Academic literature on the topic 'Detection of road lane lines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Detection of road lane lines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Detection of road lane lines"
Jung, Jiyoung, and Sung-Ho Bae. "Real-Time Road Lane Detection in Urban Areas Using LiDAR Data." Electronics 7, no. 11 (October 26, 2018): 276. http://dx.doi.org/10.3390/electronics7110276.
Full textHermosillo-Reynoso, Fernando, Deni Torres-Roman, Jayro Santiago-Paz, and Julio Ramirez-Pacheco. "A Novel Algorithm Based on the Pixel-Entropy for Automatic Detection of Number of Lanes, Lane Centers, and Lane Division Lines Formation." Entropy 20, no. 10 (September 21, 2018): 725. http://dx.doi.org/10.3390/e20100725.
Full textHe, Peng, and Feng Gao. "Study on Lane Detection Based on Computer Vision." Advanced Materials Research 765-767 (September 2013): 2229–32. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.2229.
Full textFarag, Wael. "Real-Time Detection of Road Lane-Lines for Autonomous Driving." Recent Advances in Computer Science and Communications 13, no. 2 (June 3, 2020): 265–74. http://dx.doi.org/10.2174/2213275912666190126095547.
Full textHuang, Qiao, and Jinlong Liu. "Practical limitations of lane detection algorithm based on Hough transform in challenging scenarios." International Journal of Advanced Robotic Systems 18, no. 2 (March 1, 2021): 172988142110087. http://dx.doi.org/10.1177/17298814211008752.
Full textLi, Qingquan, Jian Zhou, Bijun Li, Yuan Guo, and Jinsheng Xiao. "Robust Lane-Detection Method for Low-Speed Environments." Sensors 18, no. 12 (December 4, 2018): 4274. http://dx.doi.org/10.3390/s18124274.
Full textKumar H D*, Arun, and Prabhakar C J. "Detection and Tracking of Lane Crossing Vehicles in Traffic Video for Abnormality Analysis." International Journal of Engineering and Advanced Technology 10, no. 4 (April 30, 2021): 1–9. http://dx.doi.org/10.35940/ijeat.c2141.0410421.
Full textCao, Song, Song, Xiao, and Peng. "Lane Detection Algorithm for Intelligent Vehicles in Complex Road Conditions and Dynamic Environments." Sensors 19, no. 14 (July 18, 2019): 3166. http://dx.doi.org/10.3390/s19143166.
Full textFan, Chao, Li Long Hou, Shuai Di, and Jing Bo Xu. "Research on the Lane Detection Algorithm Based on Zoning Hough Transformation." Advanced Materials Research 490-495 (March 2012): 1862–66. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.1862.
Full textLiu, Dongfang, Yaqin Wang, Tian Chen, and Eric T. Matson. "Accurate Lane Detection for Self-Driving Cars: An Approach Based on Color Filter Adjustment and K-Means Clustering Filter." International Journal of Semantic Computing 14, no. 01 (March 2020): 153–68. http://dx.doi.org/10.1142/s1793351x20500038.
Full textDissertations / Theses on the topic "Detection of road lane lines"
Borkar, Amol. "Multi-viewpoint lane detection with applications in driver safety systems." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/43752.
Full textPaula, Maurício Braga de. "Visão computacional para veículos inteligentes usando câmeras embarcadas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/122511.
Full textThe use of driver assistance systems (DAS) based on computer vision has helped considerably in reducing accidents and consequently aid in better driving. These systems primarily use an embedded video camera (usually fixed on the windshield) for the purpose of extracting information about the highway and assisting the driver in a better handling process. Small distractions or loss of concentration may be sufficient for an accident to occur. This work presents the development of algorithms to extract information about traffic signs on highways. More specifically, this work will tackle a camera calibration algorithm that exploits the geometry of the road track, algorithms for the extraction of road marking paint (lane markings) and detection and identification of vertical traffic signs. Experimental results indicate that the proposed method for obtaining the extrinsic parameters achieve good results with errors of less than 0:5 . The average error in our experiments, related to the camera height, were around 12 cm (relative error around 10%). Global accuracy for the detection and classification of road lane markings (dashed, solid, dashed-solid, solid-dashed or double solid) were over 96%. Finally, our camera calibration algorithm was used to reduce the search region and to define the scale of a slidingwindow detector for vertical traffic signs. The use of the calibrated camera for the detection of traffic signs contributes to define the scanning area of the sliding window and perform a search for signs on a unique scale for each region of interest, determined by the distance to the vehicle. The results reported a global classification rate of approximately 99% for the no overtaking sign, considering a limited of 962 samples.
Vigren, Malcolm, and Linus Eriksson. "End-to-End Road Lane Detection and Estimation using Deep Learning." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157645.
Full textFERHATOVIC, SANEL. "Comparative study on road and lane detection inmixed criticality embedded systems." Thesis, KTH, Mekatronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217523.
Full textEn stor utmaning för avancerade förarstödsystem (ADAS) är problemet med uppfattning av miljön runt omkring. En faktor som gör ADAS svårt att implementera är den stora mängd olika förhållanden som måste tas hand om. De största källorna till olikheter är utseendet på körfältet och vägen, dåliga siktförhållanden samt otydliga bilder. En granskning av nuvarande algoritmer för körfältsdetektering har utförts och baserat på den har en körfältsdetekteringsalgoritm utvecklats och implementerats på ett blandkritiskt system. Avhandlingen är en del av ett större grupprojekt bestående av fem mastersstudenter som ska skapa en demonstrator för autonom konvojkörning. Den slutgiltiga körfältsdetekteringsalgoritmen består av förbehandlingssteg, där bilden konverteras till gråskala och allt utom intresseområdet är bortklippt. OpenCV, ett bibliotek för bildbehandling har använts för kantdetektering och houghtransformation. En algoritm som jämför körfältets mittpunkt och riktning med fordonets faktiska position och riktning har utvecklats och används i experiment för kontroll av fordonet. Körfältsdetekteringsalgoritmen har implementeras på en Raspberry Pi som kommunicerar med en blandkritisk plattform genom UART. Demo-fordonet kan uppnå en uppmätt hastighet på 3,5 m/s med pålitlig väghållning med den utvecklade algoritmen. Det verkar som att flaskhalsen är kontroll av fordonet i sidled och inte körfältsdetektering, ytterligare arbete bör fokusera på kontroll av fordonet och eventuellt utöka synfältet för att detektera kurvor i ett tidigare skede.
Chahal, Ashwani. "In Situ Detection of Road Lanes Using Raspberry Pi." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7051.
Full textMcMichael, Scott Thomas. "Lane Detection for DEXTER, an Autonomous Robot, in the Urban Challenge." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1201273995.
Full textChen, Yue. "A Novel Lightweight Lane Departure Warning System Based on Computer Vision for Improving Road Safety." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42125.
Full textFeng, Zhaofei [Verfasser], and W. [Akademischer Betreuer] Wiesbeck. "Lane and Road Marking Detection with a High Resolution Automotive Radar for Automated Driving / Zhaofei Feng ; Betreuer: W. Wiesbeck." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1194061818/34.
Full textZacpal, Michal. "Monitorování dopravní situace s využitím Raspberry PI." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221265.
Full textChen, Jerome Jianrong, and 陳建榕. "Lane Detection for Channelizing Lines." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/843n23.
Full text國立交通大學
電控工程研究所
107
In this thesis we consider one of challenge cases in a lane detection system, which is channelizing line, and propose an efficient method to not only keep the pixels belonging to the lane located on the channelizing line, but also detect and model the lanes which were filtered from the observation. Channelizing lines are used to guide drivers where travel in the same direction for permitting on both sides, such as entrance and exit ramps. Channelizing line usually has same intensity with the lane, but has pavement markings, solid white lines with wide diagonal lines or chevrons within two channelizing lines, which are usually influence the detection result in several previous work. The experiments show that the proposal has a good performance even passing through several channelizing lines. While passing through single channelizing line zone, the average accuracy can reach to 91.11%. Experiments show that our approach reaches competitive performances on channelizing lines.
Books on the topic "Detection of road lane lines"
Kopf, Jaime. Reflectivity of pavement markings: Analysis of retroreflectivity degradation curves. [Olympia, Wash.]: Washington State Dept. of Transportation, 2004.
Find full textDeer, Randall. Inlaid traffic lane lines: I-90, Edgewick Road to Hyak : post construction/annual report, Experimental Feature WA 86-13. [Olympia, Wash.?]: Washington State Dept. of Transportation, Planning, Research and Public Transportation Division in cooperation with the U.S. Dept. of Transportation, Federal Highway Administration, 1989.
Find full textThrush, M. J. Assessing passing opportunities: Literature review. Wellington, N.Z: Transit New Zealand, 1996.
Find full textToro, Guillermo del, Celso García, Bertha Navarro, and Alejandro Springall. La delgada línea amarilla. 2015.
Find full textBook chapters on the topic "Detection of road lane lines"
Du, Huan, Zheng Xu, and Yong Ding. "The Fast Lane Detection of Road Using RANSAC Algorithm." In Advances in Intelligent Systems and Computing, 1–7. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67071-3_1.
Full textŚlot, Krzysztof, Michał Strzelecki, Agnieszka Krawczyńska, and Maciej Polańczyk. "Road Lane Detection with Elimination of High-Curvature Edges." In Computer Vision and Graphics, 33–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02345-3_4.
Full textLiu, Weirong, and Shutao Li. "An Effective Lane Detection Algorithm for Structured Road in Urban." In Intelligent Science and Intelligent Data Engineering, 759–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36669-7_92.
Full textXiao, Jinsheng, Li Luo, Yuan Yao, Wentao Zou, and Reinhard Klette. "Lane Detection Based on Road Module and Extended Kalman Filter." In Image and Video Technology, 382–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75786-5_31.
Full textPark, Hyunhee. "Robust Road Lane Detection for High Speed Driving of Autonomous Vehicles." In Advances in Intelligent Systems and Computing, 256–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15035-8_24.
Full textPrusty, Pankaj, and Bibhuprasad Mohanty. "A Framework for Real-Time Lane Detection Using Spatial Modelling of Road Surfaces." In Lecture Notes in Networks and Systems, 135–40. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2774-6_17.
Full textLi, Tianyi, Ming Yang, Xiaojun Xu, Xiang Zhou, and Chunxiang Wang. "A Lane Change Detection and Filtering Approach for Precise Longitudinal Position of On-Road Vehicles." In Intelligent Autonomous Systems 14, 897–907. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48036-7_65.
Full textJha, Pooja, and K. Sridhar Patnaik. "Self-Driving Cars." In Handbook of Research on Emerging Trends and Applications of Machine Learning, 490–507. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9643-1.ch023.
Full textTownsend, Sylvia. "The Fast Lane: Sex, Drugs, and Rock ’n’ Roll Stars." In Bumpy Road, 84–95. University Press of Mississippi, 2019. http://dx.doi.org/10.14325/mississippi/9781496804143.003.0005.
Full textXing, Yang, Chen Lv, and Dongpu Cao. "Design of Integrated Road Perception and Lane Detection System for Driver Intention Inference." In Advanced Driver Intention Inference, 77–98. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-819113-2.00004-x.
Full textConference papers on the topic "Detection of road lane lines"
Rakotondrajao, Fabien, and Kharittha Jangsamsi. "Road Boundary Detection for Straight and Curved Lane Lines." In AICCC 2019: 2019 2nd Artificial Intelligence and Cloud Computing Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3375959.3375989.
Full textFarag, Wael, and Zakaria Saleh. "Road Lane-Lines Detection in Real-Time for Advanced Driving Assistance Systems." In 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). IEEE, 2018. http://dx.doi.org/10.1109/3ict.2018.8855797.
Full textRakotondrajao, Fabien, and Kharittha Jangsamsi. "Road Boundary Detection for Straight Lane Lines Using Automatic Inverse Perspective Mapping." In 2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). IEEE, 2019. http://dx.doi.org/10.1109/ispacs48206.2019.8986330.
Full textWang, Jiannan, Hongbin Ma, Xinghong Zhang, and Xiaomeng Liu. "Detection of Lane Lines on Both Sides of Road Based on Monocular Camera." In 2018 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2018. http://dx.doi.org/10.1109/icma.2018.8484630.
Full textLiu, Shiwang, Linhong Lu, Xunyu Zhong, and Jianping Zeng. "Effective Road Lane Detection and Tracking Method Using Line Segment Detector." In 2018 37th Chinese Control Conference (CCC). IEEE, 2018. http://dx.doi.org/10.23919/chicc.2018.8482552.
Full textWang, Zaiying, Ying Fan, and Hao Zhang. "Lane-line Detection Algorithm for Complex Road Based on OpenCV." In 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2019. http://dx.doi.org/10.1109/imcec46724.2019.8983919.
Full textYasui, Nobuhiko, Atsushi Iisaka, and Noboru Nomura. "White Road Line Recognition Using Lane Region Extraction and Line Edge Detection." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/981167.
Full textLi, Yongfu, and Zhanji Yang. "Progressive Probabilistic Hough Transform Based Nighttime Lane Line Detection for Micro-Traffic Road." In 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2018. http://dx.doi.org/10.1109/cyber.2018.8688188.
Full textSultana, Samia, and Boshir Ahmed. "Robust Nighttime Road Lane Line Detection using Bilateral Filter and SAGC under Challenging Conditions." In 2021 IEEE 13th International Conference on Computer Research and Development (ICCRD). IEEE, 2021. http://dx.doi.org/10.1109/iccrd51685.2021.9386516.
Full textTan, Yin, and Bassem Hassan. "A Concept of Camera Test-Bench for Testing Camera Based Advanced Driver Assistance Systems." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12996.
Full text