Academic literature on the topic 'Design of Savonius rotor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Design of Savonius rotor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Design of Savonius rotor"

1

Cheng, Chao Yuan, and Xiao Qing Wei. "The Innovative Design and Simulation Analysis of Small Savonius Wind Turbine." Advanced Materials Research 591-593 (November 2012): 832–36. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.832.

Full text
Abstract:
Savonius rotor is a typical style of vertical-axis wind turbine (VAWT). A new innovative design of two Savonius rotors coaxially in the opposite direction is presented in the paper which is different from the traditional design. The traditional generator has only a pair of stator and rotor and matched with trational Savonius rotor. Enlarging the relative speed between the magnetic pole and the coil pole by making the two pole rotate in the opposite direction in the innovative Savonius wind turbine. In this way, it can enhance the power generation efficiency of the Savonius wind turbine. The fluid-solid coupling analysis for the Savonius wind turbine is used to calculate the power characteristics and efficiency of the wind turbine.
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Xiao Wen, Kai Yuan Cao, Zhong Rui Chen, and Ke Shen. "Design Optimization of Savonius Rotors: An Overview." Applied Mechanics and Materials 58-60 (June 2011): 827–33. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.827.

Full text
Abstract:
Since the Savonius rotor has a low starting torque and is adaptable for wind in various directions, it has received great attention in the past decades. In this paper, we present an overview of the state of the art in Savonius rotor design, according to three general strategies of design optimization: 1) Optimizing Savonius rotor structural parameters including overlap ratio, aspect ratio of the rotor, twist angle, Reynolds number, and the shaft of the rotor; 2)Adopting multi-level Savonius rotor or combining Savonius rotor with other type rotor to avoid negative torque of the rotor and improve both efficiency and starting torque; 3)Adding auxiliary devices such as curtain or guide-box to decrease the negative torque. We conclude with a discussion of the advantages and challenges associated with development of this promising technology.
APA, Harvard, Vancouver, ISO, and other styles
3

Tang, Zhi Peng, Ying Xue Yao, Liang Zhou, and Q. Yao. "Optimal Design of a New Type of Savonius Rotor Using Simulation Analysis." Key Engineering Materials 499 (January 2012): 120–25. http://dx.doi.org/10.4028/www.scientific.net/kem.499.120.

Full text
Abstract:
In order to enhance the efficiency of the Savonius rotor, this paper designs a new type of Savonius rotor with a rectifier. By using Computational Fluid Dynamics software to simulate and optimize the various parameters which affect the efficiency of the rotor. The sliding mesh method is applied here. The Cp-λ curves of wind turbine with different structural parameters are obtained after numerical simulation of flow field. On this basis, this paper gets the optimal structural parameters. And the results indicated that this new type of Savonius rotor has great improvement of efficiency compared with the traditional Savonius-type rotor.
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmad, Elsadic Salim. "A Study of the Influence of Guide Vane Design to Increase Savonius Wind Turbine Performance." Modern Applied Science 9, no. 11 (September 30, 2015): 222. http://dx.doi.org/10.5539/mas.v9n11p222.

Full text
Abstract:
<p>This work experimentally studied the influence of guide vane design to increase Savonius rotor performance. Guide vane is one of additional device that its function is for directing wind stream on to concave blade and deserves as obstacle of the wind that flowing on to convex blade. That way increased wind speeds to the rotor, consequently it produced higher power coefficient and the Savonius rotor performed better performance. Four designs of guide vane were arranged in this study. They are basic design of guide vane and basic design of guide vane that added a tilt angle on the top and bottom sides by 15°, 30°, and 45°. The result concludes that guide vane affects the performance of Savonius rotor. The power that generated by the rotor with guide vanes increase significantly compared with Savonius rotor without guide vane. The maximum improvement was attained up to 65.89%.</p>
APA, Harvard, Vancouver, ISO, and other styles
5

Etemadeasl, Vahid, Rasool Esmaelnajad, Farzad F. Dizaji, and Babak Farzaneh. "A novel configuration for improving the aerodynamic performance of Savonius rotors." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 233, no. 6 (December 17, 2018): 751–61. http://dx.doi.org/10.1177/0957650918818968.

Full text
Abstract:
In this paper, a new configuration is proposed for Savonius rotors by installing two Counter-Rotating Savonius Rotors together and adding a V-shaped shield. For evaluating the performance of this type of turbine, turbulent unsteady flow around the rotor is simulated using ANSYS-Fluent 16.0 software. Numerical results of the torque and power coefficients of the turbine show a significant improvement in the aerodynamic performance compared to a single Savonius rotor. Effects of the V-shaped shield angle and distance from the rotors on the aerodynamic performance of the turbine are studied numerically. Analyzing the results show that in a design with a shield angle of 90° and with a shield distance of L = 1 D power coefficient increases by 80%.
APA, Harvard, Vancouver, ISO, and other styles
6

Golecha, K., M. A. Kamoji, S. B. Kedare, and S. V. Prabhu. "Review on Savonius Rotor for Harnessing Wind Energy." Wind Engineering 36, no. 6 (December 2012): 605–45. http://dx.doi.org/10.1260/0309-524x.36.6.605.

Full text
Abstract:
Wind machines convert kinetic energy of the wind into usable form of mechanical energy or electrical energy. The Savonius rotor is a vertical axis wind machine which is simple in design. High starting torque characteristics make it suitable for standalone power generation as well as water pumping applications. This paper reviews the literature on the performance characteristics of the Savonius rotor. Multi-bladed rotor, multistage rotor, shape of the blade, use of deflecting plate, guide vanes and nozzle augmentation are several ways to enhance the performance characteristics. This review would help an engineer in building an improved Savonius rotor for a given application.
APA, Harvard, Vancouver, ISO, and other styles
7

Harsanto, Tedy, Haryo Dwi Prananto, Esmar Budi, and Hadi Nasbey. "Design and Contruction of Vertical Axis Wind Turbine Triple-Stage Savonius Type as the Alternative Wind Power Plant." KnE Energy 2, no. 2 (December 1, 2015): 172. http://dx.doi.org/10.18502/ken.v2i2.373.

Full text
Abstract:
<p>A vertical axis wind turbine triple-stage savonius type has been created by using simple materials to generate electricity for the alternative wind power plant. The objective of this research is to design a simple wind turbine which can operate with low wind speed. The turbine was designed by making three savonius rotors and then varied the structure of angle on the three rotors, 0˚, 90˚ and 120˚. The dimension of the three rotors are created equal with each rotor diameter 35 cm and each rotor height 19 cm. The turbine was tested by using blower as the wind sources. Through the measurements obtained the comparisons of output power, rotation of turbine, and the level of efficiency generated by the three variations. The result showed that the turbine with angle of 120˚ operate most optimally because it is able to produce the highest output power and highest rotation of turbine which is 0.346 Watt and 222.7 RPM. </p><p><strong>Keywords</strong>: Output power; savonius turbine; triple-stage; the structure of angle</p>
APA, Harvard, Vancouver, ISO, and other styles
8

Abdel-Fattah Mahrous. "Computational Fluid Dynamics Study of a Modified Savonius Rotor Blade by Universal Consideration of Blade Shape Factor Concept." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 85, no. 1 (July 29, 2021): 22–39. http://dx.doi.org/10.37934/arfmts.85.1.2239.

Full text
Abstract:
This work aims to investigate computationally the performance of Savonius vertical axis wind turbine having a new design feature for its blade geometry. The proposed design is based on a universal consideration of blade shape factor concept for the Savonius rotor blade. A blade shape factor ranges from zero to infinity, or vice versa, is considered in a single blade of the modified Savonius rotor. This means that each point in the two-dimensional blade profile of the suggested blade design has a single value of blade shape factor that is defined based on the dimensions of conventional semi-circular blade. The computational results of the proposed blade shape design, having blade shape factor varying from infinity to zero, showed an improvement in turbine performance as compared to conventional blade shape design. Moreover, increasing the operating range of Savonius wind turbine is expected.
APA, Harvard, Vancouver, ISO, and other styles
9

Mohammed, Gwani, Mamuda Buhari, Umar Muhammed Kangiwa, and John Danyaro. "Design, Fabrication and Performance Evaluation of Hybrid Vertical Axis Wind Turbine." International Journal for Modern Trends in Science and Technology 6, no. 6 (June 28, 2020): 80–86. http://dx.doi.org/10.46501/ijmtst060618.

Full text
Abstract:
Vertical axis wind turbines (VAWT) have attracted a lot of attention recently as an efficient tool in harnessing wind energy; however these types of wind turbine are faced with some challenges which affect their overall performance. The Darrieus rotor has difficulty to self-start by itself while the Savonius rotor has low efficiency. The performance of these turbines can be improved by combining the two VAWTs as one system. This paper presents the design of a hybrid VAWTs turbine. The Hybrid VAWTs combines the Darrieus rotor and the Savonius rotor as a single system to produce a high starting torque and enhanced efficiency. The Savonius rotor is placed at the centre of the three vertical blades of the Darrieus H-rotor to form the hybrid VAWTs. The hybrid VAWT was tested at four different wind speed i.e. V = 4.80 m/s, 4.50 m/s, 4.30 m/s and 3.90 m/s respectively. The performance of the hybrid VAWT was compared with the conventional straight bladed VAWT under similar experimental conditions. The obtained results showed that there is substantial improvement in the self-starting ability and coefficient of power (Cp). At V = 4.80 m/s, the Cp values for hybrid VAWT increased by 92% compared to straight bladed H-rotor VAWT. Similar improvement was also observed at wind speed of V = 4.50 m/s, 4.30 m/s, and 3.90 m/s where the Cp values increases by 71%, 10%, and 67% respectively compared to the straight bladed H-rotor.
APA, Harvard, Vancouver, ISO, and other styles
10

ElBeheiry, E. M., and W. A. El-Askary. "Analysis and Experimentation of Multi-S Rotors for Vertical Wind Turbine Applications." Applied Mechanics and Materials 260-261 (December 2012): 97–102. http://dx.doi.org/10.4028/www.scientific.net/amm.260-261.97.

Full text
Abstract:
This article presents a new, multi-foil-blades (multi-S) rotor and compare its performance potentials with traditional (Single-S) Savomius rotor . Theoretical and experimental investigations show that the performance of the multi-S rotor is better than the other classical designs of Savonius rotor in terms of the resulting power factor. Analytical equations for power and torque factors are developed for both the single- and multi-S rotors with ideal flow assumed. These equations are proven very effective in describing the performance potentials of these rotors for a range of speed ratio less than or equals 0.7. This result is experimentally justified for both types of rotors. For speed ratios higher than 0.7, a remarkable deviation occurs between the theoretical performance measures provided by the developed equations and the experimentally measured ones. A geometric design parameter which depends on the internal construction of the proposed multi-S rotor is found to be of great impact on the attained power factor. A power factor for the multi-S rotor can be much more than that of a single-S one having the same height and outer size according to the chosen values of this design parameter.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Design of Savonius rotor"

1

Záviška, Radek. "Savoniova větrná turbína." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231799.

Full text
Abstract:
The diploma thesis is focused on designer works of Savounius rotor for Raječko location. Finish of this design work is equipment, which will be used in this location as decentralized source of electrical energy. In thesis are written manufacturing processes as so as the process of design part including the calculation part, which is focused on characteristic quantity of Savonius rotor. Thesis is finished by econominal assessment of project.
APA, Harvard, Vancouver, ISO, and other styles
2

Roth, Neal Joseph. "A prototype design and performance of the Savonius rotor based irrigation system." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25106.

Full text
Abstract:
Important stages in the development of a wind energy operated irrigation system, which is simple in design and easy to maintain, are described from model tests in wind tunnels through to a prototype prepared for field tests. The attention is focussed on gross features of the protoype including the blade geometry and aspect ratio; mast, sleeve and bearing assemblies; braking system and a load matching concept. Described towards the end are the field test arrangements of the prototype and associated instrumentation. Even according to the most conservative estimate, the prototype tests suggest that the windmill should be able to deliver around 3000 liters of water per day (eight hours of wind) to a head of 5 m in a 24 km/h wind.
Applied Science, Faculty of
Mechanical Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
3

Hampl, Petr. "Design pouliční svítilny s nezávislým napájením." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228418.

Full text
Abstract:
Oblast problémů, ze kterých konkrétní téma projektu vychází, zahrnuje současnou globální transformaci zdrojů energie a jejich dodávek se zvláštní pozorností na obnovitelné zdroje energie. Důraz je kladen zejména na hodnoty jež přináší produkt určený k užívání ve veřejných prostorách. Autorovým zadáním bylo navrhnout osvětlovací jednotku nezávislou na vnějším zdroji napájení. Cílem návrhu je přehodnotit způsob, jakým jsou dnes technologie využívání sluneční a větrné energie běžně používány, a navrhnout řešení přinášející nové vlastnosti a užitné hodnoty pro přímého uživatele i celou společnost. Autor přináší návrh produktu jenž je reakcí na současné globální hrozby a příležitosti. Výsledkem projektu je návrh pouliční lampy kombinující fotovoltaický článek a větrnou turbínu s cílem získat elektrickou energii jež je dočasně akumulována a následně dodávána svítidlu. V návrhu je kladen důraz na požadavky ergonomie a estetickou hodnotu produktu. Navržené řešení znamená finanční přínos z hlediska šetření neobnovitelnými zdroji energie a případnými finančními výhodami pro investora plynoucími z provozování veřejného osvětlení. Pouliční lampa nezávislá na vnějším zdroji napájení má navíc menší negativní dopad na životní prostředí a představuje technologie využívání větrné a solární energie v přívětivé a nerušivé podobě.
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, André Filipe Matos da Cruz. "Desempenho de um Rotor de Savonius: avaliação experimental." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/22250.

Full text
Abstract:
Mestrado em Engenharia Mecânica
A energia eólica é atualmente uma fonte de energia renovável utilizada pelo homem através de diferentes mecanismos. O rotor de Savonius, uma turbina de eixo vertical, é uma opção para produção de energia em pequena escala. A produção e venda de energia elétrica à rede pública, fruto de fontes renováveis, é hoje em dia uma opção enquadrada na nossa legislação. Com base no potencial das características dos rotores de Savonius analisou-se experimentalmente quatro configurações diferentes com o intuito de comparar as suas performances, sendo que a configuração de centro aberto e pás fechadas obteve os melhores resultados ao nível de produção de energia eólica.
Wind energy is currently a renewable energy source used by man through different mechanisms. The Savonius rotor, a vertical-axis turbine, is an option for small-scale power production. The production and sale of electricity to the public grid, by renewable sources, is nowadays an option framed in our legislation. Based on the potential of the characteristics of the Savonius rotors, four different configurations were experimentally analyzed in order to compare their performances, being that open-center and closed-bladed configuration obtaining the best results of wind energy production.
APA, Harvard, Vancouver, ISO, and other styles
5

Achilli, Isabella. "Study of a conventional Savonius rotor and optimization of a helical prototype." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15339/.

Full text
Abstract:
The aim of this Master Thesis is to study numerically the aerodynamic performance of two small examples of horizontal axis domestic wind turbines: a conventional Savonius rotor, designed and built by a group of students of the Polytech of Tours (France), and its optimization, a helical Savonius rotor. In the first research project, the exploration is conducted even experimentally, testing the turbine in a wind tunnel present in the Polytech. The numerical investigation is carried out by the use of a software based on Computational Fluid Dynamics named Star CCM+, which helps studying the main fluid dynamics aspects as flow velocity, pressure and coefficients of performance. The second project consists in a helical Savonius rotor: according to the literature, the helical shape, comparing with the conventional Savonius rotor, usually shows better performances. After the 3D design on Catia, the turbine was printed using the 3D printer, on a reduced scale. CFD simulations allow to study the fluid dynamic features. Afterwards, thanks to a comparison between the two Savonius models, the performance enhancement of the new one is shown, together with a practical understanding gained of the parameters influencing aerodynamics the most. By means of the simulations, the helical rotor presents a power coefficient of 10%, which is better than the one of the conventional rotor, found at 7% for the same Tip Speed Ratio. Consequently, even the power produced by the new turbine, resulted to be better than the conventional windmill.
APA, Harvard, Vancouver, ISO, and other styles
6

Du, Yingkang. "An Orthogonal Savonius-type Wind Turbine: Design and Experiments." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459510710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ôlo, Carlos David Vaz. "Projecto de uma turbina savonius com utilização de componentes em fim-de-vida." Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8876.

Full text
Abstract:
Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica
O objectivo do presente trabalho, passa por encontrar soluções para a reutilização de componentes em fim-de-vida, usando-os exactamente como se encontram, desempenhando as mesmas funções para que foram projectados, fazendo apenas pequenas adaptações para se adequarem à nova utilização. Para a reutilizar estes componentes a solução escolhida, foi projectar uma turbina eólica, recorrendo a componentes de automóvel. Sendo o vento um recurso natural disponível em grande parte do globo terrestre, torna aliciante a possibilidade de diminuir a pegada ambiental dos componentes, reutilizando-os, bem como produzir energia recorrendo à energia eólica. A turbina escolhida foi a de savonius, pois tem custos de fabrico reduzidos, pela simplicidade de construção e montagem bem como ser uma turbina interessante para pequenos aproveitamentos energéticos. Foi estudado o rotor de savonius para compreender os esforços a que se encontra sujeito devido à acção do vento, para posteriormente projectar a estrutura do rotor e de suporte da turbina. Durante o presente trabalho foi tido em conta, que se trata de um projecto no âmbito universitário, de modo que a turbina terá que ser polivalente para possibilitar outros estudos no futuro.
APA, Harvard, Vancouver, ISO, and other styles
8

Oliveira, Cássia Pederiva de. "Análise do desempenho de uma turbina savonius helicoidal com torção de 180º empregando simulação numérica." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/108528.

Full text
Abstract:
Este trabalho apresenta a simulação numérica do escoamento turbulento em torno de uma turbina eólica de eixo vertical de pequeno porte, Savonius tipo helicoidal com torção de 180° nas pás. Com o intuito de avaliar a metodologia computacional empregada os resultados numéricos obtidos são comparados com os resultados experimental e numérico contidos no estado da arte. Também, compara-se o coeficiente de toque da turbina Savonius helicoidal com a turbina Savonius convencional. As simulações numéricas são baseadas no Método de Volumes Finitos, e para tal emprega-se o programa Fluent /Ansys versão 13.0 que resolve as equações da continuidade e as equações de Navier-Stokes com médias de Reynolds, juntamente com o modelo de turbulência . As simulações são desenvolvidas empregando diferentes malhas computacionais em estudos transientes, tridimensionais, com a turbina estacionária. A avaliação da qualidade da malha é realizada através do método de Índice de Convergência de Malha (GCI) o qual analisa o quão longe os resultados estão da solução assintótica para a malha utilizada. Após a análise da qualidade de malha, realizam-se simulações com a turbina em rotação as quais fazem uso da malha contendo uma região móvel possibilitando a imposição de uma velocidade angular ao rotor. O coeficiente de torque é obtido nas simulações e a partir dele calcula-se o coeficiente de potência. Além da análise do desempenho do rotor realiza-se uma análise qualitativa das características do escoamento sobre a turbina. A turbina Savonius helicoidal apresenta um valor de coeficiente de potência de 0,175 para a razão de velocidade de ponta de 0,58 considerando correção do efeito de bloqueio. Os resultados obtidos apresentam boa concordância com os resultados publicados por outros autores.
This dissertation presents the numerical simulation of the turbulent flow around of a small sized vertical axis wind turbine, consisting in a helical Savonius type with a 180° degree of blade twist. In order to evaluate the used methodology the obtained results are compared with the state of the art numerical and experimental data. It will be also presented the comparison between the torque coefficient of the conventional Savonius turbine and the helical Savonius turbine. The numerical simulations are based on the Finite Volume Method (FVM), using the commercial code Fluent/ANSYS version 13.0, which solves the continuity and Navier-Stokes through the Reynolds time-averaged methodology, including the turbulence model. The simulations are developed using different computational meshes for transient and three-dimensional studies with the stationary turbine. The evaluating the quality of the mesh is performed by of Grid Convergence Index (GCI) method which analyzes how far the results are the asymptotic solution to the mesh used. After the evaluation of the mesh quality, it was simulated a case considering the rotor motion using the moving mesh configuration, allowing the imposition of an angular velocity to the turbine. In the post-processing stage, it is possible to obtain the torque coefficient on the rotor shaft, allowing the calculation of the power coefficient for the turbine. In addition to the performance analysis, it is also made a qualitative analysis of the flow characteristics over the turbine rotor and in both cases presenting a good correspondence with the results in the literature. The helical Savonius turbine presents a value of power coefficient of 0.175 to a tip speed ratio of 0.58 whereas blocking effect correction.
APA, Harvard, Vancouver, ISO, and other styles
9

Zingman, Aron (Aron Olesen). "Optimization of a Savonius rotor vertical-axis wind turbine for use in water pumping systems in rural Honduras." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40927.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 26).
The D-lab Honduras team designed and constructed a wind-powered water pump in rural Honduras during IAP 2007. Currently, the system does not work under its own power and water must be pumped by hand. This thesis seeks to explore a variety of mechanism and aerodynamic changes to allow the system to function as designed. The novel modifications to the Savonius rotor that were made do not seem to improve its performance. Within the constraints of the installed components, the current rotor should perform well pending other changes. The most promising improvements to the system are weight reducing and friction reducing measures, and in combination with understanding the wind conditions in the immediate vicinity of the rotor, changes will be made this summer so that unassisted wind pumping will be possible.
by Aron Zingman.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
10

Mohamed, Mohamed Hassan Ahmed [Verfasser]. "Design optimization of savonius and wells turbines / Mohamed Hassan Ahmed Mohamed." Magdeburg : Universitätsbibliothek Magdeburg, 2011. http://d-nb.info/1011710889/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Design of Savonius rotor"

1

Kvaternik, Raymond G. Airframe structural dynamic considerations in rotor design optimization. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wilson, Jack. Design of the NASA Lewis 4-port wave rotor experiment. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huppunen, Jussi. High-speed solid-rotor induction machine: Electromagnetic calculation and design. Lappeenranta: Lappeenranta University of Technology, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paxson, Daniel E. An improved numerical model for wave rotor design and analysis. [Washington, DC: National Aeronautics and Space Administration, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moura, Geraldo A. Macedo. An approach for design and analysis of composite rotor blades. Monterey, Calif: Naval Postgraduate School, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chattopadhyay, Aditi. Performance of an optimized rotor blade at off-design flight conditions. Washington, DC: National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nguyen-Schäfer, Hung. Rotordynamics of Automotive Turbochargers: Linear and Nonlinear Rotordynamics – Bearing Design – Rotor Balancing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mathur, Atul B. Wave rotor research: A computer code for preliminary design of wave programs. Monterey, California: Naval Postgraduate School, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilson, Jack. An experiment on losses in a three-port wave rotor. [Washington, DC]: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Howard, Samuel A. Rotordynamics and design methods of an oil-free turbocharger. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Design of Savonius rotor"

1

Meri AR, Salih, and Hamidon Bin Salleh. "Numerical Investigation of Savonius Rotor Elliptical and the Design Modification on a Blade Shape." In Advances in Material Sciences and Engineering, 177–85. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8297-0_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mabrouki, Ibrahim, Zied Driss, and Mohamed Salah Abid. "Characteristic of Savonius Vertical Axis Rotor in Water Channel." In Exergy for A Better Environment and Improved Sustainability 1, 411–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62572-0_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Massons, J., Jna Gavaldà, J. Escoda, X. Ruiz, and F. Díaz. "Characterization of Savonius Rotor Wake Using Image Processing Techniques." In Fluid Mechanics and Its Applications, 145–57. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2690-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dhamotharan, Vishaal, Ranjana Meena, Piyush Jadhav, Palaniappan Ramu, and K. Arul Prakash. "Robust Design of Savonius Wind Turbine." In Renewable Energy in the Service of Mankind Vol I, 913–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17777-9_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fujisawa, Nobuyuki. "Visualization of Flow Phenomena in and Around a Savonius Rotor." In Flow Visualization VI, 289–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zakaria, Ahmad, and Mohd Shahrul Nizam Ibrahim. "Time Step Sensitivity Analysis of a Flow-Driven Savonius Rotor." In Advances in Material Sciences and Engineering, 225–32. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8297-0_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Doso, Oying, and Sarsing Gao. "Power Quality Improvement of Cascaded Savonius Rotor Based Hydrokinetic Power System." In Lecture Notes in Electrical Engineering, 265–73. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7031-5_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prabowoputra, Dandun Mahesa, Syamsul Hadi, Aditya Rio Prabowo, and Jung Min Sohn. "Performance Assessment of Water Turbine Subjected to Geometrical Alteration of Savonius Rotor." In Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials, 351–65. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4481-1_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mouriaux, S., F. Bassi, A. Colombo, and A. Ghidoni. "NASA Rotor 37." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 533–44. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62048-6_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kydyrbekuly, A. "Rotor-Liquid-Fundament System’s Oscillation." In Advances in Mechanisms Design, 223–29. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5125-5_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Design of Savonius rotor"

1

Baz, Ahmed M., Nabil A. Mahmoud, Ashraf M. Hamed, and Khaled M. Youssef. "Optimization of Two and Three Rotor Savonius Wind Turbine." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43988.

Full text
Abstract:
The present work investigates the performance of Savonius wind turbine using two or three rotors. The new turbine design was found to have higher power coefficient compared with single rotor design. The peak average power coefficient of the three rotors was computed to be 50% higher than that of the single rotor design. The torque coefficient was also higher than that of the single rotor turbine at high tip speed ratio. This improved performance is attributed to the favorable aerodynamic interaction between the rotors which accelerates the flow around the rotors and generates higher turning torque in the direction of rotation for each rotor. The optimized arrangement of rotors showed that the upstream rotor and one downstream rotor should have a similar direction of rotation while the second downstream rotor is rotating in opposite direction.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Zhenzhou, Yuan Zheng, Xiaoyun Xu, Wenming Liu, and Daqing Zhou. "Optimum Design Configuration of Helical Savonius Rotor via Numerical Study." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78430.

Full text
Abstract:
A helical Savonius rotor with two blades and 180 degree helical angle is researched to optimize the rotor power coefficient CP via numerical study from different parameters like overlap ratio, diameter of endplates, and number of inner plates within buckets and aspects ratio. The results from the study show that the rotor gets better performances when overlap ratio equals to 0.19, or the diameter of end plates is around 10% more than that of the rotor rotation, or the number of inner plates is 6, or aspects ratio is 6.0. The maximum power coefficient CPmax of rotor reaches 0.21 when overlap ratio equals to 0.19, and the diameter of end plates is around 10% more than that of the rotor rotation, and the number of inner plates is 6, and aspects ratio is 6.0. The numerical study results coincide well with experimental results, that means the model results is credible.
APA, Harvard, Vancouver, ISO, and other styles
3

Saad, Ahmed S., Shinichi Ookawara, Ahmed Elwardany, Ibrahim I. El-Sharkawy, and Mahmoud Ahmed. "Effect of the Number of Stages on the Performance of Savonius Vertical Axis Wind Turbines: Part II — Using Twisted Blades." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23574.

Full text
Abstract:
Abstract Wind energy comprises one of several renewable resources of energy engineered to contain the global energy crisis. Although horizontal axis wind turbines (HAWTs) have proven to be effective in low turbulence and steady wind conditions, vertical axis wind turbines (VAWTs) potentially have the advantage in highly variable and turbulent regions. The Savonius vertical axis wind turbine has several advantages such as simple design, low manufacturing costs, low operating wind speed, low noise, and Omni-directional capability. However, the Savonius rotor requires further design optimization to improve its aerodynamic performance before becoming competitive with other turbine designs. Thus, the main objective of the current study is to numerically investigate the aerodynamic performance of a multistage Savonius rotor to enhance the power coefficient and the ability of self-starting. In the current study, one-, two-, three-, and four-stage Savonius rotors with twisted blades are investigated. In a two-stage rotor, one single-stage rotor is mounted over another single-stage with a phase angle of 90°. In a three-stage rotor, the three single-stage rotors are mounted one above the other with a phase angle of 60° relative to one another while with a phase angle of 45° for the four stage-rotor. The blades of the studied Savonius rotor are twisted with a twist angle (φ) of 45°. This is the first contribution to understand how multi-stages influence the aerodynamic performance of the twisted-bladed Savonius rotor. Moreover, variations of torque and power coefficients are computed for all the studied rotors with various numbers of stages. The developed numerical model is simulated using ANSYS Fluent and validated using the available experimental and numerical results. Results showed that the coefficients of torque (CT) and power (CP) increase with rising the number of stages. Increasing the number of stages from 1 to 2 significantly increases the CT and CP of the rotor. However, with a further increase in the number of stages to 3 and 4 stages, both the CT and CP remains almost the same as the rotor with 2 stages. The maximum coefficient of torque (CT, max) and power (CP, max) for a two-stage rotor are 0.42 and 0.253, respectively. The gain in the coefficient of power obtained by using the two-stage Savonius rotor with twisted blades is 53.5% compared to the conventional single-stage which has a coefficient of power 0.165 at a wind velocity of 6 m/s. Moreover, using multi-stages and twisted blades significantly smooth the variations in the generated torque and produce positive values at all rotor angles resulted in improving the self-starting ability of the Savonius rotor.
APA, Harvard, Vancouver, ISO, and other styles
4

Alom, Nur, and Ujjwal K. Saha. "Determining the Optimal Location of Vent Augmenters in an Elliptical-Bladed Savonius Rotor." In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2344.

Full text
Abstract:
Abstract The Savonius wind turbine rotor, or simply Savonius rotor is gaining importance throughout the globe as a device to produce electric power without donating much to global warming. Although this type of conventional rotor suffers from lower efficiency, it has many important rewards like simplicity, easier manufacturability, and lower maintenance cost. This has attracted the researcher’s attention towards improving its design further. To improve the Savonius rotor performance, several blade profiles/shapes and augmentation techniques have been evolved. In this study, an effort has been made to investigate the performance of a novel elliptical blade profile by incorporating the vent-augmentation technique. The prime objective is to decrease the negative thrust of the rotor by locating the vents optimally on the blade concave surface. In view of this, the vents are created at three different positions on the blade concave surfaces. Two-dimensional (2D) unsteady simulations are performed around the vented blade profiles of the Savonius rotor using SST k-ω turbulence model by FVM based solver ANSYS Fluent. The torque and power coefficients (CT and CP) are calculated at the revolving environments. The total pressure and velocity contours are obtained and analyzed. For a direct judgement, the results are also generated for the blade profiles without vent-augmenters. The study reveals an enhancement in performance of the vent-augmented elliptical blade profile of the Savonius rotor.
APA, Harvard, Vancouver, ISO, and other styles
5

Roy, Sukanta, and Ujjwal K. Saha. "Investigations on the Effect of Aspect Ratio Into the Performance of Savonius Rotors." In ASME 2013 Gas Turbine India Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gtindia2013-3729.

Full text
Abstract:
With the rapid execution in the renewable energy field, vertical axis wind turbines are finding its application in the small-scale distributed wind energy generation, particularly in rural areas. The Savonius rotor is a drag based vertical axis wind turbine and is used as a small-scale wind energy converter with low installation and maintenance cost. These rotors are simple in design, easy to assemble and can be operated at low-speed wind from any direction. However, these rotors are not gaining popularity because of its low efficiency and improper design. The aspect ratio (height to diameter of the rotor) is one of the very important factors for designing a suitable small-scale wind turbine. The other important factors include overlap ratio, gap ratio and blade profile of the rotor. In the present investigation, a number of rotor models with different aspect ratios are tested in a low speed wind tunnel with open test section facility. The effects of overlap ratio and gap ratio are also studied keeping the rotor height to be the same. The wind speed is varied from 5–10 m/s. To estimate the performance of these rotors, electrical loads are given with respect to different wind speeds and the power output is calculated in terms of voltage and current. The results depicted an optimum aspect ratio of 0.80, which can be used to improve the performance of Savonius rotors.
APA, Harvard, Vancouver, ISO, and other styles
6

Rahman, Mosfequr, Khandakar N. Morshed, and Ahsan Mian. "Aerodynamic Performance Analysis of Three Bladed Savonius Wind Turbine With Different Overlap Ratios and at Various Reynolds Number." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40272.

Full text
Abstract:
Considerable improvements in the aerodynamic performance of a vertical axis wind turbine (VAWT) can be achieved by integrating computational fluid dynamics (CFD) simulation and wind tunnel investigation in their design improvement. With the growing demand for energy worldwide, conventional sources are becoming more scarce and expensive. Wind is among the most popular and fastest growing sources of alternative energy in the world. It is an inexhaustible, indigenous resource, pollution-free, and available almost any time of the day, especially in coastal regions. Industry experts predict that, with proper development, wind energy could provide 20% of the nation’s energy needs. Vertical axis wind turbines (VAWTs) may be as efficient and practical as, and simpler, and significantly cheaper to build and maintain than, horizontal axis wind turbines (HAWTs). They have other inherent advantages; for example, they always face the wind. VAWTs include both a drag-type configuration, such as the Savonius rotor, and a lift-type configuration, such as the Darrieus rotor. The Savonius wind turbine is the simplest. Its operation depends on the difference in drag force when the wind strikes either the convex or concave part of its semi-cylindrical blades. It is good at self-starting and works independently of wind direction. However, its efficiency is relatively lower than that of the lift-type VAWTs. Due to its simple design and low construction cost, Savonius rotors are primarily used for water pumping and to generate wind power on a small scale and its large starting torque makes it suitable for starting other types of wind turbines that have inferior starting characteristics. Recently, some generators with high torque at low rotational speed, suitable for small-scale wind turbines, have been developed, suggesting that Savonius rotors may yet be used to generate electric power. The main goal of this research work is to improve the aerodynamic performance of the three bladed vertical axis Savonius wind turbine. Based on this goal, the objective of this project is to study the performance characteristics of the Savonius wind turbine scale models both experimentally and numerically. The turbine scale models will have different designs with different overlap ratios (ratio of gap between two adjacent blades and the rotor diameter) and without overlap within three blades. The experimental measurements and testing will be conducted in front of a low speed subsonic wind tunnel at different Reynolds number and the computational fluid dynamic (CFD) flow simulation around those design models will be performed by commercial CFD software FLUENT and GAMBIT.
APA, Harvard, Vancouver, ISO, and other styles
7

Alom, Nur, and Ujjwal K. Saha. "Arriving at the Optimum Overlap Ratio for an Elliptical-Bladed Savonius Rotor." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64137.

Full text
Abstract:
The Savonius rotor appears to be particularly promising for the small-scale applications because of its design simplicity, good starting ability, and insensitivity to wind directions. There has been a growing interest in recent times to harness wind energy in an efficient manner by developing newer blade profiles of Savonius rotor. The overlap ratio (OR), one of the important geometric parameters, plays a crucial role in the turbine performance. In a recent study, an elliptical blade profile with a sectional cut angle (θ) of 47.5° has demonstrated its superior performance when set at an OR = 0.20. However, this value of OR is ideal for a semicircular profile, and therefore, requires further investigation to arrive at the optimum overlap ratio for the elliptical profile. In view of this, the present study attempts to make a systemic numerical study to arrive at the optimum OR of the elliptical profile having sectional cut angle, θ = 47.5°. The 2D unsteady simulation is carried out around the elliptical profile considering various overlap ratios in the range of 0.0 to 0.30. The continuity, unsteady Reynolds Averaged Navier-Stokes (URANS) equations and two equation eddy viscosity SST (Shear Stress transport) k-ω model are solved by using the commercial finite volume method (FVM) based solver ANSYS Fluent. The torque and power coefficients are calculated as a function of tip speed ratio (TSR) and at rotating conditions. The total pressure, velocity magnitude and turbulence intensity contours are obtained and analyzed to arrive at the intended objective. The numerical simulation demonstrates an improved performance of the elliptical profile at an OR = 0.15.
APA, Harvard, Vancouver, ISO, and other styles
8

Goundar, Jai N., Deepak Prasad, and Mohammed Rafiuddin Ahmed. "Design and Performance Testing of a Ducted Savonius Turbine for Marine Current Energy Extraction." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66417.

Full text
Abstract:
Marine current energy is a reliable and clean source of energy. Several marine current turbines have been developed over the years, most of the turbines perform well at velocities over 2 m/s and need to be installed at depths of 20–40 m. Placing an appropriately designed duct or shroud around the turbine significantly improves the turbine’s performance. Ducted Savonius turbines can operate at low depths, since large clearance is not required because turbulent flow has little effect on the performance of the Savonius rotor. Ducted Savonius turbine has simple components and can be easily fabricated in Pacific Island Countries (PIC) and other places that do not have advanced manufacturing industries. A ducted Savonius turbine was designed for a location in Fiji, to operate at a rated marine current speed of 1.15 m/s and cut in speed of 0.2 m/s. The model of ducted Savonius turbine, scaled down to 1/20, was fabricated and tested in a water stream with a velocity of 0.6 m/s and was validated with commercial Computational Fluid Dynamics (CFD) code ANSYS-CFX. Finally, a full scale numerical model was constructed to study the flow characteristics and compute the performance. The area ratio of the duct of 2.5:1 (inlet to turbine section) shows significant increase in kinetic energy and an improved turbine performance. The maximum efficiency of the turbine is around 50% at a tip speed ratio (TSR) of 3.5 and the maximum power produced is 10 kW at the rated speed of 1.15 m/s and 63.4 kW at a free-stream velocity of 2.15 m/s.
APA, Harvard, Vancouver, ISO, and other styles
9

Rahman, Mosfequr, Khandakar N. Morshed, Jeffery Lewis, and Mark Fuller. "Experimental and Numerical Investigations on Drag and Torque Characteristics of Three-Bladed Savonius Wind Turbine." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10838.

Full text
Abstract:
With the growing demand of energy worldwide, conventional energy is becoming more and more scarce and expensive. The United States is already facing an energy crunch as the fuel price soars. Therefore, there is an obvious need for alternative sources of energy—perhaps more than ever. Wind is among the most popular and fastest-growing forms of electricity generation in the world, which is pollution free and available almost at any time of the day, especially in the coastal regions. The main attraction of the vertical-axis wind turbine is its manufacturing simplicity compared to that of the horizontal-axis wind turbine. Among all different vertical axis wind turbines, Savonius wind turbine is the simplest one. Operation of the Savonius wind turbine is based on the difference of the drag force on its semi-spherical blades, depending on whether the wind is striking the convex or the concave part of the blades. The advantage of this type of wind turbine is its good self-starting and wind directional independence characteristic. It, however, has a relatively lower efficiency in comparison with the lift type vertical-axis wind turbines. Due to its simple design and low construction cost, Savonius rotors are primarily used for water pumping and wind power on a small scale. The main objective of this ongoing research work is to improve the aerodynamic performance of vertical axis Savonius wind turbine. Wind tunnel investigation has been performed on aerodynamic characteristics, such as drag coefficients, and static torque coefficient of three-bladed Savonius rotor model. Also the computational fluid dynamics (CFD) simulation has been performed using FLUENT software to analyze the static rotor aerodynamics such as drag coefficients and torque coefficient, and these results are compared with the corresponding experimental results for verification.
APA, Harvard, Vancouver, ISO, and other styles
10

Alom, Nur, Satish Chandra Kolaparthi, Sarath Chandra Gadde, and Ujjwal K. Saha. "Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations." In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-55095.

Full text
Abstract:
Savonius-style wind turbine (SSWT), a class of vertical-axis wind turbine, appears to be promising for off-shore applications because of its design simplicity, good starting ability, insensitivity to wind direction, relatively low operating speed, low cost and easy installation. Various blade shapes have been used over the years to improve the performance of this class of turbine. In the recent past, an elliptic-bladed profile with sectional cut angle of 50° has shown its potential to harness the wind energy more efficiently. The present study aims to optimize this profile by numerical simulations. In view of this, the elliptical-bladed profiles are tested at different sectional cut angles of θ = 45°, 47.5°, 50° and 55°. The shear stress transport (SST) k-ω turbulence model is used to simulate the flow field, and thereafter, the torque and power coefficients are obtained at the rotating conditions. From 2D simulation, pressure and velocity contours are generated and analyzed. 2D simulations are also carried out for a semi-circular bladed profile in order to have a direct comparison. The numerical study demonstrates an improved flow characteristics, and hence the power coefficient of the elliptical-bladed profile at = 47.5°. Finally, 3D simulation is carried out to visualize and analyze the flow field around the optimum elliptical-bladed rotor at a tip speed ratio of 0.8. The aspect ratio of the rotor for the 3D simulation is kept at 0.7.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Design of Savonius rotor"

1

Roth, P. G. Probabilistic Rotor Design System (PRDS) -- Gas Turbine Engine Design. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada378908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barone, Matthew F., Jonathan Charles Berg, and Daniel Griffith. Reference Model 2: "Rev 0" Rotor Design. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1126471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roth, P. G. Probabilistic Rotor Design System (PRDS). Phase 2. Fort Belvoir, VA: Defense Technical Information Center, July 1996. http://dx.doi.org/10.21236/ada328075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kelley, Christopher Lee. Aerodynamic design of the National Rotor Testbed. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1346410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Berg, Jonathan C., Brian R. Resor, Joshua A. Paquette, and Jonathan R. White. SMART Wind Turbine Rotor: Design and Field Test. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1220845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berg, Jonathan Charles, Brian Ray Resor, Joshua A. Paquette, and Jonathan Randall White. SMART wind turbine rotor. Design and field test. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1204070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Malcolm, D. J., and A. C. Hansen. WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised). Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/15000964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ennis, Brandon Lee, and Joshua A. Paquette. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1225852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Resor, Brian Ray, David Charles Maniaci, Jonathan Charles Berg, and Phillip William Richards. Effects of increasing tip velocity on wind turbine rotor design. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1177045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Allen, Luke, Joon Lim, Robert Haehnel, and Ian Detwiller. Rotor blade design framework for airfoil shape optimization with performance considerations. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41037.

Full text
Abstract:
A framework for optimizing rotor blade airfoil shape is presented. The framework uses two digital workflows created within the Galaxy Simulation Builder (GSB) software package. The first is a workflow enabling the automated creation of a surrogate model for predicting airfoil performance coefficients. An accurate surrogate model for the rapid generation of airfoil coefficient tables has been developed using linear interpolation techniques that is based on C81Gen and ARC2D CFD codes. The second workflow defines the rotor blade optimization problem using GSB and the Dakota numerical optimization library. The presented example uses a quasi-Newton optimization algorithm to optimize the tip region of the UH-60A main rotor blade with respect to vehicle performance. This is accomplished by morphing the blade tip airfoil shape for optimum power, subject to a constraint on the maximum pitch link load.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography