Academic literature on the topic 'Design of air-cooled condenser'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Design of air-cooled condenser.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Design of air-cooled condenser"
Wang, Xue Dong, Yan Juan Zheng, and Tao Luan. "Optimizing Design of Direct Air-Cooled Condenser." Advanced Materials Research 354-355 (October 2011): 406–12. http://dx.doi.org/10.4028/www.scientific.net/amr.354-355.406.
Full textLau, S. C., K. Annamalai, and S. V. Shelton. "Optimization of Air-Cooled Condensers." Journal of Energy Resources Technology 109, no. 2 (June 1, 1987): 90–95. http://dx.doi.org/10.1115/1.3231331.
Full textLv, Yi, Hui Zhang, Yu Jin Yue, Li Jun Yang, and Xiao Dong Zhang. "Deviation Analysis on Flow and Heat Transfer Model of Large Air-Cooled Steam Condenser Unit." Advanced Materials Research 860-863 (December 2013): 656–62. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.656.
Full textŘíhová, Zdeňka, and Markéta Kočová. "Technological Structures for Air Cooled Condensers." European Journal of Engineering Research and Science 4, no. 11 (November 30, 2019): 93–98. http://dx.doi.org/10.24018/ejers.2019.4.11.1622.
Full textYu, F. W., and K. T. Chan. "Improved condenser design and condenser-fan operation for air-cooled chillers." Applied Energy 83, no. 6 (June 2006): 628–48. http://dx.doi.org/10.1016/j.apenergy.2005.05.007.
Full textMansour, M. Khamis, M. N. Musa, and M. N. Wan Hassan. "Thermal and economical optimization for a finned-tube, air-cooled condenser design of a roof-top bus air-conditioning system." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221, no. 11 (November 1, 2007): 1363–75. http://dx.doi.org/10.1243/09544062jmes635.
Full textKula, Sinan. "Design Studies of Two Stage Cooling Loop for New Generation Vehicles." Academic Perspective Procedia 3, no. 1 (October 25, 2020): 550–59. http://dx.doi.org/10.33793/acperpro.03.01.104.
Full textWu, Wu Chieh, Tzong Shing Lee, and Chich Hsiang Chang. "Improved Energy Performance of Air-Cooled Liquid Chillers with Innovative Condensing-Coil Configurations." Applied Mechanics and Materials 284-287 (January 2013): 785–89. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.785.
Full textBae, S. J., H. S. Heo, C. J. Kim, and H. Y. Lee. "Design of an air-cooled condenser for engine coolant waste heat recovery." International Journal of Automotive Technology 16, no. 1 (February 2015): 17–26. http://dx.doi.org/10.1007/s12239-015-0002-9.
Full textNorth, M. T., and C. T. Avedisian. "Heat Pipes for Cooling High Flux/High Power Semiconductor Chips." Journal of Electronic Packaging 115, no. 1 (March 1, 1993): 112–17. http://dx.doi.org/10.1115/1.2909290.
Full textDissertations / Theses on the topic "Design of air-cooled condenser"
Owen, Michael Trevor Foxwell. "Air-cooled condenser steam flow distribution and related dephlegmator design considerations." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85731.
Full textENGLISH ABSTRACT: The steam-side side operation of a practical air-cooled steam condenser is investigated using a combination of CFD, numerical, analytical and experimental methods. Particular attention is directed towards the vapor flow distribution in the primary condensers and dephlegmator performance. Analysis of the vapor flow in the distributing manifold, connecting the steam turbine exhaust to the air-cooled heat exchangers, highlights the importance of careful design of the guide vanes in the manifold bends and junctions. Improved guide vane design and configuration can reduce the steam-side pressure drop over the manifold and improve the vapor flow distribution, which may be beneficial to condenser operation. The vapor flow in the primary condensers is shown to exhibit a non-uniform distribution amongst the heat exchanger tubes. The vapor flow distribution is strongly linked to the distribution of tube inlet loss coefficients through the heat exchanger bundles. The non-uniform flow distribution places an additional demand on dephlegmator performance, over and above the demands of row effects in the case of multi-row primary condenser bundles. Row effects are shown to account for as much as 70 % of available dephlegmator capacity in this case. Simultaneously, inlet loss coefficient distributions can account for up to 30 % of dephlegmator capacity. In some situations then, the dephlegmator is fully utilized under ideal operating conditions and there is no margin of safety to cope with non-ideal operation of the primary condensers. The upstream regions of the primary condensers are therefore exposed to a high risk of undesirable noncondensable gas accumulation. Reduced dephlegmator capacity due to insufficient ejector performance may further compound this problem. Single-row primary condenser bundles eliminate row effects and thereby significantly reduce the demands on dephlegmator performance. The use of such bundles in the dephlegmator would also measurably reduce ejector loading. In light of the findings of this study, it is recommended that single-row bundles be considered as the primary option for future air-cooled condenser applications. A hybrid (dry/wet) dephlegmator concept is analysed and shown to be able to provide measurably enhanced dephlegmator performance when operating in wet mode, while consuming only a small amount of water. The enhanced dephlegmator cooling translates to an increase in total air-cooled condenser capacity of up to 30 % at high ambient temperatures in this case. The benefit of this enhanced cooling capacity to steam turbine output may be significant. The hybrid dephlegmator concept therefore offers a simple, cost-effective and sustainable solution to the issue of reduced air-cooled condenser performance during hot periods. Careful design of the first and second stage bundle configurations in the hybrid dephlegmator is necessary to avoid flooding in the first stage during wet operation of the second. Furthermore, the slightly poorer dry-operation performance of the hybrid dephlegmator results in increased risk of non-condensable gas accumulation in multi-row primary condensers. Again, single-row primary condenser bundles would lay rest to such concerns.
AFRIKAANSE OPSOMMING: Die bedryf aan die stoom-kant van ʼn praktiese lugverkoelde-stoomkondensor word ondersoek met behulp van 'n kombinasie van berekeningsvloeimeganika, numeriese, analitiese en eksperimentele metodes. ʼn Spesifieke fokus word geplaas op die dampvloeiverspreiding in die primêre kondensors asook die deflegmatorwerksverrigting. Ontleding van die damp vloei in die verdeelspruitstuk, wat die uitlaat van die stoomturbine aan die lugverkoelde-stoomkondensor koppel, beklemtoon die belangrikheid van noukeurige ontwerp van die leilemme in die spruitstukdraaie en aansluitings. Verbeterde leilemontwerp en opstelling kan die drukval aan die stoom-kant van die draaie en aansluitings verminder en die dampvloeiverspreiding verbeter. Dit kan gevolglik lei tot verbeterde werksverrigting van die kondensor. Die studie toon dat ʼn nie-eenvormige dampvloeiverspreiding in die warmteruilerbuise van die primêre kondensors bestaan. Die verspreiding van buisinlaat-verlieskoëffisiënte deur die bundels van die warmteruiler is sterk afhanklik van die voorgenome dampvloeiverspreiding. Die nie-eenvormige vloeiverspreiding veroorsaak 'n groter aanvraag na deflegmator-werksverrigting, bo-en-behalwe nog vereistes van ry-effekte in die geval waar multi-ry-bundels vir primêre kondensors gebruik word. Ry-effekte is verantwoordelik vir so veel as 70 % van die beskikbare deflegmator kapasiteit. Terselfdertyd kan die verspreiding van inlaat-verlieskoëffisiënte verantwoordelik wees vir tot 30 % van die deflegmator kapasiteit. In sommige gevalle is die deflegmator dus ten volle aangewend onder ideale bedryfstoestande, en bestaan daar geen band van veiligheid om nie-ideale werksverrigting van die primêre kondensor te hanteer nie. Sekere dele van die stroom-op primêre kondensors word dus blootgestel aan 'n hoë risiko vir die opbou van ongewenste nie-kondenseerbare gasse. Verder kan ‘n vermindering in deflegmator kapasiteit, weens onvoldoende werksverrigting van die vakuumpompe, dié probleem vererger. Enkel-ry-bundels vir primêre kondensors vermy ry-effekte en lei sodoende tot ʼn aansienlike vermindering in die aanvraag na deflegmator-werksverrigting. Die gebruik van sulke bundels in die deflegmator sou die vakuumpomplas ook meetbaar verminder. Uit die bevindinge van hierdie studie word dit aanbeveel dat enkel-ry bundels beskou word as die primêre opsie vir toekomstige lugverkoelde-kondensor aansoeke. ’n Konsep vir ’n hibriede-deflegmator (droog/nat) word ontleed. Die studie toon dat, deur hierdie konsep in die nat-modus te gebruik, ’n meetbare verbetering in deflegmator-werksverrigting gesien kan word, ten koste van net ʼn klein hoeveelheid waterverbruik. Die verbetering in verkoelingsvermoë van die deflegmator beteken ʼn toename van tot 30 % in die totale verkoelingsvermoë van die lugverkoelde-kondensor gedurende periodes wanneer hoë omgewingstemperature heersend is. Die voordeel van hierdie verbeterde verkoelingsvermoë op die werksuitset van die stoomturbine kan beduidend wees. Die konsep vir ’n hibriede-deflegmator bied dus 'n eenvoudige, koste-effektiewe en volhoubare oplossing vir warm atmosferiese periodes, wanneer die lugverkoelde-kondensor se verkoelingsvermoë afneem. Noukeurige ontwerp van die eerste en tweede fase bundelkonfigurasies in die hibriede-deflegmator is nodig om oorstroming in die eerste fase, tydens nat werking van die tweede fase, te verhoed. Verder veroorsaak die effens swakker werksverrigting, gedurende die bedryf van die hibriede-deflegmator in die droog-modus, ʼn verhoogde risiko vir die opbou van nie-kondenseerbare gasse in multi-ry primêre kondensors. Weereens sal enkel-ry-bundels in primêre kondensors hierdie probleem oplos.
Subramaniam, Vishwanath. "Design of Air-cooled Microchannel Condensers for Mal-distributed Air Flow Conditions." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5088.
Full textStewart, Susan White. "Enhanced Finned-Tube Condenser Design and Optimization." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/5289.
Full textKloda, Michal. "Vzduchem chlazený kondenzátor." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231824.
Full textAspelund, Kristinn A. "Optimization of plate-fin-and-tube condenser performance and design for refrigerant R-410A air-conditioner." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/19488.
Full textSadler, Emma May. "Design analysis of a finned-tube condenser for a residential air-conditioner using R-22." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17951.
Full textWright, Monifa Fela. "Plate-Fin-And-Tube condenser perfomance and design for a refrigerant R-410A air-conditioner." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17296.
Full textSquicciarini, Martin. "The air cooled condenser optimization." Kansas State University, 2016. http://hdl.handle.net/2097/34546.
Full textDepartment of Mechanical and Nuclear Engineering
Donald L. Fenton
Today air cooled chillers are often used in industrial applications where chilled water is pumped through processes or laboratory equipment. Industrial chillers are used for the controlled cooling of products, mechanisms and factory machinery in a wide range of industries. However, there is limited information on condenser coil design for a simulated model that uses R407c in a process chiller system with a focus on the finned tube condenser design. Therefore, a simulation tool that evaluates the performance of a condenser design, e.g. frontal area, cost, and overall system efficiency would be very useful. An optimization calculator for the air cooled fin-tube condenser design was developed. This calculator allows a user to specifically select the condenser geometric design parameters including the overall condenser length and height, number of rows, number of circuits, row and tube spacing, fin thickness, fin density, tube inner and outer diameters, and the quantity and power of the fan motors. This study applied the calculator finding an optimum condenser design for various frontal areas and cost constraints. The calculator developed is appropriate for engineering designers for use in the process chiller industry.
Van, Rooyen J. A. "Performance trends of an air-cooled steam condenser under windy conditions." Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/1629.
Full textAir-cooled steam condensers (ACSC’s) are increasingly employed to reject heat in modern power plants. Unfortunately these cooling systems become less effective under windy conditions and when ambient temperatures are high. A better understanding of the fundamental airflow patterns about and through such air-cooled condensers is essential if their performance is to be improved under these conditions. For known flow patterns, improved fan designs are possible and flow distortions can be reduced by means of extended surfaces or skirts, windwalls and screens. Spray cooling of the inlet air or the addition of an evaporative cooling system can also be considered for improving performance under extreme conditions. The present numerical study models the air flow field about and through an air-cooled steam condenser under windy conditions. The performance of the fans is modeled with the aid of a novel numerical approach known as the “actuator disc model”. Distorted airflow patterns that significantly reduce fan performance in certain areas and recirculatory flows that entrain hot plume air are found to be the reasons for poor ACSC performance. It is found that the reduction in fan performance is the main reason for the poor ACSC performance while recirculation of hot plume air only reduces performance by a small amount. Significant improvements in ACSC performance are possible under these conditions if a cost effective skirt is added to the periphery of the ACSC while the installation of a screen under the ACSC has very little effect.
Honing, Werner. "Steam flow distribution in air-cooled condenser for power plant application." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2540.
Full textENGLISH ABSTRACT: Air-cooled steam condensers are used in arid regions where adequate cooling water is not available or very expensive. In this thesis the effect of steam-side and air-side effects on the condenser performance, steam distribution and critical dephlegmator length is investigated for air-cooled steam condensers as found in power plants. Solutions are found so that no backflow is present in the condenser. Both single and two-row condensers are investigated. The tube inlet loss coefficients have the largest impact on the critical dephlegmator tube length in both the single and two-row condensers. The critical dephlegmator tube lengths were determined for different dividing header inlet geometries and it was found that a step at the inlet to the dividing header resulted in the shortest tubes. Different ambient conditions were found to affect the inlet steam temperature, the steam flow distribution, heat rejection distribution and the critical dephlegmator length for the single and two-row condensers. There were differences in the steam mass flow distributions for the single and two-row condensers with opposite trends being present in parts of the condenser. The single-row condenser’s critical dephlegmator tube lengths were shorter than those of the two-row condenser for the same ambient conditions. Areas of potential backflow change with different ambient conditions and also differ between a single and two-row condenser. The two-row condenser always have an area of potential backflow for the first row at the first condenser fan unit.
AFRIKAANSE OPSOMMING: Droë lug-verkoelde stoom kondensors word gebruik in droë gebiede waar genoegsame verkoelingswater nie beskikbaar is nie of baie duur is. In hierdie tesis word die effek van stoomkant en lugkant effekte op die vermoë van die kondensor, die stoomvloeiverdeling en kritiese deflegmator lengte ondersoek vir lug-verkoelde stoom kondensors soos gevind in kragstasies. Dit word opgelos sodat daar geen terugvloei in enige van die buise is nie. ʼn Enkel- en dubbelry kondensor word ondersoek. Die inlaatverlieskoëffisiënte van die buise het die grootste impak op die lengte van die kritiese deflegmator buise in beide die enkel- en dubbelry kondensors. Die kritiese deflegmator buis lengtes is bereken vir verskillende verdeelingspyp inlaat geometrië en dit is gevind dat ʼn trap by die inlaat van die verdeelingspyp die kortste buise lewer. Dit is gesien dat verskillende omgewingskondisies die inlaat stoom temperatuur, die stoomvloeiverdeling, die warmteoordrag verdeling en die kritiese lengte van die deflegmator buise vir die enkel- en dubbelry kondensor. Daar was verskille tussen die stoomvloeiverdelings vir die enkel- en dubbelry met teenoorgestelde neigings in dele van die kondensor. Die kritiese deflegmator buis lengte vir die enkelry kondensor was korter as die vir die dubbelry kondensor vir dieselfde omgewingskondisies. Die areas in die kondensor waar terugvloei moontlik kan plaasvind in die kondensor verander met ongewingskondisies en verskil vir die enkel- en dubbelry kondensers. Die dubbelry kondensor het altyd ʼn area van moontlike terugvloei vir die eerste buisry by die eerste kondensor waaiereenheid.
Books on the topic "Design of air-cooled condenser"
Practical thermal design of air-cooled heat exchangers. New York: Begell House, 2007.
Find full textRooyen, J. A. van. Performance trends of an air-cooled steam condenser under windy conditions: PIER final project report. Sacramento, Calif.]: California Energy Commission, 2008.
Find full textLee, Trevor Maurice. The Beetle metamorphosis: Volkswagen's gradual change of design and marketing philosophy from air-cooled to water-cooled. [Derby]: Derbyshire College of Higher Education, 1985.
Find full textAbdul-Aziz, Ali. Design evaluation using finite element analysis of cooled silicon nitride plates for a turbine blade application. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full textAbdul-Aziz, Ali. Design evaluation using finite element analysis of cooled silicon nitride plates for a turbine blade application. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full textR-2800: Pratt & Whitney's dependable masterpiece. Warrendale, Pa: Society of Automotive Engineers, 2001.
Find full textPerformance trends of an air-cooled steam condenser under windy conditions: PIER final project report. [Sacramento, Calif.]: California Energy Commission, 2008.
Find full textvan, Rooyen J. A., Kröger Detlev G, California Energy Commission. Public Interest Energy Research., and University of Stellenbosch. Institute for Thermodynamics and Mechanics., eds. Performance trends of an air-cooled steam condenser under windy conditions: PIER final project report. [Sacramento, Calif.]: California Energy Commission, 2008.
Find full textKroger, Detlev G. Air-Cooled Heat Exchangers and Cooling Towers: Thermal-Flow Performance Evaluation and Design. Begell House Publishers, 1999.
Find full textAir-Cooled Heat Exchangers and Cooling Towers: Thermal-Flow Performance Evaluation and Design, Vol. 1. Penwell Corp., 2004.
Find full textBook chapters on the topic "Design of air-cooled condenser"
Pate, Michael B. "Design Considerations for Air-Conditioning Evaporator and Condenser Coils." In Two-Phase Flow Heat Exchangers, 849–84. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2790-2_28.
Full textDirbude, Sumer, Nashith Khalifa, and Laltu Chandra. "Selective Design of an Experiment for Evaluating Air–Water Hybrid Steam Condenser for Concentrated Solar Power." In Springer Proceedings in Energy, 89–102. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4576-9_9.
Full textBerryman, R. J. "Condition Monitoring of Air Cooled Heat Exchangers." In Design and Operation of Heat Exchangers, 210–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84450-8_20.
Full textZhao, Shiquan. "Design of 600MW Air Cooled Double Exhaust Steam Turbine." In Challenges of Power Engineering and Environment, 345–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-76694-0_62.
Full textZhong, Dantian, Qiang Gao, Jiayu Pan, Zhannan Guo, and Maojun Wang. "Design of Air-Cooled Control System for Intelligent Transformer." In Advances in Intelligent Systems and Computing, 392–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14118-9_39.
Full textPanchal, Sanish, Kushang Prajapati, and Suhasini M. Kulkarni. "Behavior of Single Pylon of Air Cooled Condenser Support Structure Under Seismic and Wind Forces." In Engineering Vibration, Communication and Information Processing, 87–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1642-5_8.
Full textHussain, Taliv, Adnan Hafiz, and Akramuddin. "Exergy Analysis of an Air Conditioning System Using Air-Cooled Condenser at Different Ambient Conditions with Different Volume Flow Rates of Air." In Proceedings of International Conference in Mechanical and Energy Technology, 597–605. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2647-3_55.
Full textMälhammar, Åke. "Application of Thermal Territories for Air-Cooled Circuit Board Design." In Thermal Management of Electronic Systems II, 179–86. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5506-9_17.
Full textSudani, Jay, Rutvesh Rathod, Harsimran Kassowal, Sunny Patel, Karan Panchal, and Sodagudi Francis Xavier. "Computational Assessment of the Performance of an Air-Cooled Condenser Fan at Different Blade Pitch Angles and Speeds." In Advances in Energy Research, Vol. 1, 429–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2666-4_42.
Full textKhaldi, Fouad, and Mounir Aksas. "A Modified Solar/Gas Thermodynamic Hybridization Scheme in ISCC Plants for Reducing the Air-Cooled Condenser Power Consumption." In Renewable Energy in the Service of Mankind Vol II, 983–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18215-5_88.
Full textConference papers on the topic "Design of air-cooled condenser"
Nadig, Ranga, and Dave Sanderlin. "Admission of Bypass Steam Into a Water Cooled Condenser and Air Cooled Condenser: Similarities, Differences and Areas of Concern." In ASME 2014 Power Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/power2014-32249.
Full textO’Donovan, A., R. Grimes, E. J. Walsh, J. Moore, and N. Reams. "Steam-Side Characterisation of a Modular Air-Cooled Condenser." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87846.
Full textMaulbetsch, John S., Michael N. DiFilippo, and Joseph O’Hagan. "Effect of Wind on Air-Cooled Condenser Performance." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63157.
Full textWalsh, E. J., R. Grimes, and G. Griffin. "Flow Distribution Measurements From an Air Cooled Condenser in a ~400MW Power Plant." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62538.
Full textMoore, J., R. Grimes, and E. J. Walsh. "Performance Analysis of a Modular Air Cooled Condenser for a Concentrated Solar Power Plant." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87873.
Full textPerez Reisler, Rafael A., Jorge E. Gonza´lez, Hector M. Sanchez, and Luis H. Alva. "Design and Construction of a Compact Air-Cooled Absorption Machine for Solar Energy Applications." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65097.
Full textHanks, Daniel F., Teresa B. Peters, John G. Brisson, and Evelyn N. Wang. "Characterization of a Condenser for a High Performance Multi-Condenser Loop Heat Pipe." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63250.
Full textSaleh, Ahmad, and Jayanta Kapat. "Comprehensive Reduction of Thermal Resistance in Air Cooled Condensers." In ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49363.
Full textBansal, Mehul, Behnam Ghalamchi, and Jussi Sopanen. "Theoretical Investigation Into Air Cooled Condenser Performance Optimization Through Parameterization for a 10 MW Power Plant." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70530.
Full textLiu, Huichao, and Wei Wang. "Closed-loop Design and Simulation Analysis for Condenser Pressure Control on Direct Air-cooled Units." In 5th International Conference on Mechanical Engineering, Materials and Energy (5th ICMEME2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmeme-16.2016.25.
Full textReports on the topic "Design of air-cooled condenser"
Mortensen, Ken. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1025180.
Full textWaye, Scot. High-Temperature Air-Cooled Power Electronics Thermal Design: Annual Progress Report. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1293811.
Full textVisser, A., and J. Pathiyil. Design note of an air-cooled 2 ft x 2 ft x 10. 5 ft long muon spoiler. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/5550635.
Full textLisowski, D. D., M. T. Farmer, S. Lomperski, D. J. Kilsdonk, N. Bremer, and R. W. Aeschlimann. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF). Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1184668.
Full textHVAC [Heating, Ventilation and Air Conditioning] subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant. Office of Scientific and Technical Information (OSTI), June 1986. http://dx.doi.org/10.2172/464351.
Full text