To see the other types of publications on this topic, follow the link: Design of Savonius rotor.

Journal articles on the topic 'Design of Savonius rotor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Design of Savonius rotor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cheng, Chao Yuan, and Xiao Qing Wei. "The Innovative Design and Simulation Analysis of Small Savonius Wind Turbine." Advanced Materials Research 591-593 (November 2012): 832–36. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.832.

Full text
Abstract:
Savonius rotor is a typical style of vertical-axis wind turbine (VAWT). A new innovative design of two Savonius rotors coaxially in the opposite direction is presented in the paper which is different from the traditional design. The traditional generator has only a pair of stator and rotor and matched with trational Savonius rotor. Enlarging the relative speed between the magnetic pole and the coil pole by making the two pole rotate in the opposite direction in the innovative Savonius wind turbine. In this way, it can enhance the power generation efficiency of the Savonius wind turbine. The fluid-solid coupling analysis for the Savonius wind turbine is used to calculate the power characteristics and efficiency of the wind turbine.
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Xiao Wen, Kai Yuan Cao, Zhong Rui Chen, and Ke Shen. "Design Optimization of Savonius Rotors: An Overview." Applied Mechanics and Materials 58-60 (June 2011): 827–33. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.827.

Full text
Abstract:
Since the Savonius rotor has a low starting torque and is adaptable for wind in various directions, it has received great attention in the past decades. In this paper, we present an overview of the state of the art in Savonius rotor design, according to three general strategies of design optimization: 1) Optimizing Savonius rotor structural parameters including overlap ratio, aspect ratio of the rotor, twist angle, Reynolds number, and the shaft of the rotor; 2)Adopting multi-level Savonius rotor or combining Savonius rotor with other type rotor to avoid negative torque of the rotor and improve both efficiency and starting torque; 3)Adding auxiliary devices such as curtain or guide-box to decrease the negative torque. We conclude with a discussion of the advantages and challenges associated with development of this promising technology.
APA, Harvard, Vancouver, ISO, and other styles
3

Tang, Zhi Peng, Ying Xue Yao, Liang Zhou, and Q. Yao. "Optimal Design of a New Type of Savonius Rotor Using Simulation Analysis." Key Engineering Materials 499 (January 2012): 120–25. http://dx.doi.org/10.4028/www.scientific.net/kem.499.120.

Full text
Abstract:
In order to enhance the efficiency of the Savonius rotor, this paper designs a new type of Savonius rotor with a rectifier. By using Computational Fluid Dynamics software to simulate and optimize the various parameters which affect the efficiency of the rotor. The sliding mesh method is applied here. The Cp-λ curves of wind turbine with different structural parameters are obtained after numerical simulation of flow field. On this basis, this paper gets the optimal structural parameters. And the results indicated that this new type of Savonius rotor has great improvement of efficiency compared with the traditional Savonius-type rotor.
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmad, Elsadic Salim. "A Study of the Influence of Guide Vane Design to Increase Savonius Wind Turbine Performance." Modern Applied Science 9, no. 11 (September 30, 2015): 222. http://dx.doi.org/10.5539/mas.v9n11p222.

Full text
Abstract:
<p>This work experimentally studied the influence of guide vane design to increase Savonius rotor performance. Guide vane is one of additional device that its function is for directing wind stream on to concave blade and deserves as obstacle of the wind that flowing on to convex blade. That way increased wind speeds to the rotor, consequently it produced higher power coefficient and the Savonius rotor performed better performance. Four designs of guide vane were arranged in this study. They are basic design of guide vane and basic design of guide vane that added a tilt angle on the top and bottom sides by 15°, 30°, and 45°. The result concludes that guide vane affects the performance of Savonius rotor. The power that generated by the rotor with guide vanes increase significantly compared with Savonius rotor without guide vane. The maximum improvement was attained up to 65.89%.</p>
APA, Harvard, Vancouver, ISO, and other styles
5

Etemadeasl, Vahid, Rasool Esmaelnajad, Farzad F. Dizaji, and Babak Farzaneh. "A novel configuration for improving the aerodynamic performance of Savonius rotors." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 233, no. 6 (December 17, 2018): 751–61. http://dx.doi.org/10.1177/0957650918818968.

Full text
Abstract:
In this paper, a new configuration is proposed for Savonius rotors by installing two Counter-Rotating Savonius Rotors together and adding a V-shaped shield. For evaluating the performance of this type of turbine, turbulent unsteady flow around the rotor is simulated using ANSYS-Fluent 16.0 software. Numerical results of the torque and power coefficients of the turbine show a significant improvement in the aerodynamic performance compared to a single Savonius rotor. Effects of the V-shaped shield angle and distance from the rotors on the aerodynamic performance of the turbine are studied numerically. Analyzing the results show that in a design with a shield angle of 90° and with a shield distance of L = 1 D power coefficient increases by 80%.
APA, Harvard, Vancouver, ISO, and other styles
6

Golecha, K., M. A. Kamoji, S. B. Kedare, and S. V. Prabhu. "Review on Savonius Rotor for Harnessing Wind Energy." Wind Engineering 36, no. 6 (December 2012): 605–45. http://dx.doi.org/10.1260/0309-524x.36.6.605.

Full text
Abstract:
Wind machines convert kinetic energy of the wind into usable form of mechanical energy or electrical energy. The Savonius rotor is a vertical axis wind machine which is simple in design. High starting torque characteristics make it suitable for standalone power generation as well as water pumping applications. This paper reviews the literature on the performance characteristics of the Savonius rotor. Multi-bladed rotor, multistage rotor, shape of the blade, use of deflecting plate, guide vanes and nozzle augmentation are several ways to enhance the performance characteristics. This review would help an engineer in building an improved Savonius rotor for a given application.
APA, Harvard, Vancouver, ISO, and other styles
7

Harsanto, Tedy, Haryo Dwi Prananto, Esmar Budi, and Hadi Nasbey. "Design and Contruction of Vertical Axis Wind Turbine Triple-Stage Savonius Type as the Alternative Wind Power Plant." KnE Energy 2, no. 2 (December 1, 2015): 172. http://dx.doi.org/10.18502/ken.v2i2.373.

Full text
Abstract:
<p>A vertical axis wind turbine triple-stage savonius type has been created by using simple materials to generate electricity for the alternative wind power plant. The objective of this research is to design a simple wind turbine which can operate with low wind speed. The turbine was designed by making three savonius rotors and then varied the structure of angle on the three rotors, 0˚, 90˚ and 120˚. The dimension of the three rotors are created equal with each rotor diameter 35 cm and each rotor height 19 cm. The turbine was tested by using blower as the wind sources. Through the measurements obtained the comparisons of output power, rotation of turbine, and the level of efficiency generated by the three variations. The result showed that the turbine with angle of 120˚ operate most optimally because it is able to produce the highest output power and highest rotation of turbine which is 0.346 Watt and 222.7 RPM. </p><p><strong>Keywords</strong>: Output power; savonius turbine; triple-stage; the structure of angle</p>
APA, Harvard, Vancouver, ISO, and other styles
8

Abdel-Fattah Mahrous. "Computational Fluid Dynamics Study of a Modified Savonius Rotor Blade by Universal Consideration of Blade Shape Factor Concept." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 85, no. 1 (July 29, 2021): 22–39. http://dx.doi.org/10.37934/arfmts.85.1.2239.

Full text
Abstract:
This work aims to investigate computationally the performance of Savonius vertical axis wind turbine having a new design feature for its blade geometry. The proposed design is based on a universal consideration of blade shape factor concept for the Savonius rotor blade. A blade shape factor ranges from zero to infinity, or vice versa, is considered in a single blade of the modified Savonius rotor. This means that each point in the two-dimensional blade profile of the suggested blade design has a single value of blade shape factor that is defined based on the dimensions of conventional semi-circular blade. The computational results of the proposed blade shape design, having blade shape factor varying from infinity to zero, showed an improvement in turbine performance as compared to conventional blade shape design. Moreover, increasing the operating range of Savonius wind turbine is expected.
APA, Harvard, Vancouver, ISO, and other styles
9

Mohammed, Gwani, Mamuda Buhari, Umar Muhammed Kangiwa, and John Danyaro. "Design, Fabrication and Performance Evaluation of Hybrid Vertical Axis Wind Turbine." International Journal for Modern Trends in Science and Technology 6, no. 6 (June 28, 2020): 80–86. http://dx.doi.org/10.46501/ijmtst060618.

Full text
Abstract:
Vertical axis wind turbines (VAWT) have attracted a lot of attention recently as an efficient tool in harnessing wind energy; however these types of wind turbine are faced with some challenges which affect their overall performance. The Darrieus rotor has difficulty to self-start by itself while the Savonius rotor has low efficiency. The performance of these turbines can be improved by combining the two VAWTs as one system. This paper presents the design of a hybrid VAWTs turbine. The Hybrid VAWTs combines the Darrieus rotor and the Savonius rotor as a single system to produce a high starting torque and enhanced efficiency. The Savonius rotor is placed at the centre of the three vertical blades of the Darrieus H-rotor to form the hybrid VAWTs. The hybrid VAWT was tested at four different wind speed i.e. V = 4.80 m/s, 4.50 m/s, 4.30 m/s and 3.90 m/s respectively. The performance of the hybrid VAWT was compared with the conventional straight bladed VAWT under similar experimental conditions. The obtained results showed that there is substantial improvement in the self-starting ability and coefficient of power (Cp). At V = 4.80 m/s, the Cp values for hybrid VAWT increased by 92% compared to straight bladed H-rotor VAWT. Similar improvement was also observed at wind speed of V = 4.50 m/s, 4.30 m/s, and 3.90 m/s where the Cp values increases by 71%, 10%, and 67% respectively compared to the straight bladed H-rotor.
APA, Harvard, Vancouver, ISO, and other styles
10

ElBeheiry, E. M., and W. A. El-Askary. "Analysis and Experimentation of Multi-S Rotors for Vertical Wind Turbine Applications." Applied Mechanics and Materials 260-261 (December 2012): 97–102. http://dx.doi.org/10.4028/www.scientific.net/amm.260-261.97.

Full text
Abstract:
This article presents a new, multi-foil-blades (multi-S) rotor and compare its performance potentials with traditional (Single-S) Savomius rotor . Theoretical and experimental investigations show that the performance of the multi-S rotor is better than the other classical designs of Savonius rotor in terms of the resulting power factor. Analytical equations for power and torque factors are developed for both the single- and multi-S rotors with ideal flow assumed. These equations are proven very effective in describing the performance potentials of these rotors for a range of speed ratio less than or equals 0.7. This result is experimentally justified for both types of rotors. For speed ratios higher than 0.7, a remarkable deviation occurs between the theoretical performance measures provided by the developed equations and the experimentally measured ones. A geometric design parameter which depends on the internal construction of the proposed multi-S rotor is found to be of great impact on the attained power factor. A power factor for the multi-S rotor can be much more than that of a single-S one having the same height and outer size according to the chosen values of this design parameter.
APA, Harvard, Vancouver, ISO, and other styles
11

Mohan Kumar, Palanisamy, Mohan Ram Surya, Krishnamoorthi Sivalingam, Teik-Cheng Lim, Seeram Ramakrishna, and He Wei. "Computational Optimization of Adaptive Hybrid Darrieus Turbine: Part 1." Fluids 4, no. 2 (May 17, 2019): 90. http://dx.doi.org/10.3390/fluids4020090.

Full text
Abstract:
Darrieus-type Vertical Axis Wind Turbines (VAWT) are promising for small scale decentralized power generation because of their unique advantages such as simple design, insensitive to wind direction, reliability, and ease of maintenance. Despite these positive aspects, poor self-starting capability and low efficiency in weak and unsteady winds deteriorate further development. Adaptive Hybrid Darrieus Turbine (AHDT) was proposed by the author in the past study as a potential solution to enhance low wind speed characteristics. The objective of the current research is to optimize the parameters of AHDT. AHDT integrates a dynamically varying Savonius rotor with a Darrieus rotor. A fully detailed 2D numerical study employing Reynold-Averaged Navier Stokes (RANS) is carried out to investigate the impact of the Darrieus rotor diameter (DR) on the Savonius rotor (DT) with regard to hybrid turbine performance. The power coefficient of the Darrieus rotor is evaluated when the Savonius rotor is in the closed condition (cylinder) of various diameters. The influence of Reynolds number (Re) on the torque coefficient is examined. Power loss of 58.3% and 25% is reported for DR/DT ratio of 1.5 and 2 respectively for AHDT with solidity 0.5 at 9 m/s. The flow interaction between the Savonius rotor in closed configuration reveals the formation of von Karman vortices that interact with Darrieus blades resulting in flow detachment. An optimum diametrical ratio (DR/DT) of 3 is found to yield the maximum power coefficient of the Darrieus rotor.
APA, Harvard, Vancouver, ISO, and other styles
12

Mojola, O. O. "On the aerodynamic design of the savonius windmill rotor." Journal of Wind Engineering and Industrial Aerodynamics 21, no. 2 (September 1985): 223–31. http://dx.doi.org/10.1016/0167-6105(85)90005-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Samiran, N. Afzanizam, A. A. Wahab, Mohd Sofian, and N. Rosly. "Simulation Study on the Performance of Vertical Axis Wind Turbine." Applied Mechanics and Materials 465-466 (December 2013): 270–74. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.270.

Full text
Abstract:
The present study considered the design improvement of Savonius rotor, in order to increase the efficiency of output power. An investigation was conducted to study the effect of geometrical configuration on the performance of the rotor in terms of coefficient of torque, coefficient of power and power output. Modification of conventional geometry has been designed by combining the effect of number of blades and shielding method. CFD simulation was conducted to analyze the flow characteristic and calculate the torque coefficient of all the rotor configurations. The continuity and Reynolds Averaged Navier-Stokes (RANS) equations and realizable k-ε epsilon turbulence model are numerically solved by commercial software Ansys-Fluent 14.0. The results obtained by transient and steady method for the conventional two bladed Savonius rotor are in agreement with those obtained experimentally by other authors and this indicates that the methods can be successfully applied for such analysis. The modified 3 and 4 bladed rotors with hybrid shielding method gave the highest maximum power coefficient which 0.37 at TSR 0.5 and output power exceed 4 watts with rotor dimensions of 0.2m width and 0.2m height. This blade configuration also is the best configuration by several percentages compared to the other model from the previous study
APA, Harvard, Vancouver, ISO, and other styles
14

Modi, V. J., and M. S. U. K. Fernando. "On the Performance of the Savonius Wind Turbine." Journal of Solar Energy Engineering 111, no. 1 (February 1, 1989): 71–81. http://dx.doi.org/10.1115/1.3268289.

Full text
Abstract:
An extensive wind tunnel test program is described which assesses the relative influence of system parameters on the Savonius rotor performance. The parametric study leads to an optimum configuration with an increase in efficiency by around 100 percent compared to the reported efficiency of ≈12–15 percent. Of particular interest is the blockage correction procedure which is vital for application of the wind tunnel results to a prototype design, and facilitates comparison of data obtained by other investigators. Next, using the concept of a central vortex, substantiated by a flow visualization study, a semiempirical approach to predict the rotor performance using measured stationary blade pressure data is developed. The simple approach promises to be quite effective in predicting the rotor performance, even in the presence of blockage, and should prove useful at least in the preliminary design stages.
APA, Harvard, Vancouver, ISO, and other styles
15

Wicaksono, Yoga Arob. "Effect of Stator Vane on the Performance of the Savonius Wind Turbine." R.E.M. (Rekayasa Energi Manufaktur) Jurnal 4, no. 2 (December 30, 2019): 159–68. http://dx.doi.org/10.21070/r.e.m.v4i2.811.

Full text
Abstract:
The turbulent air flow conditions in the urban area have a large effect on the performance of Savonius rotor wind turbines. To overcome this problem, a new design of the stator vane needs to be made. the stator vane has the ability to direct wind to the turbine rotor and increase air speed by utilizing throttling effects. Thus, the performance of the Savonius wind turbine can increase. In this study, the Savonius type vertical wind turbine is configured with three stator vane designs that have slope angles: 60o, and 70o. Performance testing is carried out at angles: 0o, 30o, and 60o towards the midpoint of the stator vane to find the direction of direction coming from the best wind on each stator vane design. All configurations are analyzed using an experimental wind tunnel open testing scheme with a wind speed range of 3-5 m/s. The parameters produced from the experiment include: power coefficient (Cp), torque coefficient (Ct) and Tip Speed ​​Ratio (TSR). The results showed that the stator vane with 60o inclination angle was able to increase Cp 35.66% in the 60o incoming wind direction.
APA, Harvard, Vancouver, ISO, and other styles
16

Saha, U. K., S. Thotla, and D. Maity. "Optimum design configuration of Savonius rotor through wind tunnel experiments." Journal of Wind Engineering and Industrial Aerodynamics 96, no. 8-9 (August 2008): 1359–75. http://dx.doi.org/10.1016/j.jweia.2008.03.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Micha Premkumar, T., T. Mohan, Sivamani Seralathan, and A. Sudheer Kumar. "Design and Performance Prediction of Low Cost Vertical Axis Wind Turbine." Applied Mechanics and Materials 813-814 (November 2015): 1070–74. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.1070.

Full text
Abstract:
The capacity of wind power generation has increased across India due to various activities encouraged by government. Moreover, onshore potential in India is in the order of 100GW. However, the plant load factor is often very low in wind power production. In most of the place, low-rated wind speed is available. Effective utilization of the wind to produce small power will reduces the grid load. There is in need to effectively utilize the available potential to meet the energy demand. The low cost vertical axis wind turbine designed for low rated wind regime has the hybrid of simple Savonius and helical Savonius. Various experimental parameters are measured to check the suitability of the vertical axis wind turbine in the low rated wind speed regions. Numerical simulation are carried out for three dimensional steady flow around the combined Savonius and helical Savonius vertical axis wind turbine blades using ANSYS Fluent(C). Numerical investigation are conducted to study the effect of hybrid combination on performance of the rotor in terms of coefficient of torque, coefficient of power, etc. Self-starting behaviour of the vertical axis wind turbine is improved by using this hybrid vertical axis wind turbine.
APA, Harvard, Vancouver, ISO, and other styles
18

Antar, Elie, Amne El Cheikh, and Michel Elkhoury. "A Dynamic Rotor Vertical-Axis Wind Turbine with a Blade Transitioning Capability." Energies 12, no. 8 (April 16, 2019): 1446. http://dx.doi.org/10.3390/en12081446.

Full text
Abstract:
This work presents an optimized design of a dynamic rotor vertical-axis wind turbine (DR VAWT) which maximizes the operational tip-speed ratio (TSR) range and the average power coefficient (Cp) value while maintaining a low cut-in wind velocity. The DR VAWT is capable of mimicking a Savonius rotor during the start-up phase and transitioning into a Darrieus one with increasing rotor radius at higher TSRs. The design exploits the fact that with increasing rotor radius, the TSR value increases, where the peak power coefficient is attained. A 2.5D improved delayed detached eddy simulation (IDDES) approach was adopted in order to optimize the dynamic rotor design, where results showed that the generated blades’ trajectories can be readily replicated by simple mechanisms in reality. A thorough sensitivity analysis was conducted on the generated optimized blades’ trajectories, where results showed that they were insensitive to values of the Reynolds number. The performance of the DR VAWT turbine with its blades following different trajectories was contrasted with the optimized turbine, where the influence of the blade pitch angle was highlighted. Moreover, a cross comparison between the performance of the proposed design and that of the hybrid Savonius–Darrieus one found in the literature was carefully made. Finally, the effect of airfoil thickness on the performance of the optimized DR VAWT was thoroughly analyzed.
APA, Harvard, Vancouver, ISO, and other styles
19

Mosbahi, Mabrouk, Mariem Lajnef, Mouna Derbel, Bouzid Mosbahi, Costanza Aricò, Marco Sinagra, and Zied Driss. "Performance Improvement of a Drag Hydrokinetic Turbine." Water 13, no. 3 (January 23, 2021): 273. http://dx.doi.org/10.3390/w13030273.

Full text
Abstract:
Hydropower is at present in many locations, among all the other possible renewable energy sources, the best one for net cost per unit power. In contrast to traditional installation, based on water storage in artificial basins, free flow river turbines also provide a very low environmental impact due to their negligible effect on solid transport. Among them, kinetic turbines with vertical axis are very inexpensive and have almost zero impact on fish and local fauna. In application to tidal waves and sea waves, where vertically averaged velocities have alternate direction, a Savonius rotor also has the advantage of being productive during the whole time cycle. In this work, the effect of an upstream deflector system mounted upstream of a twisted Savonius rotor inside a channel has been investigated through numerical simulations and experimental tests. Numerical simulations were carried on using the ANSYS FLUENT 17.0 software. Based on this numerical study, it is shown that the proposed deflector system has improved the power coefficient of the Savonius rotor by 14%. The utilization of this new design system is predicted to contribute towards a more efficient use of flows in rivers and channels for electricity production in rural areas.
APA, Harvard, Vancouver, ISO, and other styles
20

Basuki, Mohammad Munib Rosadi, Retno Eka Pramitasari, and Fajar Satriya Hadi. "ANALISIS PERFORMA KINERJA TURBIN ANGIN SAVONIUS 2 SUDU." Discovery : Jurnal Ilmu Pengetahuan 5, no. 2 (October 18, 2020): 58–63. http://dx.doi.org/10.33752/discovery.v5i2.995.

Full text
Abstract:
Abstract: Renewable energy sources are energy sources that can replace the use and use of fossil energy sources where they are very abundant and have not been widely used for their existence. Therefore, to bring up new ideas in terms of creating or changing renewable energy, there needs to be a match between the education curriculum and market needs. So to arouse the enthusiasm and motivation of students in the teaching and learning process, especially in the energy conversion machine course for mechanical engineering students, it needs media and learning methods. The purpose of this research is to know how to design a savonius wind turbine props, and the working principle, and analyze the performance of the wind turbine. The sequence of the process of making savonius wind turbines comprises of making: (1) frameworks and machine tables, (2) chimneys, (3) duct, (4) installation of fans, (5) turbine holder (6) two blades savonius turbines and servo motor holder. The working principle of a wind turbine is a turbine rotation caused by the wind being transmitted to the generator rotor, where the generator has a copper coil that functions as a stator which will produce an electric voltage. From this research produced a savonius wind turbine tool which is used as a learning medium in the Mechanical Engineering Study Program. From the results of savonius type wind turbine test equipment produced the following data: maximum voltage of 10 volts, wind speed of 8.5 m / s, rotor generator rotation of 2734 rpm and power of 340 watts. Keywords: Energy, Turbine, Wind, Savonius Abstrak: Sumber energi terbarukan adalah sumber energi yang dapat menggantikan pemanfaatan dan penggunaan sumber energi fosil dimana keberadaannya sangat melimpah dan belum banyak digunakan akan keberadaannya. Oleh karena itu untuk memunculkan ide ide baru dalam hal menciptakan atau mengubah energi terbarukan ini perlu adanya kesesuaian antara kurikulum pendidikan dengan kebutuhan pasar. Maka untuk membangkitkan semangat dan motivasi mahasiswa dalam proses belajar mengajar khususnya dalam mata kuliah Mesin Konversi Energi bagi mahasiswa teknik mesin maka perlu media dan metode pembelajaran. Tujuan dari penelitian ini adalah mengetahui cara mendesain sebuah alat peraga turbin angin savonius, mengetahui prinsip kerja, dan menganalisa dari performa kinerja dari turbin angin tersebut. Urutan proses pembuatan turbin angin savonius adalah (1) pembuatan kerangka dan meja mesin, (2) pembuatan cerobong angin, (3) pembuatan duct, (4) pemasangan kipas angin, (5) pembuatan dudukan turbin, (6) pembuatan turbin savonius 2 sudu dan pembuatan dudukan motor servo. Prinsip kerja turbin angin adalah putaran turbin yang disebabkan oleh angin diteruskan ke rotor generator, dimana generator memiliki lilitan tembaga yang berfungsi sebagai stator yang akan menghasilkan tegangan listrik. Dari penelitian tersebut dihasilkan sebuah alat turbin angin savonius yang digunakan sebagai media pembelajaran di Program Studi Teknik Mesin. Dari hasil pengujian alat turbin angin tipe savonius menghasilkan data sebagai berikut: tegangan maksimal sebesar 10 volt, kecepatan angin 8.5 m/s, putaran rotor generator 2734 rpm dan daya sebesar 340 watt. Kata kunci: Energi, Turbin, Angin, Savonius
APA, Harvard, Vancouver, ISO, and other styles
21

Griffin, David A. "Mooring design to minimize savonius rotor overspeeding due to wave action." Continental Shelf Research 8, no. 2 (February 1988): 153–58. http://dx.doi.org/10.1016/0278-4343(88)90050-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Rendi, Rendi, and Firda Herlina. "PENAMBAHAN LINGKARAN PELINDUNG PADA TURBIN AIR ROTOR SAVONIUS." INFO-TEKNIK 20, no. 2 (January 13, 2020): 237. http://dx.doi.org/10.20527/infotek.v20i2.7720.

Full text
Abstract:
The savonius water turbine has a main component, which is blade, the concave portion has a positive work and the convex blade has a negative work. Concave profiles in advancing blade as flow catchers and convex profiles on the returning blade as reflecting flow so that there is a difference in torque. The greater the torque difference the better the turbine performance. The way to enlarge this torque difference is by enlarging the drag force. This study aims to increase the difference in torque by adding a protective circle behind the blade advancing blade. This research uses Solidwork software to design turbines and Ansys CFX 19.2 software to analyze torque. Based on the analysis results, the addition of a protective circle can increase the difference in torque. The largest torque value is owned by the turbine with the addition of a protective circle 10 mm from the blade of 46,524 Nm, the largest power value is owned by the turbine with the addition of a protective circle 10 mm by 182 Watts and the greatest efficiency value is owned by the turbine with the addition of a protective circle 10 mm 50% turbine. The addition of a protective circle 10 mm away from the blade is the most optimal turbine geometry for use in water flow power plants, especially in slow-flow rivers.
APA, Harvard, Vancouver, ISO, and other styles
23

Awg. Osman, Dygku Asmanissa, Norzanah Rosmin, Nor Shahida Hasan, Baharruddin Ishak, Aede Hatib Mustaamal@Jamal, and Mariyati Marzuki. "Savonius Wind Turbine Performances on Wind Concentrator." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 1 (March 1, 2017): 376. http://dx.doi.org/10.11591/ijpeds.v8.i1.pp376-383.

Full text
Abstract:
The air streams from the outlet of an air compressor can be used to generate electricity. For instance, if a micro-sized Vertical-Axis Wind-Turbine (VAWT) is installed towards the airflow, some amount of electricity can be generated before being stored in a battery bank. The research’s objectives are to design, fabricate and analyze the performance of Helical Savonius VAWT blade rotors, which is tested with and without using a wind concentrator. The Helical Savonius VAWT is tested at 0 cm without the concentrator, whereas the blade rotor is tested at concave-blade position when using the concentrator. The blade and the wind concentrator designs were based on the dimensions and the constant airflow of the air compressor. The findings suggested that the blade produced its best performance when tested using wind concentrator at concave-blade position in terms of angular speed (<em>ω</em>), tip speed ratio (<em>TSR</em>) and the generated electrical power (<em>P</em><em><sub>E</sub></em>). The findings concluded that the addition of wind concentrator increases the airflow which then provided better performances on the blades.
APA, Harvard, Vancouver, ISO, and other styles
24

Delbari, Seyed Hamid, Amir Nejat, Mohammad H. Ahmadi, Ali Khaleghi, and Marjan Goodarzi. "Numerical modeling of aeroacoustic characteristics of different savonius blade profiles." International Journal of Numerical Methods for Heat & Fluid Flow 30, no. 6 (June 19, 2019): 3349–69. http://dx.doi.org/10.1108/hff-12-2018-0764.

Full text
Abstract:
Purpose This study aims to carry out numerical modeling to predict aerodynamic noise radiation from four different Savonius rotor blade profile. Design/methodology/approach Incompressible unsteady reynolds-averaged navier-stokes (URANS) approach using gamma–theta turbulence model is conducted to obtain the time accurate turbulent flow field. The Ffowcs Williams and Hawkings (FW-H) acoustic analogy formulation is used for noise predictions at optimal tip speed ratio (TSR). Findings The mean torque and power coefficients are compared with the experimental data and acceptable agreement is observed. The total and Mono+Dipole noise graphs are presented. A discrete tonal component at low frequencies in all graphs is attributed to the blade passing frequency at the given TSR. According to the noise prediction results, Bach type rotor has the lowest level of noise emission. The effect of TSR on the noise level from the Bach rotor is investigated. A direct relation between angular velocity and the noise emission is found. Practical implications The savonius rotor is a type of vertical axis wind turbines suited for mounting in the vicinity of residential areas. Also, wind turbines wherein operation are efficient sources of tonal and broadband noises and affect the inhabitable environment adversely. Therefore, the acoustic pollution assessment is essential for the installation of wind turbines in residential areas. Originality/value This study aims to investigate the radiated noise level of four common Savonius rotor blade profiles, namely, Bach type, Benesh type, semi-elliptic and conventional. As stated above, numbers of studies exploit the URANS method coupled with the FW-H analogy to predict the aeroacoustics behavior of wind turbines. Therefore, this approach is chosen in this research to deal with the aeroacoustics and aerodynamic calculation of the flow field around the aforementioned Savonius blade profiles. The effect of optimal TSR on the emitted noise and the contribution of thickness, loading and quadrupole sources are of interest in this study.
APA, Harvard, Vancouver, ISO, and other styles
25

Kailash, Golecha, T. I. Eldho, and S. V. Prabhu. "Performance Study of Modified Savonius Water Turbine with Two Deflector Plates." International Journal of Rotating Machinery 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/679247.

Full text
Abstract:
Savonius rotor is a vertical axis rotor with simple in design and easy to fabricate at lower cost. The rotation of the rotor is due to the drag difference between the advancing blade and returning blade. Net driving force can be increased by reducing the reverse force on the returning blade or increasing the positive force on the advancing blade. Former can be realized by providing a flow obstacle to the returning blade and latter can be realized by concentrating the flow towards the advancing blade. The objective of the present work is to identify the optimal position of the deflector plate (on advancing blade side) placed upstream to the flow which would result in increase in power generated by the rotor. Tests are conducted to identify the optimum position of the deflector plate on the advancing blade side in the presence of a deflector plate on the returning blade side at its optimum position. Results suggest that two deflector plates placed at their optimal positions upstream to the flow increase the coefficient of power to 0.35. This is significantly higher than the coefficient of power of 0.14 observed for the rotor without deflector plates.
APA, Harvard, Vancouver, ISO, and other styles
26

Amiri, M., AR Teymourtash, and M. Kahrom. "Experimental and numerical investigations on the aerodynamic performance of a pivoted Savonius wind turbine." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 231, no. 2 (November 4, 2016): 87–101. http://dx.doi.org/10.1177/0957650916677428.

Full text
Abstract:
Savonius turbines have been the subject of various wind energy projects due to their good starting characteristics, easy installation, and independency of wind direction. However, the Savonius rotor suffers from low aerodynamic performance, which is mainly due to the adverse torque of the returning blade. A recently introduced design suggests using pivoted blades for the rotor to eliminate the negative torque of the returning blade. In this study, the aerodynamic performance of the newly proposed turbine has been investigated experimentally and numerically. The experimental measurements are performed in a subsonic open-jet type wind tunnel facility. The numerical simulations are performed using ANSYS-Fluent commercial software, by making use of the multiple reference frame model. The effects of the number of blades (3-, 4-, and 6-bladed) on the torque and power coefficients are examined in details, at several Reynolds numbers. Results show that the new rotor has no negative torque in one complete revolution and that the 3-bladed rotor has the best aerodynamic performance, in a manner that, it reaches a maximum power coefficient of 0.21 at TSR = 0.5. Although increasing the number of blades decreases the output torque oscillations, it also decreases the average power coefficient of the rotor. Results show that Reynolds number does not have a significant effect on the average power coefficient of the rotor in the studied range of 7.7 × 104 ≤ Re ≤ 1.2 × 105.
APA, Harvard, Vancouver, ISO, and other styles
27

Shikha, T. S. Bhatti, and D. P. Kothari. "Early Development of Modern Vertical and Horizontal Axis Wind Turbines: A Review." Wind Engineering 29, no. 3 (May 2005): 287–99. http://dx.doi.org/10.1260/030952405774354859.

Full text
Abstract:
This paper reviews the initial development of the design and operation of modern vertical and horizontal axis wind turbines, with the aim of comparing the development of the two types. Application in developing countries concentrates on the Savonius rotor. The review aims to record important early developments, including the years following the first oil crisis of 1973.
APA, Harvard, Vancouver, ISO, and other styles
28

Wicaksono, Yoga Arob. "Studi Komputasi: Pengaruh Desain Guide Vane Terhadap Performa dan Pola Aliran di Sekitar Turbin Angin Savonius." Jurnal Pendidikan Teknik Mesin Undiksha 8, no. 2 (August 1, 2020): 43. http://dx.doi.org/10.23887/jptm.v8i2.26856.

Full text
Abstract:
Turbin angin adalah salah satu alternatif untuk mengurangi beban listrik di wilayah perkotaan. Di wilayah perkotaan terdapat gedung bertingkat dengan jumlah yang cukup banyak. Sehingga menjadi lokasi yang tepat untuk aplikasi turbin angin sekaligus mengurangi beban listrik. Tipe turbin yang tepat untuk aplikasi gedung bertingkat adalah turbin angin sumbu vertikal (VAWT). Salah satu jenis VAWT adalah turbin Savonius. Turbin angin Savonius konvensional memiliki kinerja yang rendah seperti koefisien daya dan torsi yang rendah dibandingkan dengan turbin angin jenis lain. Ini terjadi karena aliran angin dapat menyebabkan tekanan negatif pada salah satu sisi sudu. Untuk mengatasi masalah ini, turbin angin Savonius konvensional dikombinasikan dengan guide vane. Tujuan dari penelitian ini adalah untuk mempelajari pengaruh guide vane terhadap performa dan karakteristik pola aliran sekitar turbin angin Savonius. Model numerik dihitung menggunakan persamaan Navier-Stokes dengan model turbulen k-ε standar. Analisa menggunakan software ANSYS-Fluent R15. Simulasi dilakukan pada arah angin yang berbeda, antara lain: 0o, 30o, 60o pada kecepatan angin 2 m/s. Hasil penelitian menunjukkan bahwa guide vane mampu menambah laju aliran udara yang menuju sudu turbin dan meningkatkan performa turbin angin Savonius sebesar 22,2%. Kata kunci: CFD, guide vane, performa, pola aliran, turbin angin SavoniusDaftar RujukanAkwa, J. V., Alves, G., & Petry, A. P. (2012). Discussion on the veri fi cation of the overlap ratio in fl uence on performance coef fi cients of a Savonius wind rotor using computational fl uid dynamics. 38, 141–149. https://doi.org/10.1016/j.renene.2011.07.013Akwa, J. V., Vielmo, H. A., & Petry, A. P. (2012). A review on the performance of Savonius wind turbines. Renewable and Sustainable Energy Reviews, 16(5), 3054–3064. https://doi.org/10.1016/j.rser.2012.02.056Alessandro, V. D., Montelpare, S., Ricci, R., & Secchiaroli, A. (2010). Unsteady Aerodynamics of a Savonius wind rotor : a new computational approach for the simulation of energy performance. Energy, 35(8), 3349–3363. https://doi.org/10.1016/j.energy.2010.04.021Chong, W. T., Fazlizan, A., Poh, S. C., Pan, K. C., Hew, W. P., & Hsiao, F. B. (2013). The design , simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane q. APPLIED ENERGY, 5–8. https://doi.org/10.1016/j.apenergy.2012.12.064Chong, W. T., Poh, S. C., Abdullah, N., Naghavi, M. S., & Pan, K. C. (2010). Vertical Axis Wind Turbine with Power-Augmentation-Guide-Vane for Urban High Rise Application 3 . Building integrated wind-solar hybrid energy generation system and rain water collector. (September), 1–6.Damak, a., Driss, Z., & Abid, M. S. (2013). Experimental investigation of helical Savonius rotor with a twist of 180?? Renewable Energy, 52, 136–142. https://doi.org/10.1016/j.renene.2012.10.043Hasan, M. H., Muzammil, W. K., Mahlia, T. M. I., Jannifar, A., & Hasanuddin, I. (2012). A review on the pattern of electricity generation and emission in Indonesia from 1987 to 2009. Renewable and Sustainable Energy Reviews, 16(5), 3206–3219. https://doi.org/10.1016/j.rser.2012.01.075Mohamed, M. H., Janiga, G., Pap, E., & Thévenin, D. (2010). Optimization of Savonius turbines using an obstacle shielding the returning blade. Renewable Energy, 35(11), 2618–2626. https://doi.org/10.1016/j.renene.2010.04.007Nobile, R., Vahdati, M., & Barlow, J. F. (2013). Unsteady flow simulation of a vertical axis wind turbine : a two-dimensional study. (July), 1–10.Pope, K., Rodrigues, V., Doyle, R., Tsopelas, a., Gravelsins, R., Naterer, G. F., & Tsang, E. (2010). Effects of stator vanes on power coefficients of a zephyr vertical axis wind turbine. Renewable Energy, 35(5), 1043–1051. https://doi.org/10.1016/j.renene.2009.10.012Ricci, R., Romagnoli, R., Montelpare, S., & Vitali, D. (2016). Experimental study on a Savonius wind rotor for street lighting systems q. Applied Energy, 161, 143–152. https://doi.org/10.1016/j.apenergy.2015.10.012Roy, S., & Saha, U. K. (2015). Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Applied Energy, 137, 117–125. https://doi.org/10.1016/j.apenergy.2014.10.022Soo, K., Ik, J., Pan, J., & Ryu, K. (2015). Effects of end plates with various shapes and sizes on helical Savonius wind turbines. Renewable Energy, 79, 167–176. https://doi.org/10.1016/j.renene.2014.11.035Tartuferi, M., D’Alessandro, V., Montelpare, S., & Ricci, R. (2015). Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems. Energy, 79, 371–384. https://doi.org/10.1016/j.energy.2014.11.023Walker, S. L. (2011). Building mounted wind turbines and their suitability for the urban scale — A review of methods of estimating urban wind resource. Energy & Buildings, 43(8), 1852–1862. https://doi.org/10.1016/j.enbuild.2011.03.032
APA, Harvard, Vancouver, ISO, and other styles
29

Menet, J. L. "A double-step Savonius rotor for local production of electricity: a design study." Renewable Energy 29, no. 11 (September 2004): 1843–62. http://dx.doi.org/10.1016/j.renene.2004.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Metheny, Boris, Rosyida Permatasari, and Muhammad Sjahrul Annas. "DESIGN MODELING OF SAVONIUS-DARRIEUS TURBINE FOR SEA CURRENT ELECTRIC POWER PLANT." SINERGI 25, no. 1 (November 11, 2020): 27. http://dx.doi.org/10.22441/sinergi.2021.1.004.

Full text
Abstract:
Turbines convert the kinetic energy of ocean currents into electrical energy produced by the sea current electric power plant. This study aims to design a power generator turbine modeling that is carried out using the Computational Fluid Dynamic (CFD) approach by comparing the geometric performance based on the angle of attack and the Tip Speed Ratio (TSR) value of the Savonius-Darrieus Turbine. Having done several trials and errors during collecting the data, the value of the TSR 1.427; 2.853; 4.28; 5; and 5.7 is proposed. Here, the NACA 0018 series has been adopted on the current design of Savonius-Darrieus Turbine. The turbine has three blades, length of the span 357 mm, the diameter of turbine 428 mm, and length of the hydrofoil chord 40 mm. Effect of various angle of attacks from 0°up to 10° has been taken into account in the computational to obtain the coefficient power for each variation. The results revealed that the turbine with an angle of attack of 5°and TSR value of 5.0 has higher power coefficient value by 0.469 as compared with its angle of attack of 10°. It should be noted here that the increase of the angle of attack up to 10° resulted in a significant reduction of the power coefficient value of 0.206 as the value of TSR about 4.28. The addition of the Savonius Rotor results in increasing efficiency of the turbine for sea current applications.
APA, Harvard, Vancouver, ISO, and other styles
31

Roy, Sukanta, and Ujjwal K. Saha. "Review of experimental investigations into the design, performance and optimization of the Savonius rotor." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 227, no. 4 (May 21, 2013): 528–42. http://dx.doi.org/10.1177/0957650913480992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Maldonado, R. D., E. Huerta, J. E. Corona, O. Ceh, A. I. León-Castillo, M. P. Gómez-Acosta, and E. Mendoza-Andrade. "Design, Simulation and Construction of a Savonius Wind Rotor for Subsidized Houses in Mexico." Energy Procedia 57 (2014): 691–97. http://dx.doi.org/10.1016/j.egypro.2014.10.224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Laws, Praveen, Rajagopal V. Bethi, Pankaj Kumar, and Santanu Mitra. "Improved design of Savonius rotor for green energy production from moving Singapore metropolitan rapid transit train inside tunnel." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 7 (June 27, 2018): 2426–41. http://dx.doi.org/10.1177/0954406218784620.

Full text
Abstract:
Nonrenewable fossil fuels are finite resources that will ultimately deplete in near future. Nature sheds colossal amount of renewable wind energy but humans harvest a morsel. Taking this into account a numerical study is proposed on wind energy harvesting from a speeding subway train. Subways trains generate a remarkable gust of wind that can be transferred to useful electrical energy on daily basis. To this aim, a numerical analysis is modeled by placing Savonius wind turbine in a subway tunnel to crop the wind energy produced from the speeding train. The passage of train in the tunnel generates very high velocity slipstreams along the length of the tunnel. The slipstream phenomena develop a boundary layer regime that will be absorbed by the Savonius wind turbine to self-start and generate power. In the present study, a two-dimensional numerical simulation with modified turbine blade design is carried out using open source tool OpenFOAM® with PimpleDyMFoam solver coupled with six degrees of freedom mesh motion solver sixDoFRigidBodyMotion and k–ɛ turbulence modeling, to measure the amount of torque predicted by the rotor from the gust of wind produced by the speeding train in the tunnel. Being a self-start turbine with no yaw mechanism required the turbine collects air from any direction and converts it into useful power.
APA, Harvard, Vancouver, ISO, and other styles
34

Moazam Sheikh, Haris, Zeeshan Shabbir, Hassan Ahmed, Muhammad Hamza Waseem, and Muhammad Zubair Sheikh. "Computational fluid dynamics analysis of a modified Savonius rotor and optimization using response surface methodology." Wind Engineering 41, no. 5 (May 23, 2017): 285–96. http://dx.doi.org/10.1177/0309524x17709732.

Full text
Abstract:
This article aims to present a two-dimensional parametric analysis of a modified Savonius wind turbine using computational fluid dynamics. The effects of three independent parameters of the rotor, namely, shape factor, overlap ratio, and tip speed ratio on turbine performance were studied and then optimized for maximum coefficient of performance using response surface methodology. The rotor performance was analyzed over specific domains of the parameters under study, and three-variable Box-Behnken design was used for design of experiment. The specific parametric combinations as per design of experiment were simulated using ANSYS Fluent®, and the response variable, coefficient of performance (Cp), was calculated. The sliding mesh model was utilized, and the flow was simulated using Shear Stress Transport (SST) k − ω model. The model was validated using past experimental results and found to predict parametric effects accurately. Minitab® and ReliaSoft DOE++® were used to develop regression equation and find the optimum combination of parameters for coefficient of performance over the specified parametric domains using response surface methodology.
APA, Harvard, Vancouver, ISO, and other styles
35

Rochman, Sagita. "DESIGN OF VERTICAL AXIS SAVONIUS WINDMILL FOR GENERATING ELECTRICITY USING PERMANENT MAGNET." Tibuana 3, no. 01 (January 31, 2020): 61–66. http://dx.doi.org/10.36456/tibuana.3.01.2206.61-66.

Full text
Abstract:
At present the use of wind energy in Indonesia is still relatively low, but has enormous potential. One reason is because the average wind speed in the territory of Indonesia is classified as low wind speed, which ranges from 3 m / s to 5 m / s making it difficult to produce electrical energy on a large scale. However, the wind potential in Indonesia is available almost all year long, making it possible to develop small-scale power generation systems. Innovations in modifying windmills need to be developed so that in conditions of low wind speeds can produce electrical energy. In this research, a prototype was developed by designing a vertical axis windmill power plant model Savonius using a permanent magnet generator, which can produce optimal electrical energy by utilizing relatively low wind speeds.From the generator test it was found that with a rotor rotation of 50 rpm up to 500 rpm can produce an electrical voltage of 0.02V to 10V and an electric current of 0.60A to 4.53A.
APA, Harvard, Vancouver, ISO, and other styles
36

Wahyudi, Bagus, Sudjito Soeparman, and H. W. M. Hoeijmakers. "Optimization Design of Savonius Diffuser Blade with Moving Deflector for Hydrokınetıc Cross Flow Turbıne Rotor." Energy Procedia 68 (April 2015): 244–53. http://dx.doi.org/10.1016/j.egypro.2015.03.253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

USHIYAMA, Izumi, Hiroshi NAGAI, and Jinkichi SHINODA. "Experimentally determining the optimum design configuration for savonius rotors." Transactions of the Japan Society of Mechanical Engineers Series B 52, no. 480 (1986): 2973–82. http://dx.doi.org/10.1299/kikaib.52.2973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

USHIYAMA, Izumi, Hiroshi NAGAI, and Jinkichi SHINODA. "Experimentally Determining the Optimum Design Configuration for Savonius Rotors." Bulletin of JSME 29, no. 258 (1986): 4130–38. http://dx.doi.org/10.1299/jsme1958.29.4130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sobczak, Krzysztof, Damian Obidowski, Piotr Reorowicz, and Emil Marchewka. "Numerical Investigations of the Savonius Turbine with Deformable Blades." Energies 13, no. 14 (July 19, 2020): 3717. http://dx.doi.org/10.3390/en13143717.

Full text
Abstract:
Savonius wind turbines are characterized by various advantages such as simple design, independence of wind direction, and low noise emission, but they suffer from low efficiency. Numerous investigations were carried out to face this problem. In the present paper, a new idea of the Savonius turbine with a variable geometry of blades is proposed. Its blades, made of elastic material, were continuously deformed during the rotor revolution to increase a positive torque of the advancing blade and to decrease a negative torque of the returning blade. In order to assess the turbine aerodynamic performance, a two-dimensional numerical model was developed. The fluid-structure interaction (FSI) method was applied where blade deformations were defined by computational solid mechanics (CSM) simulations, whereas computational fluid dynamics (CFD) simulations allowed for transient flow prediction. The influence of the deformation magnitude and the position of maximally deformed blades with respect to the incoming wind direction were studied. The aerodynamic performance increased with an increase in the deformation magnitude. The power coefficient exceeded Cp = 0.30 for the eccentricity magnitude of 10% and reached 0.39 for the highest magnitude under study. It corresponded to 90% improvement in comparison to Cp = 0.21 in the case of the fixed-shape Savonius turbine.
APA, Harvard, Vancouver, ISO, and other styles
40

Hikmat, Yusiran, and Erwin Erwin. "STUDI EKSPERIMEN TEKNOLOGI PEMBANGKIT LISTRIK TENAGA ARUS LAUT (PLTAL) MENGGUNAKAN SAVONIUS BACH ROTOR." Komunikasi Fisika Indonesia 16, no. 2 (October 31, 2019): 75. http://dx.doi.org/10.31258/jkfi.16.2.75-80.

Full text
Abstract:
Design and experiment of ocean current power generation system have been carried out using the Bach Savonius rotor. In this research, the influence of the velocity of ocean currents, the number of turbine blades, and the blade arc angle of the generator output power are studied. The results showed that the turbine output power is strongly influenced by the velocity of ocean currents where the velocity values of ocean currents varied in the range 0,63-1,98 m/sec. The maximum elctrical power of the turbine occurs at a current velocity of 1,98 m/sec of 26,88 Watts. The number of turbine blades has a significant effect on turbine output power. The turbine reaches maximum power is found in the rotor with a number of 3 blades with a power coefficient of 0,1176 on the tip speed ratio of 0,359. The blade arc angle is varied at angles of 90˚, 135˚ and 165˚. The blade arc angle 135˚ gives the best performance with a power coefficient of 0,102 on the tip speed ratio of 0,298.
APA, Harvard, Vancouver, ISO, and other styles
41

Ferroudji, Fateh, Cherif Khelifi, Farouk Meguellati, and Khaled Koussa. "Design and Static Structural Analysis of a 2.5 kW Combined Darrieus-Savonius Wind Turbine." International Journal of Engineering Research in Africa 30 (May 2017): 94–99. http://dx.doi.org/10.4028/www.scientific.net/jera.30.94.

Full text
Abstract:
Modeling and simulation of mechanical structures in development phase are fundamental to optimize and improve the stability and reliability of the final product as well as to reduce the cost of prototyping and testing. Wind turbines are subject to critical loading to the centrifugal force due to wind speed and gravitational force. The present study discusses three-dimensional numerical simulations of combined Darrieus-Savonius wind turbine D-SWT for applications in urban and isolated areas for lighting, pumping water, etc. The Darrieus turbine is used to produce wind power and the Savonius rotor to start the system. Finite Element Analysis (FEA) using SolidWorks 2015 is employed to generate the geometry of the structure and SolidWorks Simulation to investigate the stability and reliability static on the structure of the D-WST built by two types of material of the blade Galvanized Steel (GS) and Aluminum alloys 1060-H18 (ALU). Mechanical parameter of the structure are calculated for critical loading conditions, including the gravity and wind pressure loading due to the wind speed of 23m/s. Simulations results indicate no structural failure is predicted for all components of the D-SWT for both materials used according to Von Mises criterion stresses and the factors of safety of the most fragile material are greater than (the unity) 1. The maximum displacements found (3.84 & 6.81mm), occurred at the tip blades (free ends levels). These displacements are accepted relatively to the structure size.
APA, Harvard, Vancouver, ISO, and other styles
42

Chua, Bih Lii, Mohd Suffian Misaran, Yan Yan Farm, Mizanur Rahman, and Benjoe Eldana Barahim. "Development of Mixed Vertical Axis Wind Turbine (MVAWT) for Low Wind Condition." Applied Mechanics and Materials 660 (October 2014): 811–15. http://dx.doi.org/10.4028/www.scientific.net/amm.660.811.

Full text
Abstract:
Small-scaled renewable energy generation such as micro-hydro and domestic solar panel has become the recent trend of research in order to achieve sustainable energy generation and to eliminate the reliance of geographical selection and large farm area. As for the case of wind energy, a wind turbine that can operate at low wind condition are desirable. This paper presents a mixed design for Vertical Axis Wind Turbine comprises of Savonius and Darrieus rotors, being assembled together as a single rotor turbine. The mixed wind turbine model (MVAWT) was fabricated and tested in our lab as prove of concept. Experiments conducted on 5 MVAWT’s configurations and being compared to a standalone Darrieus turbine with +3 degree pitch angle, showed promising result in lowering the self-start speed of the Darrieus turbine. It was observed that all the positive pitch angle MVAWTs has started to rotate at lower wind speed (about 1.8 m/s) while the standalone Darrieus turbine was only started to rotate at wind speeds more than 3.0 m/s. However, the lower self-start were also being compensated by lower turbine rotational speed. With the low self-start speed in the MVAWT, it will enable the wind energy capture for a longer period of time at a low wind condition site. This development should lead to an interesting research on optimizing the mixture of Savonius and Darrieus turbine for a localized low wind speed conditions in the future.
APA, Harvard, Vancouver, ISO, and other styles
43

Mercado-Colmenero, Jorge Manuel, Miguel Angel Rubio-Paramio, Francisca Guerrero-Villar, and Cristina Martin-Doñate. "A numerical and experimental study of a new Savonius wind rotor adaptation based on product design requirements." Energy Conversion and Management 158 (February 2018): 210–34. http://dx.doi.org/10.1016/j.enconman.2017.12.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Netshimbupfe, Adivhaho Frene, Mohame Almojtba Hamid Ali Abdalla, Binnur Demir Erdem, Youssef Kassem, and Huseyin Camur. "Solid Work simulation as a virtual laboratory concept for supporting student learning of mechanical engineering." New Trends and Issues Proceedings on Humanities and Social Sciences 7, no. 3 (December 1, 2020): 53–60. http://dx.doi.org/10.18844/prosoc.v7i3.5233.

Full text
Abstract:
Solid Works is a complete 3D CAD design solution, providing the product design team with all the mechanical designs, verifications, motion simulations, data management and communication tools that they need. This article presents an example of the design and analysis of the Savonius rotor blade to generate 10kW power output in the field of Mechanical Engineering (ME) using the Solid Work package (SW-P). The study was structured as an educational design experiment, which used the SW-P in teaching some ME courses in the ME degree programme at Near East University. An experiment of two equivalent groups was designed, one of the groups was the experimental group and the other was the control group; each of them consisted of five students. The same project was given to the first (the experimental group) and second (the control group) groups using SW-P and the traditional method: textbook-based numerical methods, respectively. The SW-P proved to be an efficient method for supporting the students’ ability to improve and understand the concept of some selected courses. The results show that students used SW-P to demonstrate a deeper learning and understanding of the course compared to the traditional method. Keywords: Educational design experiment, educational technology, mechanical engineering, Solid Work package.
APA, Harvard, Vancouver, ISO, and other styles
45

Roy, Sukanta, and Ujjwal K. Saha. "Review on the numerical investigations into the design and development of Savonius wind rotors." Renewable and Sustainable Energy Reviews 24 (August 2013): 73–83. http://dx.doi.org/10.1016/j.rser.2013.03.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Driss, Zied, Olfa Mlayeh, Slah Driss, Dorra Driss, Makram Maaloul, and Mohamed Salah Abid. "Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors." Energy 89 (September 2015): 708–29. http://dx.doi.org/10.1016/j.energy.2015.06.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Altan, Burçin Deda, and Mehmet Atılgan. "The use of a curtain design to increase the performance level of a Savonius wind rotors." Renewable Energy 35, no. 4 (April 2010): 821–29. http://dx.doi.org/10.1016/j.renene.2009.08.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Payambarpour, S. Abdolkarim, and Amir F. Najafi. "Experimental and numerical investigations on a new developed Savonius turbine for in-pipe hydro application." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, no. 2 (June 5, 2019): 195–210. http://dx.doi.org/10.1177/0957650919854583.

Full text
Abstract:
Due to limitation of energy resources, a large body of research activities has been turned to investigate potential alternative avenues to supply energy. In this regard, the renewable sources, which can provide the sustainable and cleaner energy production, have increasingly become attractive. Hydropower has the highest proportion of the renewable energy sources. Availability and high efficiency are the undeniable advantages of the hydro potentials. In this paper, hydro-energy extraction from pipelines by a new designed vertical axis turbine is studied experimentally and numerically. The turbine scheme is inspired by the Savonius rotor turbine, which includes two semicircular blades that is built by the 3D printer and installed vertically in a 100 mm transparent pipe. A sloped block is used just before the turbine blades to concentrate the flow and enhance the efficiency. In experiments, flow rate ranges from 2.7 × 10−3 m3/s to 7.3 × 10−3 m3/s and pressure drop that occurs through the turbine is less than 10.5 kPa. Numerical results show an acceptable agreement with experiments and assure that numerical method is reliable. Following successful validation, numerical studies are expanded, in order to study more details on the new turbine performance. According to the numerical results, the characteristic curves of the new turbine are depicted and described. In numerical simulation, for different turbine rotational speeds, the flow rate and the pressure difference examined are up to 12 × 10−3 m3/s and 30 kPa, respectively. Using the obtained results, investigations and studies are performed to describe turbine behavior under the effects of changing the clearance and flow field conditions. Finally, cyclic variations of turbine flow rate, torque and minimum pressure on the turbine blade are described by velocities streamlines. This approach might preform design improving for such a turbine.
APA, Harvard, Vancouver, ISO, and other styles
49

Shaughnessy, B. M., and S. D. Probert. "Partially-blocked savonius rotor." Applied Energy 43, no. 4 (January 1992): 239–49. http://dx.doi.org/10.1016/0306-2619(92)90024-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sahim, Kaprawi, Kadafi Ihtisan, Dyos Santoso, and Riman Sipahutar. "Experimental Study of Darrieus-Savonius Water Turbine with Deflector: Effect of Deflector on the Performance." International Journal of Rotating Machinery 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/203108.

Full text
Abstract:
The reverse force on the returning blade of a water turbine can be reduced by setting a deflector on the returning blade side of a rotor. The deflector configuration can also concentrate the flow which passes through the rotor so that the torque and the power of turbine can be considerably increased. The placing of Savonius in Darrieus rotor is carried out by setting the Savonius bucket in Darrieus rotor at the same axis. The combination of these rotors is also called a Darrieus-Savonius turbine. This rotor can improve torque of turbine. Experiments are conducted in an irrigation canal to find the performance characteristics of presence of deflector and Savonius rotor in Darrieus-Savonius turbine. Results conclude that the single deflector plate placed on returning blade side increases the torque and power coefficient. The presence of Savonius rotor increases the torque at a lower speed, but the power coefficient decreases. The torque and power coefficient characteristics depend on the aspect ratio of Savonius rotor.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography