Journal articles on the topic 'Detonation wave engines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Detonation wave engines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pandey, K. M., and Pinku Debnath. "Review on Recent Advances in Pulse Detonation Engines." Journal of Combustion 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/4193034.
Full textWang, Yuhui, Wenyou Qiao, and JialingLe. "Combustion Characteristics in Rotating Detonation Engines." International Journal of Aerospace Engineering 2021 (March 13, 2021): 1–17. http://dx.doi.org/10.1155/2021/8839967.
Full textBatista, Armani, Mathias C. Ross, Christopher Lietz, and William A. Hargus. "Descending Modal Transition Dynamics in a Large Eddy Simulation of a Rotating Detonation Rocket Engine." Energies 14, no. 12 (2021): 3387. http://dx.doi.org/10.3390/en14123387.
Full textPrisacariu, Vasile, Constantin Rotaru, Ionică Cîrciu, and Mihai Niculescu. "Numerical simulation and performances evaluation of the pulse detonation engine." MATEC Web of Conferences 234 (2018): 01001. http://dx.doi.org/10.1051/matecconf/201823401001.
Full textJackson, S. I., and J. E. Shepherd. "Toroidal Imploding Detonation Wave Initiator for Pulse Detonation Engines." AIAA Journal 45, no. 1 (2007): 257–70. http://dx.doi.org/10.2514/1.24662.
Full textHutchins, T. E., and M. Metghalchi. "Energy and Exergy Analyses of the Pulse Detonation Engine." Journal of Engineering for Gas Turbines and Power 125, no. 4 (2003): 1075–80. http://dx.doi.org/10.1115/1.1610015.
Full textEbrahimi, Houshang B., and Charles L. Merkle. "Wave Reverberations in Multitube Pulse Detonation Engines." Journal of Propulsion and Power 24, no. 2 (2008): 345–52. http://dx.doi.org/10.2514/1.32162.
Full textLangston, Lee S. "Detonation Gas Turbines." Mechanical Engineering 135, no. 12 (2013): 50–54. http://dx.doi.org/10.1115/1.2013-dec-4.
Full textValorani, M., M. Di Giacinto, and C. Buongiorno. "Performance prediction for oblique detonation wave engines (odwe)." Acta Astronautica 48, no. 4 (2001): 211–28. http://dx.doi.org/10.1016/s0094-5765(00)00161-2.
Full textKASAHARA, Jiro, Takakage ARAI, Kouki TAKAZAWA, and Akiko MATSUO. "721 Research and Development of Detonation Wave Engines." Proceedings of Conference of Hokkaido Branch 2001.41 (2001): 270–71. http://dx.doi.org/10.1299/jsmehokkaido.2001.41.270.
Full textPan, Jiaying, Lin Chen, Haiqiao Wei, Dengquan Feng, Sili Deng, and Gequn Shu. "On autoignition mode under variable thermodynamic state of internal combustion engines." International Journal of Engine Research 21, no. 5 (2018): 856–65. http://dx.doi.org/10.1177/1468087418796617.
Full textWang, Aifeng, Jiahao Shang, Qiu Wang, and Kuanliang Wang. "Effects of Cowl-Induced Expansion on the Wave Complex Induced by Oblique Detonation Wave Reflection." Processes 9, no. 7 (2021): 1215. http://dx.doi.org/10.3390/pr9071215.
Full textLiu, Yu, Baoguo Xiao, Lan Wang, and Chao Wang. "Numerical Study of Disturbance Resistance of Oblique Detonation Waves." International Journal of Aerospace Engineering 2020 (December 1, 2020): 1–9. http://dx.doi.org/10.1155/2020/8876637.
Full textStarikovskiy, Andrey, Nickolay Aleksandrov, and Aleksandr Rakitin. "Plasma-assisted ignition and deflagration-to-detonation transition." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1960 (2012): 740–73. http://dx.doi.org/10.1098/rsta.2011.0344.
Full textNalim, M. R., and D. E. Paxson. "A Numerical Investigation of Premixed Combustion in Wave Rotors." Journal of Engineering for Gas Turbines and Power 119, no. 3 (1997): 668–75. http://dx.doi.org/10.1115/1.2817036.
Full textZhou, R., and J. P. Wang. "Numerical investigation of shock wave reflections near the head ends of rotating detonation engines." Shock Waves 23, no. 5 (2013): 461–72. http://dx.doi.org/10.1007/s00193-013-0440-0.
Full textAnand, Vijay, and Ephraim Gutmark. "A review of pollutants emissions in various pressure gain combustors." International Journal of Spray and Combustion Dynamics 11 (January 2019): 175682771987072. http://dx.doi.org/10.1177/1756827719870724.
Full textWang, Zhang, Wang, Han, and Chen. "Numerical Simulation of Knock Combustion in a Downsizing Turbocharged Gasoline Direct Injection Engine." Applied Sciences 9, no. 19 (2019): 4133. http://dx.doi.org/10.3390/app9194133.
Full textZhong and Liu. "Numerical Analysis of End-Gas Autoignition and Pressure Oscillation in a Downsized SI Engine Using Large Eddy Simulation." Energies 12, no. 20 (2019): 3909. http://dx.doi.org/10.3390/en12203909.
Full textBulat, Pavel, Anzhelika Melnikova, Vladimir Upyrev, and Konstantin Volkov. "Refraction of Oblique Shock Wave on a Tangential Discontinuity." Fluids 6, no. 9 (2021): 301. http://dx.doi.org/10.3390/fluids6090301.
Full textKarimi, Abdullah, and M. Razi Nalim. "Ignition by Hot Transient Jets in Confined Mixtures of Gaseous Fuels and Air." Journal of Combustion 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/9565839.
Full textЗолотько, Олександр Євгенович, Олена Василівна Золотько, Олександра Валеріївна Сосновська, Олександр Сергійович Аксьонов та Ірина Сергіївна Савченко. "ОСОБЛИВОСТІ КОНСТРУКТИВНИХ СХЕМ ДВИГУНІВ З ІМПУЛЬСНИМИ ДЕТОНАЦІЙНИМИ КАМЕРАМИ". Aerospace technic and technology, № 2 (27 квітня 2020): 4–10. http://dx.doi.org/10.32620/aktt.2020.2.01.
Full textBicalho Civinelli de Almeida, Victor, and Dieter Peitsch. "Aeroelastic assessment of a highly loaded high pressure compressor exposed to pressure gain combustion disturbances." Journal of the Global Power and Propulsion Society 2 (October 15, 2018): F72OUU. http://dx.doi.org/10.22261/jgpps.f72ouu.
Full textBradley, Derek. "Autoignitions and detonations in engines and ducts." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1960 (2012): 689–714. http://dx.doi.org/10.1098/rsta.2011.0367.
Full textHan, Hyung-Seok, Eun Sung Lee, and Jeong-Yeol Choi. "Experimental Investigation of Detonation Propagation Modes and Thrust Performance in a Small Rotating Detonation Engine Using C2H4/O2 Propellant." Energies 14, no. 5 (2021): 1381. http://dx.doi.org/10.3390/en14051381.
Full textYi, Tae-Hyeong, Jing Lou, Cary Kenny Turangan, and Piotr Wolanski. "Numerical Study of Detonation Processes in Rotating Detonation Engine and its Propulsive Performance." Transactions on Aerospace Research 2020, no. 3 (2020): 30–48. http://dx.doi.org/10.2478/tar-2020-0015.
Full textDebnath, Pinku, and Krishna Murari Pandey. "Computational Study of Deflagration to Detonation Transition in Pulse Detonation Engine Using Shchelkin Spiral." Applied Mechanics and Materials 772 (July 2015): 136–40. http://dx.doi.org/10.4028/www.scientific.net/amm.772.136.
Full textDOGRA, Bharat Ankur, Mehakveer SINGH, Tejinder Kumar JINDAL, and Subhash CHANDER. "Technological advancements in Pulse Detonation Engine Technology in the recent past: A Characterized Report." INCAS BULLETIN 11, no. 4 (2019): 81–92. http://dx.doi.org/10.13111/2066-8201.2019.11.4.8.
Full textZhou, Siyin, Tianyi Shi, and Wansheng Nie. "Study of plasma-assisted detonation initiation by quasi-direct current discharge." International Journal of Spray and Combustion Dynamics 12 (January 2020): 175682771989446. http://dx.doi.org/10.1177/1756827719894464.
Full textWang, Yu Hui, and Jian Ping Wang. "Rotating Detonation Instabilities in Hydrogen-Oxygen Mixture." Applied Mechanics and Materials 709 (December 2014): 56–62. http://dx.doi.org/10.4028/www.scientific.net/amm.709.56.
Full textGulzar, Mubashir, M. Talal Jameel, Sufyan Tariq, and Umair Khalid. "Geometric Modeling of the Frequency of an Acoustic Detonation Pressure Wave in a Standard Spark Ignition Engine." Applied Mechanics and Materials 392 (September 2013): 146–50. http://dx.doi.org/10.4028/www.scientific.net/amm.392.146.
Full textAshford, S. A., and G. Emanuel. "Oblique detonation wave engine performance prediction." Journal of Propulsion and Power 12, no. 2 (1996): 322–27. http://dx.doi.org/10.2514/3.24031.
Full textXiong, Cha, Hua Qiu, and Qinwei Lu. "The Ignition of Two Phase Detonation by a Branching Detonation Tube." International Journal of Turbo & Jet-Engines 34, no. 4 (2016): 387–93. http://dx.doi.org/10.1515/tjj-2016-0019.
Full textGrigoriev, A. V., O. A. Rudakov, and A. V. Solovieva. "Gas dynamic calculation of detonation in variable cross-section ducts." VESTNIK of Samara University. Aerospace and Mechanical Engineering 18, no. 1 (2019): 42–54. http://dx.doi.org/10.18287/2541-7533-2019-18-1-42-54.
Full textVasil'ev, A. A. "The Principal Aspects of Application of Detonation in Propulsion Systems." Journal of Combustion 2013 (2013): 1–15. http://dx.doi.org/10.1155/2013/945161.
Full textSrikrishnan, S., P. K. Dash, and V. Jayakumar. "Evaluation of critical blockage ratio and pulse length in a pulse detonation engine using CFD and MATLAB." MATEC Web of Conferences 172 (2018): 02006. http://dx.doi.org/10.1051/matecconf/201817202006.
Full textAsogan, K., and Jamuna Venkatesan. "Theoretical Investigation on Combustion with Preformed Vortex Patterns." Applied Mechanics and Materials 812 (November 2015): 44–50. http://dx.doi.org/10.4028/www.scientific.net/amm.812.44.
Full textBennewitz, John W., Blaine R. Bigler, Mathias C. Ross, Stephen A. Danczyk, William A. Hargus, and Richard D. Smith. "Performance of a Rotating Detonation Rocket Engine with Various Convergent Nozzles and Chamber Lengths." Energies 14, no. 8 (2021): 2037. http://dx.doi.org/10.3390/en14082037.
Full textXu, Gui-yang, Chun-guang Wang, Shao-qing Hu, Jian-Liang Gong, and Zhe Deng. "Investigation on the Time Error of Detonation Acoustic in Process of Formation and Propagation." International Journal of Turbo & Jet-Engines 36, no. 4 (2019): 391–99. http://dx.doi.org/10.1515/tjj-2018-0011.
Full textNalim, M. R., Z. A. Izzy, and P. Akbari. "Rotary wave-ejector enhanced pulse detonation engine." Shock Waves 22, no. 1 (2011): 23–38. http://dx.doi.org/10.1007/s00193-011-0348-5.
Full textBraun, Eric M., Frank K. Lu, Donald R. Wilson, and José A. Camberos. "Airbreathing rotating detonation wave engine cycle analysis." Aerospace Science and Technology 27, no. 1 (2013): 201–8. http://dx.doi.org/10.1016/j.ast.2012.08.010.
Full textMa, Hu, Zhenjuan Xia, Wei Gao, Changfei Zhuo, and Dong Wang. "Numerical simulation of the deflagration-to-detonation transition of iso-octane vapor in an obstacle-filled tube." International Journal of Spray and Combustion Dynamics 10, no. 3 (2018): 244–59. http://dx.doi.org/10.1177/1756827718758047.
Full textVasyliv, S. S., and H. O. Strelnykov. "Rocket engine thrust vector control by detonation product injection into the supersonic portion of the nozzle." Technical mechanics 2020, no. 4 (2020): 29–34. http://dx.doi.org/10.15407/itm2020.04.029.
Full textPrakash, Supraj, Romain Fiévet, Venkat Raman, Jason Burr, and Kenneth H. Yu. "Analysis of the Detonation Wave Structure in a Linearized Rotating Detonation Engine." AIAA Journal 58, no. 12 (2020): 5063–77. http://dx.doi.org/10.2514/1.j058156.
Full textCambier, Jean-Luc, Henry Adelman, and Gene P. Menees. "Numerical simulations of an oblique detonation wave engine." Journal of Propulsion and Power 6, no. 3 (1990): 315–23. http://dx.doi.org/10.2514/3.25436.
Full textNalim, M. R. "Assessment of Combustion Modes for Internal Combustion Wave Rotors." Journal of Engineering for Gas Turbines and Power 121, no. 2 (1999): 265–71. http://dx.doi.org/10.1115/1.2817116.
Full textLi, Jian-ling, Wei Fan, Hua Qiu, Chuan-jun Yan, and Yu-Qian Wang. "Preliminary study of a pulse normal detonation wave engine." Aerospace Science and Technology 14, no. 3 (2010): 161–67. http://dx.doi.org/10.1016/j.ast.2009.12.002.
Full textGrigoriev, A. V., O. A. Rudakov, and A. V. Solovieva. "Gas dynamic calculation of detonation in constant-cross-section ducts." VESTNIK of Samara University. Aerospace and Mechanical Engineering 18, no. 3 (2019): 48–58. http://dx.doi.org/10.18287/2541-7533-2019-18-3-48-58.
Full textYao, Songbai, Meng Liu, and Jianping Wang. "Numerical Investigation of Spontaneous Formation of Multiple Detonation Wave Fronts in Rotating Detonation Engine." Combustion Science and Technology 187, no. 12 (2015): 1867–78. http://dx.doi.org/10.1080/00102202.2015.1067202.
Full textAzatian, V. V., G. K. Vedeshkin, and Yu M. Filatov. "Chemical methods to control combustion, explosion and gas detonation." Вестник Российской академии наук 89, no. 3 (2019): 279–84. http://dx.doi.org/10.31857/s0869-5873893279-284.
Full text