with the measured gain and reflection coefficient of the X-band commercial horn. The Ku-band pyramidal horns that have been metallised using conductive paint and copper plating achieved gains of 17.5 dBi and 17.7 dBi respectively, measured at a centre frequency of 15 GHz. The input reflection coefficients for the painted Ku-band pyramidal horns are measured as −24.2 dB while the copper plated horns are measured as −23.3 dB. The second set of Ku-band conical horn antennas designed have also been metallised using conductive paint and copper plating. These two antennas achieved gains of 12.0 dBi and 16.6 dBi respectively at a centre frequency of 15 GHz. The input reflection coefficient for the painted Kuband conical horn is −15.2 dB while the plated version has a reflection coefficient of −18.3 dB. The total cost of fabricating and testing each antenna amounted to approximately ZAR 475 per antenna, an order of magnitude lower than the price of a traditional cast or milled antenna. The method of fabrication demonstrated in this report is relatively fast and inexpensive while producing favourable results. As such, this method is highly suited for rapid prototyping and development of more advanced antenna designs.
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Siqi. "Structural and Molecular Design, Characterization and Deformation of 3D Printed Mechanical Metamaterials." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1605880414342785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boström, Caroline, and Olivia Messler. "Design and Evaluation of a 3D Printed Ionization Chamber." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255863.

Full text
Abstract:
Ionizing radiation is often used within medicine for diagnosis and treatments. Because ionizingradiation can be harmful to the body, it is important to know how it affects the tissue. Dosimetryis the study of how ionizing radiation deposits energy in a material. To measure how much ionizingradiation is deposited in the body, gas-filled detectors are often used. An ionization chamber isa type of gas-filled detector and exists in different shapes and sizes, depending on what kind ofmeasurements it is made for. Because ionization chambers are relatively expensive, it is often notpossible to buy one for each type of measurement that is to be done. This results in ionizationchambers being used for measurements they are not optimized for. This report evaluates thepossibility of 3D printing ionization chambers to make it easier to optimize them for specificmeasurements. The process included creating models of ionization chambers using CAD-software,slicing them and then 3D printing them. The 3D printed models were then brought to the SwedishRadiation Safety Authority for measurements. The ionization chambers were connected to highvoltage, and exposed to ionizing radiation in the form of high-intensity gamma-ray fields. Theoutput current of the ionization chamber was measured, which is proportional to the field intensity.The results were similar to those of a commercial ionization chamber. The conclusion is that it ispossible to 3D print ionization chambers. However, to get more accurate results, the design has tobe further optimized and more measurements need to be done.
APA, Harvard, Vancouver, ISO, and other styles
10

Carlström, Mikael, and Hampus Wargsjö. "Printing Prosthetics : Designing an additive manufactured arm for developing countries." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61869.

Full text
Abstract:
De traditionella armproteser som tillverkas i utvecklingsländer står inför stora problem i att leverera patienter med lämpliga hjälpmedel. Processen är inte bara tidskrävande eftersom varje enhet måste anpassas för varje enskild användare men vissa komponenter kan inte produceras lokalt vilket driver upp priset ytterligare. Syftet med detta examensarbete var att utveckla en armprotes för utvecklingsländerna med hjälp av additiv tillverkning (3D Printing) för klienten 3D Life Prints som baseras i Nairobi, Kenya. En protes är ett hjälpmedel som används för att underlätta en amputerad människa i dagliga aktiviteter och med hjälp av additiv tillverkning kan även en lokal tillverkningsprocess utvecklas och förbättras vilket skulle kunna minska tiden för tillverkning och distribution av proteser. Den initiala protesen, som låg till grund för designarbetet, var en underarmsprotes som fortfarande var i utvecklingsstadiet hos klienten. Protesen tillverkades med hjälp av tillverkningsmetoden Fused Deposit Modelling (FDM), som har den fördelen att den använder sig av relativt billiga 3D skrivare. För att sammanfatta syftet med projektet utvecklades följande frågeställningar 1. Hur tillverkas, distribueras och används konventionella proteser i jämförelse med additivt tillverkade proteser i Nairobi, Kenya? 2. Vem är den primära användaren av proteser i utvecklingsländer, vilka problem upplevs hos dagens lösningar och vilka faktorer anses vara den viktigaste hos användaren? Och varför?  3. Hur ska additivt tillverkade proteser utformas för optimal användning i utvecklingsländer?  Förutom att besvara frågeställningarna var målet att utvecklingen av systemet skulle leda till förbättrad funktionalitet för användaren och underlätta tillverkningen för organisationen.  För att få en allmän översikt över det vetenskapliga området av additivt tillverkade proteser studerades kontexten för utvecklingsländer, användarcentrerad design (eftersom syftet var att förbättra en produkt för en specifik användare), armproteser och additiv tillverkning. Resultatet, från de olika stadier av designprocessen, var den slutgiltiga designen av "3D Life Arm". Det slutliga systemet bestod av fyra huvudkomponenter, Kroppsselen, Inlägget, Proteshanden och Hylsan. Komponenterna använde sig utav additiv tillverkning i både styvt material (Kroppsselen, Hylsan och Inlägget) och flexibelt material (Proteshanden). Lokalt tillgängliga komponenter användes där additiv tillverkning inte var möjligt till exempel fisketråd och skruvar. En slutsats drogs att de två faktorer som ansågs viktigast för användaren var att produkten skulle vara estetiskt tilltalande och billig. Även sociala stigman spelar en stor roll och enligt användare och experter i Nairobi, måste protesen efterlikna den saknade armen så mycket som möjligt för att kunna smälta in. Författarna konstaterade att kostnaden var den viktigaste faktorn när man utformar proteser för utvecklingsländerna, eftersom användaren i dagsläget inte har råd med de proteser som tillverkas i Nairobi. Sammanfattningsvis utfördes en kostnads- och tidsanalys för att kontrollera tillverkningskostnaderna för hela systemet. Med tre skrivare kunde alla delar tillverkas för 282 kronor och skulle ta cirka 15 timmar och 15 minuter att skriva ut som är betydligt lägre än de funktionella proteser som tillverkades i Nairobi. Ytterligare utvärderingar krävs för att fastställa att protesen kommer att klara av påfrestningarna från dagliga aktiviteter hos användaren och en fungerande strategi för passning måste utvärderas ytterligare. Författarna tror dock att med hjälp av en fullt utbildad protestillverkare finns det en framtid för additiv tillverkning av armproteser.<br>The traditional prosthetic arms that are being fitted in developing countries are facing major issues in suppling patients with proper assistive aids. Not only is the process time consuming with every single unit having to be customized for the user but some parts can’t be locally produced which drives up price even further. The objective of this master thesis was to develop a prosthetic arm for developing countries with the help of additive manufacturing (3D printing) for the client 3D Life Prints which are based in Nairobi, Kenya. A prosthesis is used to aid an amputee in daily living activities. With additive manufacturing the intention is that a local manufacturing process could be developed and improved which would reduce the time of fitting and distributing a prosthesis. The initial prosthesis, that was the origin of the design, was a below elbow prosthetic arm that was being developed by the client. The prosthesis was fabricated with the additive manufacturing process fused deposition modelling (FDM) which has the advantage of providing the cheapest printers. To summarize the aim of the project the research questions that was established was as followed 1. How are conventional prosthetic arms generally being manufactured, distributed and used compared to additive manufactured prostheses in Nairobi, Kenya?  2. Who is the primary user of prosthetic arms in developing countries, what problems are they facing with current solutions and what factors are considered as the most important? And why? 3. How should additive manufactured prostheses be designed for optimal usage in developing countries? In addition to answer the research questions the aim was that the development of the system would lead to enhanced functionality for the user and to facilitate manufacturing for the organization. To get a general overview of additive manufacturing prostheses the fields theories that was studied included context of developing countries, user centred design (since the aim was to approve on a product which needed to suit a specific user), upper limb prostheses and additive manufacturing. As a result, from different stages of the design process a final design was reached called the “3D Life Arm”.  The final system was comprised of four main components, the Harness system, the Insert, the Cover and the Socket. These components used additive manufacturing in both rigid material (Harness parts, Socket and Insert) and flexible material (the Cover). Locally available components were used for parts not feasible to additive manufacture e.g. fishing wire and screws. The two factors that were concluded to be the most important for the user were the aesthetic appeal and cost. With social stigmas playing a major part according to users and experts in Nairobi, the prosthesis needs to resemble the missing limb as much as possible. It was concluded that cost was the major factor when designing prostheses for developing countries since user just wasn’t able to afford the prostheses that was being manufactured in Nairobi. In the end a cost and time analysis was conducted to verify what price the complete system would need to be manufactured. With three printers all parts could be printed for the price of 282 SEK and would take approximately 15 hours and 15 minutes to print which is considerably lower than that of the functional prosthesis being distributed in Nairobi. Further evaluations need to be done to establish that the prosthesis will manage the strains and stresses of daily living activities of the user and a complete fitting strategy needs to be evaluated further. It’s the authors belief however, that with the help of fully educated prosthetist there is a future for additive manufacturing of upper limb amputees.
APA, Harvard, Vancouver, ISO, and other styles
11

Rimington, Rowan P. "Design and additive manufacture of microphysiological perfusion systems for pharmaceutical screening of tissue engineered skeletal muscle." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/35306.

Full text
Abstract:
The methodologies utilised by pharmaceutical companies for the toxicity screening of developmental drugs are currently based on outdated two-dimensional (2D) plate-based assay systems. Although such methods provide high-throughput analysis, limitations surrounding the biomimicry of the culture environment reduces the accuracy of testing, making the process cost and time inefficient. To significantly enhance the current methods, a screening platform that is both flexible in its design and is amenable toward physiologically representative engineered tissue is required. Incorporating a flow environment within the system elicits a variety of advantages over standard static cultures, pertinently the ability to couple the flow path with automated analytical systems via the use of intuitive software. Musculoskeletal pathological conditions account for £4.76 billion of NHS spending as of 2011 (Department of Health), affecting one in four of the UK adult population. Skeletal muscle, a highly metabolic and regenerative tissue, is involved in a wide variety of functional, genetic, metabolic and degenerative pathological conditions such as muscular dystrophy, diabetes, osteoarthritis, motor neuron disease and pertinently muscular weakness associated with aging populations. Skeletal muscle tissue engineering is centred on the in vitro creation of in vivo-like tissue within laboratory environments and seeks to aid the development of future therapies, by reliably elucidating the molecular mechanisms that regulate such conditions. However, the translation of such models toward systems amenable to pharmaceutical companies has to date been limited. Microphysiological perfusion bioreactors for in vitro cell culture are a rapidly developing research niche, although state of the art systems are currently limited due to the biologically non-representative 2D culture environment, lack of adaptability toward different experimental requirements and confinement to offline analytical methods. Advancements in additive manufacture (AM), commonly known as three-dimensional (3D) printing has provided a method of production that enables researchers to hold complete design freedom and facilitate customisation of required parts. The low cost, rapid prototyping nature of AM further lends itself toward the development of such technology, with design iterations quickly and easily printed, tested and re-designed where appropriate. Issues do however, currently persist regarding the biological compatibility of printed polymers and functional material properties of parts created. As such, this thesis investigated the use of AM as a rapid and functional prototyping technique to design and develop microphysiological perfusion bioreactors. Here, biocompatibility of candidate polymers derived from commercially available 3D printing processes; fused deposition modelling (FDM), stereolithography (SL), selective laser sintering (LS) and PolyJet modelling (PJM) were elucidated. Following the biological evaluation of these polymers, their suitability, and the applicability of each process in function and manufacture of perfusion bioreactors were assessed alongside the research and development process of system designs. Specifically, attention was afforded to the homeostatic environment within bio-perfusion systems. Once finalised, the biological optimisation of designs; biocompatibility and rates of proliferation in response to the perfusion environment, was undertaken. Protocols were then established for the automated perfusion of skeletal muscle cells in both monolayer and tissue engineered 3D hydrogels. This research outlined significant contributions to the scientific literature in 3D printed polymer biocompatibility, in addition to creating bio-perfusion systems that are adaptable, analytical and facilitate the in situ phenotypic development of physiologically representative skeletal muscle tissue. Polymer biocompatibility elucidated in this work will help to facilitate the wide-ranging use of AM in biological settings. However, advancements in the chemical properties of liquid resins for advanced photo-curable processes remain necessitated for AM to be considered as a primary manufacturing technique in the biological sciences. Furthermore, although systems developed in this work have provided a base technology from which to develop and build upon, significant challenges remain in the integration of tissue engineered perfusion devices within pharmaceutical settings. Although it is plausible that the technology created in its current guise would facilitate the automated generation of skeletal muscle tissue, systems require further development to aid their usability and scale. Furthermore, work is also required to optimise the biological environment prior to mass manufacture. As such, to truly influence the pharmaceutical industry, which has invested so heavily in more traditional screening technology, a system that is all-encompassing in biology, technology and automated analytics is required.
APA, Harvard, Vancouver, ISO, and other styles
12

Kannoth, Ajith. "Design Upgrades, Reliability Testing and Implementation of Engineering Grade Thermoplastics in Prusa MMU2s." Thesis, Tekniska Högskolan, Jönköping University, JTH, Material och tillverkning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-49409.

Full text
Abstract:
This paper studies the two aspects of current problems that plagues the Prusa i3 MK3sprinters in possession of JTH and how to resolve them; to be able to get a reliable printoutputs from engineering grade materials apart from conventional materials like PLAand PETG. The second aspect being the implementation of multi material module 2.0S,hereafter referred to as MMU2s successfully by analyzing and testing the current modi-cations and upgrades currently in the community and suggest any further modications,if required, both in terms of hardware and software which is further discussed in theupcoming sections. At present, there are numerous design upgrades and modicationsover the stock parts in the community which claim to iron out the reliability issues ofthe multi material unit. But, the success rates of these modications and upgrades varywidely. We tend to look at some of these modications which helps in eliminating theissues associated with the unit while getting it to produce results in a consistent and reliablemanner. The engineering grade thermoplastics which the university plan to use werealso taken into account to implement in the printers once the MMU2s setup was testedfor reliability. The objective also to create a successful prole sets by tweaking variousparameters in the slicing software for the aforementioned engineering grade materials sothat a ready-to-print prole is available for the corresponding material. During the course of project work, the reliability of the multi material unit was increasedby upgrading few of the components such as idler barrel and selector. Fine tuningof software parameters led to the error free running of the MMU unit by which extensivetesting was possible. Furthermore, engineering grade thermoplastics was able to betested and implemented on the current setup by making use of these software and hardwarechanges. Finally, extensive testing of the multi material unit was done coupled withengineering grade thermoplastics which yielded successful results and the congurationsettings saved for future use in the university.
APA, Harvard, Vancouver, ISO, and other styles
13

Das, Subhankar. "Last-time-build strategies of spare parts with the advent of 3D printing technology." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112062.

Full text
Abstract:
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, School of Engineering, System Design and Management Program, 2017.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (page 49).<br>Forecasting demand and managing spare part inventory has long been a challenge for products that have a very long lifecycle time. With demand being discrete, low and sporadic, understanding of the actual demand is erroneous and hence forecasting the right demand for a Last-Time-Build has been difficult. Managers routinely build buffer stock to avoid missing contractual agreements, with extremely high penalties for running out of stock. Thus, Last-Time- Build strategies have been expensive and non-profit yielding. With the advent of 3D printing technology and its superiority in terms of the ability to setup shop at a low cost and print parts as and when required, make it a very promising technology in solving the issue of spare part inventory management. In this thesis, a model-based approach was taken to the decision making of Last-Time-Build. By use of financial modeling and non-linear optimization tools, optimal strategies to best use 3D printing technology have been recommended, under several conditions of demand uncertainty. The most optimal results are achieved when a Hybrid approach is employed. The Hybrid approach is a combination of a Last-Time-Build via traditional manufacturing method that is supplemented with parts printed via 3D printer, to cater to changing demand, at a future point of time. The model helps in determining the best combination of parts that need to be built ahead and the parts that can be built later via 3D printing for various demand projections and a given service level that needs to be met. The sensitivity of each of the different variables involved on the decision making is also highlighted. The higher the uncertainty in demand, the more lucrative is the hybrid approach to solving the problem of spare part inventory management.<br>by Subhankar Das.<br>S.M. in Engineering and Management
APA, Harvard, Vancouver, ISO, and other styles
14

Karch, Matthias Ottmar. "Design and Manufacturing of Hierarchical Multi-Functional Materials Via High Resolution additive Manufacturing." Master's thesis, Virginia Tech, 2017. http://tuprints.ulb.tu-darmstadt.de/6788/1/Master_Thesis_Karch_Matthias_Ottmar.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Onyeako, Isidore. "Resolution-aware Slicing of CAD Data for 3D Printing." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34303.

Full text
Abstract:
3D printing applications have achieved increased success as an additive manufacturing (AM) process. Micro-structure of mechanical/biological materials present design challenges owing to the resolution of 3D printers and material properties/composition. Biological materials are complex in structure and composition. Efforts have been made by 3D printer manufacturers to provide materials with varying physical, mechanical and chemical properties, to handle simple to complex applications. As 3D printing is finding more medical applications, we expect future uses in areas such as hip replacement - where smoothness of the femoral head is important to reduce friction that can cause a lot of pain to a patient. The issue of print resolution plays a vital role due to staircase effect. In some practical applications where 3D printing is intended to produce replacement parts with joints with movable parts, low resolution printing results in fused joints when the joint clearance is intended to be very small. Various 3D printers are capable of print resolutions of up to 600dpi (dots per inch) as quoted in their datasheets. Although the above quoted level of detail can satisfy the micro-structure needs of a large set of biological/mechanical models under investigation, it is important to include the ability of a 3D slicing application to check that the printer can properly produce the feature with the smallest detail in a model. A way to perform this check would be the physical measurement of printed parts and comparison to expected results. Our work includes a method for using ray casting to detect features in the 3D CAD models whose sizes are below the minimum allowed by the printer resolution. The resolution validation method is tested using a few simple and complex 3D models. Our proposed method serves two purposes: (a) to assist CAD model designers in developing models whose printability is assured. This is achieved by warning or preventing the designer when they are about to perform shape operations that will lead to regions/features with sizes lower than that of the printer resolution; (b) to validate slicing outputs before generation of G-Codes to identify regions/features with sizes lower than the printer resolution.
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Xiang. "Making Fabrication Real: Fabrication for Real Usage, with Real Objects, by Real People." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1139.

Full text
Abstract:
The increasingly personal and ubiquitous capabilities of computing—everything from smartphones to virtual reality—are enabling us to build a brave new world in the digital realm. Despite these advances in the virtual world, our ability as end-users to transform the physical world still remains limited. The emergence of low-cost fabrication technology (most notably 3D printing) has brought us a dawn of making, promising to empower everyday users with the ability to fabricate physical objects of their own design. However, the technology itself is oblivious of the physical world—things are, in most cases, assumed to be printed from scratch in isolation from the real world objects they will be attached to and work with. To bridge this ‘gulf of fabrication’, my thesis research focuses on developing fabrication techniques with design tool integration to enable users to expressively create designs that can be attached to and function with existing real-world objects. Specifically, my work explores techniques that leverage the 3D printing process to create attachments directly over, onto and around existing objects; a design tool further enables people to specify and generate adaptations that can be attached to and mechanically transform existing objects in user-customized ways; a user-driven approach allows people to express and iterate structures that are optimized to support existing objects; finally, a library of ‘embeddables’ demonstrate that existing objects can also augment 3D printed designs by embedding a large variety of material to realize different properties and functionalities. Overall my thesis aspires to make fabrication real—enabling people to express, iterate and fabricate their designs that closely work with real-world objects to augment one another.
APA, Harvard, Vancouver, ISO, and other styles
17

Xia, Lei S. M. Massachusetts Institute of Technology. "Design and analysis of bio-inspired 3D printing body armor for neck support and protection." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118507.

Full text
Abstract:
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, 2018.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 70-71).<br>The thesis presents the design and analysis process of a bio-inspired 3D printing body armor for neck support and protection. There are numerous examples of the structural skin or body armor among animals that generates both cranial protection and torso support. In this thesis, the mechanical behavior of the natural structure regarding the specific animal subject will be reviewed and studied using bio-inspired, flexible, design-for-manufacturing armor prototypes designed using computational 3D modeling to tackle a particular problem in real-life body protection. The design process will be demonstrated following the design thinking methodology with the emphasis on user empathy and experience design. Analysis of the prototype's flexibility and strength will be investigated to show how morphometry can enhance the architecture of material. And the accessibility will be researched under quantitative testing and qualitative interviews to the potential beneficiary. The thesis will also explore how the computer aid design can be improved based on bio-inspired analysis and potential mechanical testing. The long-term objective is to use bio-inspired design to develop an additive manufacturing technique for product design to accelerate the iteration process and increase product efficiency.<br>by Lei Xia.<br>S.M. in Engineering and Management
APA, Harvard, Vancouver, ISO, and other styles
18

Ramirez, Aaron Eduardo. "Design, fabrication, and characterization of a low-cost flexural bearing based 3D printing tool head." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59938.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 67).<br>This thesis discusses the design, characterization and optimization of a low-cost additive rapid-prototyping tool head for a technology known as Fused Filament Fabrication for use in an educational curriculum. Building a 3D printer represents an excellent educational opportunity as it requires knowledge in electronics, mechanics, and thermal-fluids engineering; this particular design also includes a flexural bearing, introducing students to a new and important class of machine element. Polymer flow through the extruder is modeled as pipe flow with pressure drops using Bernoulli's equation with viscous losses; the model predicts that the pressure required to extrude is proportional to 1/d⁴' , where d is the nozzle diameter. Three different extruder designs are considered; a piston-based design, an auger-based design, and a pinch-wheel design. The pinch wheel design best meets the functional requirements after comparing the designs based on factors such as complexity and controllability. Flexural bearings are selected to provide a preload against the polymer filament; HDPE was chosen to be the flexure material after considering factors such as water-jet machinability and yield stress to elastic modulus ratio. Thermal imaging shows that the temperature profile along the heater barrel is not uniform, with the largest variation being 80±2.8°C in large part due to errors in heater wire distribution during assembly. An exponential relationship is observed between the force required to extrude versus the temperature of the heater barrel with the force required to extrude dropping to between 1 and 2N in the range of 200 to 240°C. This data suggests trade-offs between maintaining a reasonable extruding pressure and maintaining good build resolution and speed. A discussion of the low cost rapid prototyping cycle follows, as well as instructions for assembly and use of the extruder. The paper ends with several suggestions to improve extruder performance and a list of ideas for bringing the extruder costs down.<br>by Aaron Eduardo Ramirez.<br>S.B.
APA, Harvard, Vancouver, ISO, and other styles
19

Sosina, Sobambo. "Analysis, Modeling, and Optimal Experimental Design under Uncertainty: From Carbon Nano-Structures to 3D Printing." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493439.

Full text
Abstract:
In this thesis, we develop approaches for carrying out inference and model-based experimental design, under both internal and external sources of uncertainty. Specifically, in Chapter 1, we develop a stochastic growth model for the carbon-based super material, Graphene, and propose approaches for relating controllable experimental factors to the underlying growth mechanism. In Chapter 2 we develop a unified framework for carrying out response surface optimization when the input factors are noisy, and in Chapter 3, we explore the problem of designing optimal experiments, under the extra uncertainty generated by noisy inputs. Internal noise, a term used to describe the phenomenon of noisy inputs, is found to adversely affect optimization and model-based optimal designs. We show that accounting for this internal noise during the design and modeling stages significantly improve inference. In particular, we develop a modified optimality criterion for generating optimal experimental data, and show improvements in subsequent inference based on that data. In Chapter 4, a missing data perspective is used to improve inference on deformations along the profile of 3D printed products. We show that these deformations depend on missing angles, which can be used to infer global and local deformation patterns. We use the inferred deformation model to design compensation plans for minimizing deformations on future printed objects.<br>Statistics
APA, Harvard, Vancouver, ISO, and other styles
20

Garmulewicz, Alysia. "3D printing in the commons : knowledge and the nature of digital and physical resources." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:669993b7-edef-4905-a461-8b1054dad443.

Full text
Abstract:
3D printers are a type of digital fabrication tool being used by communities committed to shared software, hardware, and digital designs. This shared digital knowledge can be understood as an emerging common resource for the fabrication of physical goods and services. Yet the knowledge associated with physical resources used in 3D printing is less understood. This thesis explores what factors enable or prevent knowledge about physical materials entering the commons. 3D printing, with its particular configuration of digital and physical goods, offers a unique angle to advance the field of commons scholarship. This thesis elaborates the use of commons theory for traversing the boundary between knowledge associated with physical materials and digital content from the perspective of 3D printer users. Particular contributions are made to the branch of knowledge commons theory: notably, how design rules in technological systems can be used to theorise boundaries; how differentiating between the nature of underlying resources can help explain the inclusion of knowledge in the commons; and, how patterns of user engagement with types of knowledge in the commons can be studied over time. To develop these contributions I employ theory on the design rules of technological architecture, and use insights from the study of peer production in online communities. Empirical data comes from a qualitative study of users of Fab Labs, community workshops for digital fabrication, as well as from a quantitative study of the online user forum for the Ultimaker 3D printer.
APA, Harvard, Vancouver, ISO, and other styles
21

Areir, Milad. "Development of 3D printed flexible supercapacitors : design, manufacturing, and testing." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16659.

Full text
Abstract:
The development of energy storage devices has represented a significant technological challenge for the past few years. Electrochemical double-layer capacitors (EDLCs), also named as supercapacitors, are a likely competitor for alternative energy storage because of their low-cost, high power density, and high fast charge/discharge rate. The recent development of EDLCs requires them to be lightweight and flexible. There are many fabrication techniques used to manufacture flexible EDLCs, and these methods can include pre-treatment to ensure more efficient penetration of activated carbon (AC) patterns onto the substrate, or those that utilise masks for the definitions of patterns on substrates. However, these methods are inconvenient for building cost-effective devices. Therefore, it was necessary to find a suitable process to reduce the steps of manufacture and to be able to print multiple materials uniformly. This research work describes the first use of a 3D printing technology to produce flexible EDLCs for energy storage. In this research work, the four essential elements for the EDLCs substrate, current collector, activated electrode, and gel electrolyte were investigated. The AC powder was milled by ball milling to optimise the paste deposition and the electrochemical performance. A flexible composite EDLC was designed and manufactured by 3D printing. The electrochemical performance of the flexible composite EDLCs was then examined. Being highly flexible is one of the critical demands for the recent development of EDLCs. Therefore, highly flexible EDLCs were designed and manufactured by only one single extrusion process. The 3D highly flexible EDLC maintains significant electrochemical performance under a mechanical bending test. To meet the power and energy requirements, the EDLCs were connected and tested in series and parallel circuits. A supercapacitor based on printed AC material displays an area specific capacitance of 1.48 F/cm2 at the scan rate of 20 mV/s. The coulombic efficiency for the flexible EDLC was found to be 59.91%, and the cycling stability was achieved to be 56% after 500 cycles. These findings indicate that 3D printing technology may be increasingly used to develop more sophisticated flexible wearable electronic devices.
APA, Harvard, Vancouver, ISO, and other styles
22

Cucher, Daniel Jeremy. "Micronutrient-Enhanced Hyperthermic Intraperitoneal Chemotherapy for Treatment of Peritoneal Metastasis: A Novel Experimental Design." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/560615.

Full text
Abstract:
Introduction: Peritoneal carcinomatosis is an end stage sequela occurring in 10% of patients with colorectal cancer. Palliative approaches have evolved over the past several decades and the role for surgical cytoreduction with hyperthermic intraperitoineal chemotherapy (HIPEC) has proven efficacy in several studies. Optimization of HIPEC therapy includes the addition of adjuncts to the carrier solution of intraperitoneal chemotherapy to improve tumor cell killing. In this study the addition of vitamin C, selenium, and quercetin ("micronutrient combination") to mitomycin C is evaluated in-vitro, and a novel murine model of HIPEC is developed using a hyperthermic chemotherapy infuser device designed de novo and printed on a 3D resin printer. Methods: HCT-116 cells were grown in culture and divided into treatment groups including: control, micronutrient combination, mitomycin C, and mitomycin C + micronutrient combination. Groups were cultured up to 72 hours after treatment and then subjected to MTT assay, crystal violet assay, trypan blue synergy assay, clonogenicity assay, cell cycle assessment by flow cytometry with propidium iodide, and western blotting for cleaved caspase-3. The infuser device was designed in a CAD environment, printed on a 3D resin printer, and underwent fluid temperature stability analysis and flow experiments by infusing methylene blue into live mice followed by necropsy and analysis of dyeing patterns. Results: MCC treated cells proliferated at 32.7%, and tumor cells treated with MCC + MNC carrier solution proliferated at 27.3%. Normothermic MCC and the MNC alone caused a 26.8% and 33.3% reduction in cell survival, and MCC delivered to cells in the micronutrient combination solution decreased cell survival by 53.2%. 95.3% and 99% of cells treated with MCC or MNC alone demonstrated viability, and 85% of cells treated with MCC + MNC demonstrated short term viability, suggesting synergy. HCT-116 clonogenicity is disrupted by MCC and MNC individually, and nonexistent in the MCC + MNC treatment group. Cleaved caspase-3 mediated apoptosis is upregulated by MCC, and by MNC to a lesser extent. Flow cytometry apoptosis demonstrates increased S-phase cell cycle arrest in the MCC + MNC sample. The mouse infuser HIPEC apparatus demonstrated an thorough distribution of blue dye in predictable regions of the abdomen with an acceptable range of hyperthermic regulation.
APA, Harvard, Vancouver, ISO, and other styles
23

Yong-fei, Han. "BMW i-3/60°." Thesis, Umeå universitet, Institutionen Designhögskolan, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-72807.

Full text
Abstract:
Now and in the future we will consider more and more ecological aspects. The car industry already has a strong commitment to environmental care, but I have decided to investigate how we can go a step further. Imagine a car taking advantage of new and upcoming technologies to reduce its footprint. This vehicle will demonstrate a new method to mass produce cars by simplifying the workflow and reduce the amount of component. The main idea is to be energy efficient while you build it and drive it.
APA, Harvard, Vancouver, ISO, and other styles
24

Rudraraju, Anirudh V. "Digital data processing and computational design for large area maskless photopolymerization." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52930.

Full text
Abstract:
Large Area Maskless Photopolymerization (LAMP) is a novel additive manufacturing technology currently being developed at Georgia Tech in collaboration with the University of Michigan at Ann Arbor and PCC Airfoils. It is intended for the fabrication of integrally cored ceramic molds for the investment casting of precision components such as high-pressure turbine blades. This dissertation addresses the digital data processing and computational design needs for this technology. Several data processing schemes like direct slicing, STL slicing, post-processing schemes like error checking, part placement and tiling etc. were developed in order to enable the basic functionality of the LAMP process. A detailed overview of these schemes and their implementation details are given in this dissertation. Several computational schemes to improve the quality and accuracy of parts produced through the LAMP process were also implemented. These include a novel volume deviation based adaptive slicing method to adaptively slice native CAD models, a gray scaling and dithering approach to reduce stair stepping effect on downward facing surfaces and a preliminary experimental study to characterize the side curing behavior of the LAMP photo-curable suspension for pre-build image compensation. The implementation details and a discussion of the results obtained using these schemes are given. A novel approach for addressing the “floating island” problem encountered in additive manufacturing was also developed. The need for supports specific to the kind of parts being built through LAMP is evaluated and a support generation strategy different from the previously reported approaches in the literature is presented. Finally, a few novel film cooling schemes that are extremely challenging to fabricate using existing manufacturing technologies but possible to fabricate using LAMP are chosen and analyzed for their cooling performance. It is shown that such novel schemes perform much better in cooling the blade surface than the conventionally implemented schemes and hence this final component of work gives a better appreciation of the impact LAMP technology has in disrupting the state of the art in turbine blade manufacturing and truly taking the blade designs to the next level.
APA, Harvard, Vancouver, ISO, and other styles
25

Jain, Tanmay. "Design, Characterization, and Structure - Property Relationships of Multifunctional Polyesters for Extrusion-Based Direct-Write 3D Printing." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1586874036561737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Caselas, Raissa Gonçalves. "Materialização do imaginário por meio da estética de próteses de membro superior." Pontifícia Universidade Católica de São Paulo, 2018. https://tede2.pucsp.br/handle/handle/21693.

Full text
Abstract:
Submitted by Filipe dos Santos (fsantos@pucsp.br) on 2018-12-05T11:48:18Z No. of bitstreams: 1 Raissa Gonçalves Caselas.pdf: 4140601 bytes, checksum: 39e478f743f8ad192024eec9ac3c9304 (MD5)<br>Made available in DSpace on 2018-12-05T11:48:18Z (GMT). No. of bitstreams: 1 Raissa Gonçalves Caselas.pdf: 4140601 bytes, checksum: 39e478f743f8ad192024eec9ac3c9304 (MD5) Previous issue date: 2018-09-27<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES<br>With the increasing insertion of 3D printing technologies in the industry, it becomes possible to develop new approaches for objects of different uses, allowing the creation of products highly adaptable to users, as well as the possibility of overcoming design barriers. Being aware of the limits of production and mechanical strength of materials as for lower limb prostheses when related to 3D printing, this research focused on the development of upper limb prostheses. Aiming to analyze the aesthetic and functional ways that the production of these prostheses has covered, were proposed case studies that sharpened the user's imagination and allowed them to be brought from the intangible to the palpable. Projects that were once considered to be impractical, with the technological advance are shown to be feasible, since CAD modeling with 3D printing opens new possibilities. Basing on the information sharing and using open source prosthesis designs, it was possible to attest to its reproducibility as well as the recurring aesthetic attributes, thus, two prostheses were printed and constructed with the use of additive manufacturing technology. Based on several authors from different areas, such as Lucia Santaella, Masahiro Mori, Vilem Flusser, João Teixeira, Chris Anderson and Kathryn Allan, as well as product development concepts, it was finally noticed that the aesthetics resulting from this union permeates the cyberpunk universe, introducing people who have physical disabilities not as "imperfect," but through technology, they can be like superhumans. Contrary to what was believed, prostheses showed a certain tendency towards robotization, admitting their inorganic nature and providing other means of personalization<br>Com a crescente inserção das tecnologias de impressão 3D na indústria, torna-se possível o desenvolvimento de novas abordagens para objetos de usos diversos, permitindo a criação de produtos altamente adaptáveis aos usuários, bem como a possibilidade de vencer barreiras projetuais. Tendo conhecimento dos limites de produção e de resistência mecânica dos materiais quanto as próteses de membro inferior quando relacionados à impressão 3D, esta pesquisa focou no desenvolvimento de próteses de membro superior. Buscando analisar os caminhos estéticos e funcionais que a produção dessas próteses tem cursado, foram propostos estudos de caso que aguçavam o imaginário do usuário e que permitiam trazê-los do intangível ao palpável. Projetos que outrora viam-se como sendo impraticáveis, com o avanço tecnológico se mostram realizáveis, pois a modelagem CAD junto a impressão 3D abrem novas possibilidades. Apoiando-se também no compartilhamento de informações e utilizando projetos de próteses open source, foi possível atestar sua reprodutibilidade, bem como os atributos estéticos recorrentes, assim, foram impressas e construídas duas próteses com a utilização de tecnologia de manufatura aditiva. Nos embasando em diversos autores de áreas distintas como, Lucia Santaella, Masahiro Mori, Vilem Flusser, João Teixeira, Chris Anderson e Kathryn Allan, além de conceitos de desenvolvimento de produtos, percebeu-se, por fim, que a estética que resulta dessa união permeia o universo do cyberpunk, apresentando as pessoas que possuem deficiências físicas não como “imperfeitas”, mas por meio da tecnologia, podem ser como super-humanos. Diferentemente do que se acreditava, as próteses apresentaram certa tendência à robotização, admitindo sua natureza inorgânica e propiciando outros meios de personalização
APA, Harvard, Vancouver, ISO, and other styles
27

Passmore, Catherine M. "3D Printed Mini-Whegs Robot Design and Vibration Analysis." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1485542260153464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hermans, Guido. "Opening Up Design : Engaging the Layperson in the Design of Everyday Products." Doctoral thesis, Umeå universitet, Designhögskolan vid Umeå universitet, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-108348.

Full text
Abstract:
This dissertation in industrial design focuses on the gap between the context of design and the context of use. It aims to open up design to the layperson and investigate an active role for the layperson in the design of everyday products. Over the last century, the industrial paradigm has institutionalised and professionalised many practices, including product design. A binary spectrum of production and consumption has been established with distinct roles for the professional designer, who engages in production, and the consumer, who engages in consumption. However, this clear distinction has been blurred recently and the consumer, or layperson, is no longer involved only in consumption, but also in production. In this research I have explored and examined the participation of the layperson, or the non-professional, in design, which I refer to as lay design. It constitutes a shift for the professional designer from knowing what a future user would like to have towards knowing what a layperson would like to design, which is for most designers an unfamiliar way of thinking. I specifically investigated how the layperson can be involved in design through the use of so-called digital-physical toolkits, software applications where one designs in a digital environment and which outputs a physical product. Lay design is enabled by two developments: On the one hand, the creation of variable designs is enabled by computational design, and on the other hand, the fabrication of variable products is enabled by 3D printing. The two main questions that I focused on are: How will the roles of the professional designer and the layperson change when the latter engages in the design of personal products and how can designers develop digital-physical toolkits for the layperson to collaboratively create value and meaning? The theory that I drew on consists of existing approaches which involve the layperson in design, such as mass customisation, meta-design, and co-design, and I used the theory of technological mediation to analyse and discuss the mediating role of toolkits in lay design. I investigated the research questions through a series of studies, both analytical and experimental. For the experiments I took a constructive design research approach, which means that I engaged in the making of toolkit and product prototypes in order to obtain insights and an understanding of the subject. The main contribution of this research is a framework of lay design that consists of a set of principles and guidelines that enables the professional designer to develop digital-physical toolkits that empower the layperson to engage in the design of everyday products. Through the participation of the layperson in the design process, lay design constitutes value created by both the professional and lay designer, thereby eliminating the separation of production and consumption. The framework’s principles outline the basic ideas of lay design while the guidelines support the professional designer in the development of toolkits and their products in practice. Lay design is concerned with the layperson designing personal products and is therefore primarily self-serving. It deals with creating meaningful products by enabling the layperson to personify designs, meaning that the designed product cannot exist without its originator. This research established an understanding of design spaces and toolkits and of the roles the professional designer, layperson, and toolkits play. The implications of lay design concern the role of the professional designer, the way value is created, a shared accountability, and also the way designers are educated regarding the tool-sets, skill-sets, mindset, and knowledge.
APA, Harvard, Vancouver, ISO, and other styles
29

Hall, Matilda. "M I S (s) F I T : DISTORTING BODY LINES OF THE FEMALE SILHOUETTE." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-23796.

Full text
Abstract:
This report investigates the conventional female silhouette through common assumptions of the body. Moreover, different perspectives of the body and the dressed body is analysed and considere. Conventional pattern construction is based upon these assumptions of the female body. To expand the perspective, an experimental approach is implemented to display new expressions of the female silhouette and define and explore these characteristics through form. The work is conducted by rethinking the conventional female silhouette in terms of volume and composition extracted from traditional cuts in womenswear. Furthermore, to challenge expectations on female silhouette using seams and darts to create concave and convex volumes, to correspond with bodily shapes which then are rearranged in a non traditional composition.
APA, Harvard, Vancouver, ISO, and other styles
30

Meisel, Nicholas Alexander. "Design for Additive Manufacturing Considerations for Self-Actuating Compliant Mechanisms Created via Multi-Material PolyJet 3D Printing." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/54033.

Full text
Abstract:
The work herein is, in part, motivated by the idea of creating optimized, actuating structures using additive manufacturing processes (AM). By developing a consistent, repeatable method for designing and manufacturing multi-material compliant mechanisms, significant performance improvements can be seen in application, such as increased mechanism deflection. There are three distinct categories of research that contribute to this overall motivating idea: 1) investigation of an appropriate multi-material topology optimization process for multi-material jetting, 2) understanding the role that manufacturing constraints play in the fabrication of complex, optimized structures, and 3) investigation of an appropriate process for embedding actuating elements within material jetted parts. PolyJet material jetting is the focus of this dissertation research as it is one of the only AM processes capable of utilizing multiple material phases (e.g., stiff and flexible) within a single build, making it uniquely qualified for manufacturing complex, multi-material compliant mechanisms. However, there are two limitations with the PolyJet process within this context: 1) there is currently a dearth of understanding regarding both single and multi-material manufacturing constraints in the PolyJet process and 2) there is no robust embedding methodology for the in-situ embedding of foreign actuating elements within the PolyJet process. These two gaps (and how they relate to the field of compliant mechanism design) will be discussed in detail in this dissertation. Specific manufacturing constraints investigated include 1) "design for embedding" considerations, 2) removal of support material from printed parts, 3) self-supporting angle of surfaces, 4) post-process survivability of fine features, 5) minimum manufacturable feature size, and 6) material properties of digital materials with relation to feature size. The key manufacturing process and geometric design factors that influence each of these constraints are experimentally determined, as well as the quantitative limitations that each constraint imposes on design.<br>Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
31

Kuthe, Sudhanshu. "Multimaterial 3D Printing of a mechanically representative aortic model for the testing of novel biomedical implants." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260281.

Full text
Abstract:
Aortic stenosis is a serious cardiovascular disease that requires urgent attention and surgical intervention. If not treated, aortic stenosis can result in heart attack or cardiac arrest. Transcatheter Aortic Valve Replacement is a surgical technique that is used to treat aortic stenosis. Like all heart surgery, the procedure is difficult to perform and may lead to life-threatening complications. It is therefore important for a surgeon to be able to plan and rehearse the surgery before the operation to minimise risk to the patient. A detailed study was carried out to develop a 3D-printed, improved surgical tool for patient-specific planning and rehearsal of a Transcatheter Aortic Valve Replacement procedure. With this new tool, a cardiologist will be able better to understand a specific patient’s heart geometry and practice the procedure in advance. Computer tomography images were processed using image segmentation software to identify the anatomy of a specific patient’s heart and the surrounding blood vessels. Using materials design concepts, a polymer composite was developed that is able to mimic the mechanical properties of aortic tissue. State-of-art multi-material 3D printing technology was then used to produce a replica aorta with a geometry that matched that of the patient. An artificial aortic valve, identical to the type used in the Transcatheter Aortic valve replacement procedure, was then fitted to the replica aorta and was shown, using a standard test, to be a good fit with no obvious leaks.<br>Aortastenos är en hjärtsjukdom som får mycket uppmärksamhet och kräver kirurgi på grund av dess katastrofala komplikationer. Den allvarligaste komplikationen av aortastenos är hjärtinfarkt och resulterande hjärtstopp. Transcatheter Aortic Valve Replacement är en kardiovaskulär intervention som erbjuds för patienter med aortastenos. Denna typ av hjärtkirurgi är komplex och kan orsaka livshotande situationer för patienten om något går snett under operationen. Det är därför viktigt för kirurgen att kunna planera ingreppet innan han eller hon utför själva operationen för att minimera fara för patienten. Denna detaljerade studie ämnar utveckla och förbättra det kirurgiska verktyget för preoperativ planering av Transcatheter Aortic Valve Replacement genom 3D- tryckning. Forskningsarbetet kommer att ge kardiologer ett nytt sätt att förstå patientens hjärta i detalj och ett ökat förtroende för att träna på ingreppet på förhand. Datortomografibilder behandlades med hjälp av en bildsegmentationsprogramvara för att kunna skapa en anatomiskt korrekt kopia av patientens hjärta och tillhörande kärl. Genom att applicera material-vetenskapslära kan ett nytt kompositmaterial utvecklas med exakt samma mekaniska egenskaper som naturlig aortavävnad. Den mest moderna 3D-trycktekniken användes sedan för att producera en patientspecifik aorta. En artificiell aortaklaff placerades i den nyproducerade aortamodellen och tester visade en perfekt matchning utan läckage.
APA, Harvard, Vancouver, ISO, and other styles
32

D'Amico, Tone Pappas. "Predicting Process and Material Design Impact on and Irreversible Thermal Strain in Material Extrusion Additive Manufacturing." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/572.

Full text
Abstract:
Increased interest in and use of additive manufacturing has made it an important component of advanced manufacturing in the last decade. Material Extrusion Additive Manufacturing (MatEx) has seen a shift from a rapid prototyping method harnessed only in parts of industry due to machine costs, to something widely available and employed at the consumer level, for hobbyists and craftspeople, and industrial level, because falling machine costs have simplified investment decisions. At the same time MatEx systems have been scaled up in size from desktop scale Fused Filament Fabrication (FFF) systems to room scale Big Area Additive Manufacturing (BAAM). Today MatEx is still used for rapid prototyping, but it has also found application in molds for fiber layup processes up to the scale of wind turbine blades. Despite this expansion in interest and use, MatEx continues to be held back by poor part performance, relative to more traditional methods such as injection molding, and lack of reliability and user expertise. In this dissertation, a previously unreported phenomenon, irreversible thermal strain (ITε), is described and explored. Understanding ITε improves our understanding of MatEx and allows for tighter dimensional control of parts over time (each of which speaks to extant challenges in MatEx adoption). It was found that ITε occurs in multiple materials: ABS, an amorphous polymer, and PLA, a semi-crystalline one, suggesting a number of polymers may exhibit it. Control over ITε was achieved by tying its magnitude back to part layer thickness and its directionality to the direction of roads within parts. This was explained in a detail by a micromechanical model for MatEx described in this document. The model also allows for better description of stress-strain response in MatEx parts broadly. Expanding MatEx into new areas, one-way shape memory in a commodity thermoplastic, ABS, was shown. Thermal history of polymers heavily influences their performance and MatEx thermal histories are difficult to measure experimentally. To this end, a finite element model of heat transfer in the part during a MatEx build was developed and validated against experimental data for a simple geometry. The application of the model to more complex geometries was also shown. Print speed was predicted to have little impact on bonds within parts, consistent with work in the literature. Thermal diffusivity was also predicted to have a small impact, though larger than print speed. Comparisons of FFF and BAAM demonstrated that, while the processes are similar, the size scale difference changes how they respond to process parameter and material property changes, such as print speed or thermal diffusivity, with FFF having a larger response to thermal diffusivity and a smaller response to print speed. From this experimental and simulation work, understanding of MatEx has been improved. New applications have been shown and rational design of both MatEx processes and materials for MatEx has been enabled.
APA, Harvard, Vancouver, ISO, and other styles
33

Garcia, Jordan. "DESIGN AND PROCESS OF 3D-PRINTED PARTS USING COMPOSITE THEORY." UKnowledge, 2019. https://uknowledge.uky.edu/me_etds/144.

Full text
Abstract:
3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, it is observed that the procedures used in 3D printing differ substantially among the printers and from those used in conventional manufacturing. In this thesis, the mechanical properties of engineering products fabricated by 3D printing were comprehensively evaluated and then compared with those made by conventional manufacturing. Three open-source 3D printers, i.e., the Flash Forge Dreamer, the Tevo Tornado, and the Prusa, were used to fabricate the identical parts out of the same material (acrylonitrile butadiene styrene). The parts were printed at various positions on the printer platforms and then tested in bending. Results indicate that there exist substantial differences in mechanical responses among the parts by different 3D printers. Specimens from the Prusa printer exhibit the best elastic properties while specimens from the Flash Forge printer exhibit the greatest post-yield responses. There further exist noticeable variations in mechanical properties among the parts that were fabricated by the same printer. Depending on the positions that the parts were placed on a printer platform, the properties of resultant parts can vary greatly. For comparison, identical parts were fabricated using a conventional manufacturing method, i.e., compression molding. Results show that compression molded parts exhibit more robust and more homogeneous properties than those from 3D printing. During 3D printing, the machine code (e.g., the Gcode) would provide the processing instructions (the x, y, and z coordinates and the linear movements) to the printer head to construct the physical parts. Often times the default processing instructions used by commercial 3D printers may not yield the optimal mechanical properties of the parts. In the second part of this thesis, the orientation-dependent properties of 3D printed parts were examined. The multi-layered composite theory was used to design the directions of printing so that the properties of 3D printed objects can be optimized. Such method can potentially be used to design and optimize the 3D printing of complex engineering products. In the last part of this thesis, the printing process of an actual automobile A-pillar structure was designed and optimized. The finite element software (ANSYS) was used to design and optimize the filament orientations of the A-pillar. Actual parts from the proposed designs were fabricated using 3D printer and then tested. Consistent results have been observed between computational designs and experimental testing. It is recommended that the filament orientations in 3D-printing be “designed” or “tailored” by using laminate composite theory. The method would allow 3D printers to produce parts with optimal microstructure and mechanical properties to better satisfy the specific needs.
APA, Harvard, Vancouver, ISO, and other styles
34

O'Brien, Kaitlyn Quinn. "The future of desktop 3D printing : what stands in the way and how the technology will advance." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/106232.

Full text
Abstract:
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, School of Engineering, System Design and Management Program, Engineering and Management Program, 2015.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 110-112).<br>There has been significant excitement surrounding the potential of desktop 3D printing. Some predict that household ownership for some users is only a few years away, while others go as far as to assert desktop printers will follow a comparable trajectory to personal computers. This thesis challenges the validity of these claims and presents a more realistic future state for desktop 3D printing based on the barriers that the industry faces today. This thesis also provides valuable insight into the technological and social improvement areas on which lead users, makers paces, and manufacturers alike must focus in order to take the steps necessary to transform desktop 3D printing into a viable, valuable, and usable technology for the masses. This thesis includes four elements: 1) a thorough literature review, 2) a review of industrial and desktop 3D printers, 3) field interviews with existing and potential users, and 4) a makerspace review. Together, these study areas provide a system-level view of the current state of the desktop 3D printing industry, reveal a unique set of barriers preventing the technology from reaching the mainstream stage, and offer valuable evaluations regarding the efficacy of active enabling mechanisms. It is shown that, although the current enablers will eventually help push desktop 3D printing utilization to the mainstream stage, a significant amount of time and energy must be dedicated to this effort. Over the course of the next ten years, a sharp increase in the use of desktop 3D printing will be observed, but this use will be limited almost exclusively to users accessing 3D printers via qualified technologists in makerspaces and other educational settings. It will be crucial for lead users and manufacturers to focus on fostering the current enablers and implementing the potential enablers over the course of the next ten years in order for users to understand and be able to capture the value of desktop 3D printing.<br>by Kaitlyn Quinn O'Brien<br>S.M. in Engineering and Management
APA, Harvard, Vancouver, ISO, and other styles
35

Apalboym, Maxim, and Scott Kujiraoka. "Advances in the Development of Missile Telemetry Test Sets: Utilizing 3D Printing for Rapid Prototyping and Manufacturing." International Foundation for Telemetering, 2015. http://hdl.handle.net/10150/596449.

Full text
Abstract:
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV<br>Functionally testing missiles in the All Up Round (AUR), a configuration that consists of a complete system packaged in its flight worthy state, requires the use of test sets along with constituent conformal equipment for interfacing. During developmental testing, telemetry (TM) sections are integrated within an AUR missile. These test sets monitor TM unit performance while maintaining form, fit, and function; therefore, resulting in complete data confidence. Initiating TM functional tests permit a capability in verifying that TM sections have been integrated properly. Safety being a priority, in order to attenuate RF radiation leakage while providing repeatable test capabilities in the near-field, antenna couplers are fabricated as a shielding interface between the user and radiating source and a coupling interface between an AUR missile and the test set. Generally, antenna couplers are composed of metallic bodies which require machine shop fabrication. The process of getting machined parts can take up to several months which can delay delivery schedules. With the availability of 3D printing capabilities and methods in metalizing various materials, a novel approach to fabricating antenna couplers has been explored. The use of modeling Software Packages (Computer Aided Design and Electromagnetic Solvers) and additive printing play key roles in reducing the development cycle time while saving costs, decreasing weight, and sustaining performance. This paper will detail the efforts using 3D printing capabilities in the development and fabrication of an antenna coupler with several examples cited herein.
APA, Harvard, Vancouver, ISO, and other styles
36

Ambrósio, Marcelo. "Resíduos sólidos industriais do setor cerâmico: uma proposta para redução do impacto ambiental a partir do design e da tecnologia de impressão tridimensional." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/106/106132/tde-04042016-152126/.

Full text
Abstract:
A indústria de cerâmica branca de objetos decorativos e utilitários, produz diariamente um contingente significativo de resíduo de gesso, oriundo do descarte dos moldes, cuja vida útil é extremamente curta. A deposição desse material via de regra é feita em aterros sanitários, sem qualquer tipo de isolamento em células e sem observar as recomendações da Lei da Política Nacional de Resíduos Sólidos. De acordo com a hierarquia estabelecida pela lei, a supressão da geração dos resíduos sólidos aparece como alternativa prioritária do ponto de vista das boas práticas ambientais. É nessa perspectiva que a tecnologia de produção industrial computadorizada de objetos tridimensionais por deposição de matéria prima, surge como alternativa. A intenção desse trabalho é apresentar conceitos de produtos que potencializem o uso dessa tecnologia através de configurações formais inovadoras para o setor, eliminando a utilização do gesso em seu processo de fabricação além de avaliar os resultados obtidos através da análise dos protótipos fabricados.<br>White ceramic industry of decorative and utilitarian objects, produces daily a significant contingent of waste gypsum, originated from the disposal of moulds, whose lifespan is extremely short. Deposition of this material usually is made in landfills without any type of isolation cells and without observing the recommendations of the Law of the Brazilian solid waste Policy. According to the ranking established by law, the elimination of solid waste generation appears as a priority alternative in terms of good environmental practices. In this perspective, the technology of computerized industrial production of three-dimensional objects by deposition of raw material, is an alternative. The aim of this paper is to present product concepts that enhance the use of this technology through innovative formal settings for the sector and make an analysis about the results.
APA, Harvard, Vancouver, ISO, and other styles
37

Govindarajan, Sudhanva Raj. "THE DESIGN OF A MULTIFUNCTIONAL INITIATOR-FREE SOFT POLYESTER PLATFORM FOR ROOM-TEMPERATURE EXTRUSION-BASED 3D PRINTING, AND ANALYSIS OF PRINTABILITY." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1466778249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sangle, Sagar Dilip. "Design and Testing of Scalable 3D-Printed Cellular Structures Optimized for Energy Absorption." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1495467365594915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Dejan, Movrin. "Optimizacija parametara postprocesiranja u tehnologiji vezivne 3D štampe." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=104730&source=NDLTD&language=en.

Full text
Abstract:
Istraživanja predstavljena u disertaciji imala su za cilj formiranjeregresionog modela procesa vakuumske infiltracije u postupku vezivne3D štampe, radi uspostavljanja analitičke zavisnosti između ključnihtehnoloških parametara infiltracije i mehaničke čvrstoćeinfiltriranih epruveta. Dizajn eksperimenta i optimizacijuparametara su izvršeni korišćenjem novog postupka dizajnaeksperimenta, Definitive Screening Design. U poređenju sa literaturnodostupnim rezultatima zatezne čvrstoće, dobijenim primenomkomercijalnih prahova, vezivnih sredstava i epoksidnih infiltranata,optimizovanim parametrima vakuum infiltracije zatezna čvrstoćaepruveta je poboljšana za 23%.<br>The research presented in this thesis was aimed at forming a regressionmodel of the vacuum-assisted infiltration process in binder printingtechnology (3DP). The goal was to establish analytical relationship betweenkey infiltration technological parameters and tensile strength of infiltratedparts. The design of experiment and optimization of the infiltration processwas performed using a novel Definitive Screening Design method. Comparedto the literature results which pertain to tensile strength obtained usingcommercial powders, binders, and epoxy infiltrates, the optimized model ofvacuum-assisted infiltration yielded an increase of 23% in tensile strength.
APA, Harvard, Vancouver, ISO, and other styles
40

Lapera, Malcolm Gerald. "Design of Controlled Environment for Tissue Engineering." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1155.

Full text
Abstract:
Design of Controlled Environment for Tissue Engineering Malcolm Lapera Tissue engineering aims at relieving the need for donor tissue and organs by developing a process of creating viable tissues in the laboratory setting. With over 120,000 people awaiting a transplant, the need for generating tissue engineered organs is very large [3]. In order for organs to be engineered, a few issues need to be overcome. A work space that both creates an environment which maintains cell viability over an extended period of time as well as accommodates the necessary fabrication equipment will be needed to further tissue engineering research. Therefore, a design for a “Tissue Engineering Hood,” will be developed and evaluated. The goal of this design will provide an environment capable of providing 37°C, 95% humidity, and 5% CO2, actively deter contamination, and provide the necessary support hardware for a 3D printer designed for tissue engineering. The design detailed in this paper was implemented successfully and evaluated. The current design has issues creating the proper environmental conditions, however does actively prevent contamination, and provides the necessary support hardware for a 3D printer. The current design was capable of reaching a temperature of 32°C, had issues increasing the humidity while incorporating the laminar air flow aspect of the design, and design flaws in the door allowed CO2 to leak too rapidly. After remedying these and a few other minor issues described in the report, the tissue engineering hood will be a beneficial tool for use in tissue engineering.
APA, Harvard, Vancouver, ISO, and other styles
41

Xu, Shang. "Investigations into the Form and Design of an Elbow Exoskeleton Using Additive Manufacturing." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103204.

Full text
Abstract:
The commercial exoskeletons are often heavy and bulky, thus reducing the weight and simplifying the form factor becomes a critical task. This thesis details the process of designing and making a low-profile, cable-driven arm exoskeleton. Many advanced methods are explored: 3D scanning, generative design, soft material, compliant joint, additive manufacturing, and 3D latticing. The experiments on TPU kerf cut found that the stress-strain curve of the sample can be modified by changing the cut pattern, it is even possible to control the linear region. The TPU TPMS test showed that given the same volume, changing the lattice parameters can result in different bending stress-strain curves. This thesis also provides many prototypes, test data, and samples for future reference.<br>Master of Science<br>Wearing an exoskeleton should be easy and stress-free, but many of the available models are not ergonomic nor user-friendly. To make an exoskeleton that is inviting and comfortable to wear, various nontraditional methods are used. The arm exoskeleton prototype has a lightweight and ergonomic frame, the joints are soft and compact, the cable-driven system is safe and low-profile. This design also brings aesthetics to the exoskeleton which closes the gap between engineering and design.
APA, Harvard, Vancouver, ISO, and other styles
42

Sobota, Matej. "Návrh funkčního modelu válcového dynamometru." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401552.

Full text
Abstract:
The aim of my diploma thesis was engineering design of 4x4 chassis dynamometer model at 1:10 scale for presentation purpose and for testing RC cars models. The first part describes the current types of chassis dynamometers. The main goal of the thesis was designed the model itself in order to produce some parts of the dynamometer using 3D printing. The work also includes production drawings of individual parts and economic estimate of the entire production.
APA, Harvard, Vancouver, ISO, and other styles
43

Robaard, Roman. "EXISTEXION." Master's thesis, Vysoké učení technické v Brně. Fakulta výtvarných umění, 2016. http://www.nusl.cz/ntk/nusl-240597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Buscaroli, Giulio. "La stampante 3D DELTA WASP 3MT - Verso la fabbricazione personale." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016.

Find full text
Abstract:
La tesi segue il progetto della Delta WASP 3MT, stampante 3D di grandi dimensioni. Il lavoro parte da una analisi del contesto che incontra i temi dell'artigianato digitale e dell'autoproduzione. Successivamente viene fatta una analisi dei requisiti e delle soluzioni tecniche implementabili sulla macchina per soddisfarli. A questa segue una illustrazione degli interventi sulle varie parti della macchina. Infine si espongono brevemente i punti chiave elaborati per la comunicazione della macchina, dal naming alla strategia nei punti vendita.
APA, Harvard, Vancouver, ISO, and other styles
45

Jeong, Kyoung Ho. "Design, Fabrication and Measurement of Millimeter Fresnel Lens and Helical Antenna using Additive Manufacturing." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu151186821778416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Blom, Martina, and Sara Landstedt. "Granskning av 3D-printingens möjligheter vid utformning av byggnader." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Byggnadsteknik och belysningsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-31677.

Full text
Abstract:
Purpose: There is today limitations of what is possible to design and in fact produce. In industrial construction the focus is on standardization which impedes an individual design form, which can be considered an architectural quality. The potential of 3Dprinting is growing, which is benefitting design freedom. The goal was to evaluate how 3D-printing in Sweden today could increase architects possibilities at the design process and be production adapted. Method: In a case study at Tengbom in Jönköping, interviews were included with three architects. In addition, a literature review, a telephone interview and a focus group interview formed the basis of the collected material. As an initial phase, a focus group interview was conducted, which resulted in the actors’ opinions about 3D-printing. The architect interviews contributed with high credibility regarding architectural qualities, which together with the other collection methods gave answers to the studies questions. Findings: The study shows that it is possible to print building components in Sweden. However it is not possible, with 3D-printing, to produce entire buildings. It can be shown that there are obstacles for the introduction of the technology, such as economy, Swedish laws and lack of knowledge. These should be reviewed to allow 3D-printing as a manufacturing method. With Rapid Ornament Production larger architectural qualities will conduce to, where 3D-printing allows unique solutions. Solutions no other technology can achieve. Implications: Customized and varied buildings can be achieved thanks to 3D-printing. Building components such as light weight walls, ornaments and details can be produced in Sweden today. One advantage of 3D-printing as a technology, is that it provides greater freedom between design and production. For further development of 3Dprinting a greater knowledge is recommended for industry stakeholders, regarding the drawing tools as well as the 3D-printing technology. Limitations: The result is applicable to architects, working at architectural offices similar to Tengbom in Jönköping. There have not been deeper studies regarding of printing technologies, finances, materials, time or law. A case study as research strategy entails an interpretation of the opinions, which limits the generalization of the results. Keywords: 3D-printing, design, production, architectural qualities, possibilities, limitations, industrial construction.<br>Syfte: Det finns idag begränsningar för vad som är möjligt att utforma och faktiskt producera. I industriellt byggande ligger fokus på standardisering som försvårar ett individuellt formspråk, vilket kan anses vara en arkitektonisk kvalitet. Potentialen för 3D-printing växer, vilket gynnar utformningsfriheten. Målet var att utvärdera hur 3D-printing i Sverige idag skulle kunna öka arkitektens möjligheter vid utformning och vara produktionsanpassat. Metod: I en fallstudie på Tengbom i Jönköping, ingick intervjuer med tre arkitekter. Utöver detta har en litteraturstudie, telefonintervju och en fokusgrupp legat till grund för insamlat material. Som ett inledande skede genomfördes en fokusgrupp, vilken resulterade i aktörers åsikter om 3D-printing. Arkitektintervjuerna bidrog med hög trovärdighet gällande arkitektoniska kvaliteter, vilket tillsammans med övriga insamlingsmetoder gav svar på studiens frågeställningar. Resultat: Studien visar att det är möjligt att skriva ut byggkomponenter i Sverige. Dock är det inte möjligt att med 3D-printing tillverka hela byggnader. Det kan påvisas att det finns hinder för införandet av tekniken, så som ekonomi, svensk lagstiftning samt bristande kunskap. Dessa bör ses över för att möjliggöra 3D-printing som tillverkningsmetod. I och med Rapid Ornament Production kan större arkitektoniska kvaliteter främjas, där 3D-printing möjliggör unika lösningar. Lösningar ingen annan teknik kan åstadkomma. Konsekvenser: Kundanpassad och varierad bebyggelse kan åstadkommas tack vare 3D-printing. Byggkomponenter så som, lättväggar, ornament och detaljer kan tillverkas i Sverige idag. En fördel med 3D-printing som teknik, är att den ger större frihet mellan projektering och produktion. För vidare utveckling av 3D-printing rekommenderas ökad kunskap för branschens aktörer gällande ritverktygen samt 3D-printings-tekniken. Begränsningar: Resultatet är applicerbart för arkitekter, verksamma vid arkitektkontor av liknande storlek som Tengbom i Jönköping. Det har inte genomförts djupare studier gällande utskriftstekniker, ekonomi, material, tid eller juridik. Fallstudie som undersökningsstrategi innebär en tolkning av åsikter, vilket begränsar generaliseringen av resultatet. Nyckelord: 3D-printing, utformning, produktion, arkitektoniska kvaliteter, möjligheter, begränsningar, industriellt byggande.
APA, Harvard, Vancouver, ISO, and other styles
47

Sjöqvist, Jennie. "Hållbara materialkonstruktioner med hjälp av biomimicry." Thesis, Malmö universitet, Fakulteten för kultur och samhälle (KS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-22679.

Full text
Abstract:
Vi behöver minska vår materialkonsumtion, idag gör vi av med mer resurser än vad vi har tillgång till. I den här studien har först en materialkonstruktion tagits fram och därefter ett produktkoncept för konstruktionen. För att ta fram materialkonstruktionen har biomimicry använts. Biomimicry är designmetoder för att lösa designproblem med inspiration från naturen. Naturen använder sig av så lite material som möjligt. Materialkonstruktionen är inspirerad av växtceller. Konstruktionen har två hierarkier som går i två olika riktningar, en riktning som går längs med och en riktning som går i djupled.För att hitta ett produktkoncept för materialkonstruktionen har material driven design (MDD) använts. MDD är en experimentell metod för att lära känna ett material och förstå dess användningsområde. Produktkonceptet är en stapelbar pall.För att minska på resurser används 3d-printning. 3d-printning är en additiv teknik och minskar på så sätt materialåtgång. Dessutom kan allt material lätt återanvändas eftersom det bara behövs ett material.Produkten kan produceras lokalt vilket minskar på transporter. PLA har använts som material i den här studien.<br>We need to reduce our material consumption, today we are wasting more resources than we have access to. In this study, a material construction was first developed and then a product concept for the construction. Biomimicry has been used to develop the material construction. Biomimicry are design methods for solving design problems with inspiration from nature. Nature uses as little material as possible. The material construction is inspired by plant cells. The construction has two hierarchies that go in two different directions.To find a product concept for the construction, material driven design (MDD) has been used. MDD is an experimental method used to get to know a material and understand its application. The product concept is a stackable pallet.To reduce resources, 3D printing is used. 3D printing is an additive technology and thus reduces material consumption. In addition, all material can be easily reused as only one material is needed.The product can be produced locally, which reduces on transport. PLA has been used as material in this study.
APA, Harvard, Vancouver, ISO, and other styles
48

Pinheiro, Rogélio Carpes. "Design virtual na reconstrução auricular com material autógeno." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/131064.

Full text
Abstract:
As cirurgias de reconstrução parcial ou total de orelha são um desafio na medicina, exigindo técnicas complexas e qualificadas, sendo as mais utilizadas àquelas que fazem uso de material autógeno (cartilagem da costela do próprio paciente). Trata-se de um processo artesanal em que o cirurgião deve esculpir manualmente a cartilagem para formar o modelo tridimensional da orelha, denominado framework, dessa forma, o resultado final depende, principalmente, da habilidade do cirurgião plástico. Tendo isso em vista, busca-se, neste trabalho, empregar as tecnologias computacionais utilizadas no Design Virtual para auxiliar o planejamento cirúrgico, utilizando digitalização tridimensional e fabricação digital para aprimorar o resultado da técnica de reconstrução auricular. A metodologia proposta sugere a digitalização tridimensional do paciente e, a partir disso, são projetados templates cirúrgicos para auxiliar a modelagem e o posicionamento do framework. A aplicação cirúrgica valida alguns pontos e possibilita o estudo de melhorias em determinados templates, utilizados então em outras duas reconstruções, obtendo-se resultados positivos. Assim, o uso do Design Virtual mostra-se confiável e útil na cirurgia de reconstrução auricular, levando à melhoria no planejamento e, assim, diminuição do tempo cirúrgico, sem riscos ou complicações ao paciente e com melhores resultados anatômicos.<br>The partial or total reconstruction of ear is a challenge in plastic surgery, requiring complex and skilled techniques. The most successful reconstructions use autogenous material (cartilage from the patient's own rib). It is a handmade process in which the surgeon must manually sculpt the cartilages to form the three-dimensional model of the ear, usually called as framework. Considering this, the final result depends mainly on the plastic surgeon's skill. In this scenario, the aim of this research is employ computer technologies used in Virtual Design to aid surgical planning, using three-dimensional scanning and digital manufacturing to improve the result of ear reconstruction technique. The proposed methodology suggests surgical templates, based on 3D patient scan, designed to assist the modeling and positioning of the framework. The surgical application validates some points and allows the study of improvements in certain templates, then used in other two surgeries, with positive results. Thus, the use of Virtual Design proves to be reliable and useful in ear reconstruction surgery, leading to improved planning and decreasing surgical time, without any risks or complications for the patient and with better anatomical results.
APA, Harvard, Vancouver, ISO, and other styles
49

Johansson, Matilda, and Robin Sandberg. "How Additive Manufacturing can Support the Assembly System Design Process." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Industriell organisation och produktion, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-30887.

Full text
Abstract:
In product manufacturing, assembly approximately represents 50% of the total work hours. Therefore, an efficient and fast assembly system is crucial to get competitive advantages at the global market and have the right product quality. Today, the verification of the assembly system is mostly done by utilizing software based simulation tools even though limitations have been identified. The purpose of this thesis is to identify when the use of additive manufacturing technology could be used in assessing the feasibility of the assembly system design. The research questions were threefold. First, identifying limitations that are connected with the used assembly simulation tools. Secondly, to investigate when additive manufacturing can act as a complement to these assembly simulations. Finally, to develop a framework that will assist the decision makers when to use additive manufacturing as a complement to assembly simulations. The researchers used the method of case study combined with a literature review. The case study collected data from semi-structured interviews, which formed the major portion of the empirical findings. Observations in a final assembly line and the additive manufacturing workshop provided valuable insights into the complexity of assembly systems and additive manufacturing technologies. In addition, document studies of the used visualization software at the case company resulted in an enhanced understanding of the current setting. The case study findings validate the limitations with assembly simulations described in theory. The most frequent ones are related to visibility, positioning, forces needed for the assembly operator, and accessibility between different parts. As both theory and case study findings are consistent in this respect, simulation engineers should be conscious of when to find other methods than simulation for designing the assembly system. One such alternative method is the utilization of additive manufacturing. The thesis outlines a number of situations where additive manufacturing indeed could act as a complement to assembly simulation. The authors argue that the results and findings to a large degree are applicable to other industries as the automotive sector is very global and competitive in nature and encompasses a large variety of complex assembly operations. A structured framework was also developed that could act as a decision support. The framework takes into account three dimensions that are crucial for the decision; (1) the assembly simulation limitation, (2) the context of the assembly and which parts are involved and (3) the possible limitations of additive manufacturing in the specific context. This impartial decision framework could help companies with complex assembly systems to know when to use additive manufacturing, as well as for which parts and subparts additive manufacturing is applicable. To increase the longevity of the decision framework, new improvements of assembly simulation tools and additive manufacturing technologies, respectively, should be incorporated in the framework.
APA, Harvard, Vancouver, ISO, and other styles
50

Běhůnek, David. "Návrh a výroba optického 3D scanneru." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417560.

Full text
Abstract:
The diploma thesis is focused on an optical method for 3D scanning. There is selected photogrammetry for creating 3D models. In the practical part, a mechanism for automatic photo capture is designed and manufactured and 3D printed with using a digital camera, Arduino microcontroller and stepper motors. There are proposed two methods of capturing photographs with which digital twins of reference objects are created. The result of the work is a functional 3D scanner. The next are evaluated used methods as well as the production costs and the time required by the operator when creating a digital copy of the object is listed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography