Academic literature on the topic 'Detrended cross correlation analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Detrended cross correlation analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Detrended cross correlation analysis"
Wang, Jun, and Da-Qing Zhao. "Detrended cross-correlation analysis of electroencephalogram." Chinese Physics B 21, no. 2 (February 2012): 028703. http://dx.doi.org/10.1088/1674-1056/21/2/028703.
Full textYIN, YI, and PENGJIAN SHANG. "MULTISCALE DETRENDED CROSS-CORRELATION ANALYSIS OF STOCK MARKETS." Fractals 22, no. 04 (November 12, 2014): 1450007. http://dx.doi.org/10.1142/s0218348x14500078.
Full textMAO, XUEGENG, and PENGJIAN SHANG. "DETRENDED CROSS-CORRELATION ANALYSIS BETWEEN MULTIVARIATE TIME SERIES." Fractals 26, no. 04 (August 2018): 1850058. http://dx.doi.org/10.1142/s0218348x18500585.
Full textZhao, Jun Chang, Wan Hu Dou, Hong Da Ji, and Jun Wang. "Detrended Cross-Correlation Analysis of Epilepsy Electroencephalagram Signals." Advanced Materials Research 765-767 (September 2013): 2664–67. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.2664.
Full textRoume, C., Z. M. H. Almurad, M. Scotti, S. Ezzina, H. Blain, and D. Delignières. "Windowed detrended cross-correlation analysis of synchronization processes." Physica A: Statistical Mechanics and its Applications 503 (August 2018): 1131–50. http://dx.doi.org/10.1016/j.physa.2018.08.074.
Full textMarinho, E. B. S., A. M. Y. R. Sousa, and R. F. S. Andrade. "Using Detrended Cross-Correlation Analysis in geophysical data." Physica A: Statistical Mechanics and its Applications 392, no. 9 (May 2013): 2195–201. http://dx.doi.org/10.1016/j.physa.2012.12.038.
Full textWang, Fang, Gui-ping Liao, Xiao-yang Zhou, and Wen Shi. "Multifractal detrended cross-correlation analysis for power markets." Nonlinear Dynamics 72, no. 1-2 (January 3, 2013): 353–63. http://dx.doi.org/10.1007/s11071-012-0718-2.
Full textDong, Keqiang, and Xiaojie Gao. "Higher-Order Multifractal Detrended Partial Cross-Correlation Analysis for the Correlation Estimator." Complexity 2020 (June 4, 2020): 1–10. http://dx.doi.org/10.1155/2020/7495058.
Full textLi, Wan, Zhu Yongqian, Deng Xiaocheng, and Lin Jiaoxiu. "Multifractal Detrended Cross-Correlation Analysis of Geochemical Element Concentration." Open Materials Science Journal 8, no. 1 (December 31, 2014): 136–40. http://dx.doi.org/10.2174/1874088x01408010136.
Full textZhao, Longfeng, Wei Li, Andrea Fenu, Boris Podobnik, Yougui Wang, and H. Eugene Stanley. "Theq-dependent detrended cross-correlation analysis of stock market." Journal of Statistical Mechanics: Theory and Experiment 2018, no. 2 (February 14, 2018): 023402. http://dx.doi.org/10.1088/1742-5468/aa9db0.
Full textDissertations / Theses on the topic "Detrended cross correlation analysis"
Silva, Diego Roberto Cintra da [UNESP]. "Utilização do dentreded fluctuation analysis e do dentreded cross-correlation analysis para estudo do espectro de correlação de ações constantes no Ibovespa no período de crise do subprime." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/148597.
Full textApproved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2017-01-25T16:43:04Z (GMT) No. of bitstreams: 1 silva_drc_me_bauru.pdf: 3332491 bytes, checksum: cb4ba5462d138f7b73df3323acd794c3 (MD5)
Made available in DSpace on 2017-01-25T16:43:04Z (GMT). No. of bitstreams: 1 silva_drc_me_bauru.pdf: 3332491 bytes, checksum: cb4ba5462d138f7b73df3323acd794c3 (MD5) Previous issue date: 2016-12-02
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
As crises que ocorrem no mercado de ações são prejudiciais não só à parte monetária da economia de um país, mas ao desenvolvimento do país como um todo. A crise do subprime em 2008, que se iniciou nos Estados Unidos da América, atingiu o mundo todo, muitos países tiveram quedas significativas do PIB e vários entraram em recessão. Existe, então, o interesse em se compreender a dinâmica das séries temporais de variáveis como retorno e volatilidade das ações negociadas nesse mercado, a fim de compreender as diferenças de seu comportamento em momentos de crise econômica. Com o objetivo de analisar o espectro de correlação da volatilidade de ações no período da crise de 2008 e em suas vizinhanças, foram verificadas 31 ações de empresas pertencentes a diversos setores da economia brasileira, que compuseram entre 2007 e 2011 o Índice Bovespa. Para tal foram utilizados os métodos do Detrended Fluctuation Analisys – DFA e do Detrended Cross-Correlation Analisys – DCCA. Ambos métodos evidenciaram uma significativa mudança na função de probabilidade no período de crise comparativamente aos períodos de sua vizinhança.
Crises occurring in the stock market are harmful not only to the monetary part of a country's economy, but to the development of the country as a whole. The subprime crisis in 2008, which began in the United States of America, hit the whole world, many countries had significant declines in GDP and several went into recession. There is, therefore, an interest in understanding the dynamics of time series of variables such as return and volatility of the shares traded in this market, in order to understand the differences in their behavior in times of economic crisis. With the objective of analyzing the correlation spectrum of stock volatility in the period of the 2008 crisis and its neighborhoods, 31 stocks of companies belonging to various sectors of the Brazilian economy were verified, which made up the Bovespa Index between 2007 and 2011. The methods of Detrended Fluctuation Analyzes - DFA and Detrended Cross-Correlation Analyzes - DCCA were used for this. Both methods evidenced a significant change in the probability function in the period of crisis compared to the periods of its neighborhood.
SIQUEIRA, JÚNIOR Erinaldo Leite. "Leis de potências e correlações em séries temporais de preços de produtos agrícolas." Universidade Federal Rural de Pernambuco, 2009. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4970.
Full textMade available in DSpace on 2016-07-05T15:38:42Z (GMT). No. of bitstreams: 1 Erinaldo Leite Batista Almeida.pdf: 3620819 bytes, checksum: b2532ef7524f47d5417d01445fec797b (MD5) Previous issue date: 2009-08-10
Financial markets are complex systems that contain large numbers of interacting units, including interactions among various units in the same market and interactions between units in different markets. Various methods of economics, statistics and econophysics have been developed to analyze financial temporal series (such as price returns, share volume, number of transactions), and serve to establish theoretical models for underlying stochastic processes. The availability of financial data on the internet and increasing computational power have enabled researchers to conduct a large number of empirical studies on financial markets. These studies have shown some universal properties: the risk function of price returns is scale invariant, with power-law behavior and similar value of exponent for different markets; the absolute values of returns (volatility) exhibit long-range power-law correlations. In this work, we use methods if econophysics to study the statistical properties of Brazilian financial markets. We analyze and compare scale properties of risk functions and correlations in temporal series of price returns of agricultural commodities and stocks of various companies traded at Bovespa. We analyze the daily prices of five commodities and twenty stocks traded in the period 2000-2008. For both commodities and stocks, the risk function of daily price returns shows powerlaw behavior with the exponent outside the Levy stable region. The values of exponents are higher for stocks than for commodities. We use Detrended Fluctuation Analysis (DFA) to study correlations in daily time series of absolute values of returns (volatility). This method was developed to quantify long range correlations in non-stationary temporal series.All analyzed series show persistent behavior, meaning that large (small) values are more likely to be followed with large (small) values. The value of the DFA exponent is higher for commodities than for stocks. We also use Detrended Cross Correlation Analysis (DCCA) to study cross-correlations between two series. The values of DCCA exponents are above 0.5 for all series, indicating the existence of long range cross-correlations. This means that each stock or commodity has long memory of its own previous values and of previous values of other stocks or commodities studied. These results are in agreement with results obtained for American financial markets.
Mercados financeiros são caracterizados por um grande número de unidades e interações complexas, incluindo as interações internas (entre diferentes elementos de um mercado) e fatores externos (influência de outros mercados). Vários métodos de economia, estatística e recentemente econofísica foram desenvolvidos para analisar as séries temporais de variáveis financeiras (retorno de preços de ações, mercadorias e taxas de cambio, índice de mercado, volume de negociação, etc.), com objetivo de estabelecer os modelos teóricos para processos estocásticos que estão em base desses fenômenos. A disponibilidade de dados financeiros de vários mercados e crescente poder computacional resultaram em um grande número de estudos empíricos cujos resultados mostraram algumas propriedades universais: a função risco de retornos de preços segue uma lei de potência com o valor de expoente similar para os vários mercados; os valores absolutos de retornos possuem correlações de longo alcance. Neste trabalho foram usados os métodos de econofísica para estudar as propriedades estatísticas do mercado financeiro brasileiro. Foram analisadas e comparadas as propriedades de escala de função risco e de correlações em séries temporais de retornos de preços de mercadorias agrícolas e preços de ações de várias empresas negociadas na Bolsa de Valores de São Paulo (BOVESPA). Foram analisados os preços diários de cinco mercadorias: açúcar, algodão, café, soja e boi, registrados em período 2000-2008. Para ações, analisamos as características seguintes: preços de abertura, fechamento, valores máximo e mínimo, volume e montante. Todas as séries são diárias, registradas no período de 2000-2008. São estudadas 20 empresas divididas em 4 grupos: bancos, energia, telecomunicações e siderurgia (5 empresas de cada grupo). Para todas as séries estudadas a função risco de retornos de preços segue uma lei de potência com os valores de expoente maiores para ações do que para mercadorias. As correlações são analisadas para os valores absolutos de retornos de preços (volatilidade). Foi usado o método Detrended Fluctuation Analysis (DFA), desenvolvido para quantificar as correlações de longo alcance em séries temporais não estacionárias. Todas as séries mostraram um comportamento persistente, significando que os valores grandes (pequenos) tem maior probabilidade de serem seguidos por valores grandes (pequenos). Os valores de expoente DFA são maiores para mercadorias do que para as ações. Foi utilizada uma generalização de DFA, Detrended Cross Correlation Analysis (DCCA) para analisar as correlações cruzadas entre duas séries. Os valores de expoente DCCA para todas as séries estudadas indicam a existência de correlações cruzadas de longo alcance significando que os valores de cada série possuem memória de longo alcance de seus valores anteriores e também de valores anteriores de outras série. Os resultados estão em acordo com os resultados obtidos para mercado americano.
Mohti, Wahbeeah. "Essays on frontier markets: financial integration, financial market efficiency, financial contagion." Doctoral thesis, Universidade de Évora, 2019. http://hdl.handle.net/10174/24579.
Full textHotchkiss, Alastair Jeremy. "Generalised cross correlation functions for physical applications." Thesis, University of Exeter, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262492.
Full textYamaguchi, David K. "Interpretation of Cross Correlation Between Tree-Ring Series." Tree-Ring Society, 1986. http://hdl.handle.net/10150/261724.
Full textKacher, Josh. "Cross-correlation-based texture analysis using kinematically simulated EBSD patterns /." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd2994.pdf.
Full textKacher, Joshua Peter. "Cross-Correlation-Based Texture Analysis Using Kinematically Simulated EBSD Patterns." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/1746.
Full textScott, Virginia Anne. "Exercise and depression causal sequence using cross-lagged panel correlation analysis /." College Park, Md. : University of Maryland, 2009. http://hdl.handle.net/1903/9982.
Full textThesis research directed by: Dept. of Kinesiology. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Vuran, Mehmet Can. "Correlation-based Cross-layer Communication in Wireless Sensor Networks." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16135.
Full textGilbert, Ross. "Evaluation of FFT Based Cross-Correlation Algorithms for Particle Image Velocimetry." Thesis, University of Waterloo, 2002. http://hdl.handle.net/10012/911.
Full textBooks on the topic "Detrended cross correlation analysis"
Bulach, Marcia Woolf. Canonical Auto And Cross Correlations Of Multivariate Time Series. USA: Dissertation.com, 1999.
Find full textPakko, Michael R. A spectral analysis of the cross-country consumption correlation puzzle. [St. Louis, Mo.]: Federal Reserve Bank of St. Louis, 2003.
Find full textRahat, Gideon, and Ofer Kenig. A Cross-National Analysis of Political Personalization. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198808008.003.0009.
Full textKing, Wayne M. Multitaper spectral estimation and time-domain cross-correlation in FMRI data analysis: Actual and simulated data. 1999.
Find full textTran, Thanh V., Tam Nguyen, and Keith Chan. Assessing and Testing Cross-Cultural Measurement Equivalence. Oxford University Press, 2018. http://dx.doi.org/10.1093/acprof:oso/9780190496470.003.0004.
Full textLi, Quan. Using R for Data Analysis in Social Sciences. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190656218.001.0001.
Full textUnited States. National Aeronautics and Space Administration., ed. Reduction and analysis of seasons 15 and 16 (1991-1992), Pioneer Venus radio occultation data and correlative studies with observations of the near infra-red emission of Venus: Report to the National Aeronautics and Space Administration, Ames Research Center for grant NCC2-753, April 1, 1992 through May 31, 1995. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textHalperin, Sandra, and Oliver Heath. 16. Patterns of Association. Oxford University Press, 2017. http://dx.doi.org/10.1093/hepl/9780198702740.003.0016.
Full textRahat, Gideon, and Ofer Kenig. Party Change and Political Personalization. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198808008.003.0011.
Full textPitt, Matthew. Techniques used to test the neuromuscular junction in children. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198754596.003.0009.
Full textBook chapters on the topic "Detrended cross correlation analysis"
Cao, Guangxi, Ling-Yun He, and Jie Cao. "Multifractal Detrended Cross-Correlation Analysis (MF-DCCA)." In Multifractal Detrended Analysis Method and Its Application in Financial Markets, 49–78. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7916-0_4.
Full textCao, Guangxi, Ling-Yun He, and Jie Cao. "Asymmetric Multifractal Detrended Cross-Correlation Analysis (MF-ADCCA)." In Multifractal Detrended Analysis Method and Its Application in Financial Markets, 113–27. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7916-0_6.
Full textCao, Guangxi, Ling-Yun He, and Jie Cao. "Asymmetric DCCA Cross-Correlation Coefficient." In Multifractal Detrended Analysis Method and Its Application in Financial Markets, 129–53. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7916-0_7.
Full textSchwille, Petra. "Cross-correlation analysis in FCS." In Springer Series in Chemical Physics, 360–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59542-4_17.
Full textLiu, Yingxiang, Xiaomei Tang, Rui Ge, and Feixue Wang. "Analysis for Cross Correlation in Multiplexing." In Lecture Notes in Electrical Engineering, 81–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37404-3_8.
Full textSánchez, Ricardo M., Rudolf Mester, and Mikhail Kudryashev. "Fast Cross Correlation for Limited Angle Tomographic Data." In Image Analysis, 415–26. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20205-7_34.
Full textXing, Shanshan, Bin Wang, Xiaopeng Wei, Changjun Zhou, Qiang Zhang, and Zhonglong Zheng. "RNA Sequences Similarities Analysis by Cross-Correlation Function." In Communications in Computer and Information Science, 83–94. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2829-9_9.
Full textKeane, Richard D., and Ronald J. Adrian. "Theory of cross-correlation analysis of PIV images." In Fluid Mechanics and Its Applications, 1–25. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2690-8_1.
Full textBraasch, Jonas. "Convolution, Fourier Analysis, Cross-Correlation and Their Interrelationship." In Springer Handbook of Systematic Musicology, 273–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-55004-5_14.
Full textXia, X. Y., Z. G. Deng, and Y. Z. Liu. "Cross-Correlation Analysis of Galaxies with Different Luminosity." In Large Scale Structures of the Universe, 554. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2995-1_108.
Full textConference papers on the topic "Detrended cross correlation analysis"
Sun, Jingliang, and Huanye Sheng. "Multifractal Detrended Cross-Correlation Analysis of Chinese Stocks." In 2010 3rd International Conference on Business Intelligence and Financial Engineering (BIFE). IEEE, 2010. http://dx.doi.org/10.1109/bife.2010.77.
Full textZhao, Junchang, Wanhu Dou, Hongda Ji, and Jun Wang. "Detrended cross-correlation analysis of epilepsy electroencephalagram singals." In 2nd International Conference On Systems Engineering and Modeling. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/icsem.2013.184.
Full textPal, Mayukha, P. Madhusudana Rao, and P. Manimaran. "Multifractal detrended cross-correlation analysis of Indian Electricity market." In 2015 50th International Universities Power Engineering Conference (UPEC). IEEE, 2015. http://dx.doi.org/10.1109/upec.2015.7339850.
Full textLiu, Chia-Ju, Yan-Lin Jhone, Chih-Chieh Hsu, Pei-ching Teng, Ming-Chi Lu, Chih-Hung Yang, and Ming-Chung Ho. "Detrended partial cross-correlation analysis of age-related changes." In 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE). IEEE, 2016. http://dx.doi.org/10.1109/icamse.2016.7840300.
Full textZhao, Junchang, Wanhu Dou, Hongda Ji, and Jun Wang. "Epilepsy electroencephalagram singals study based on detrended cross-correlation analysis." In 2013 International Conference on Information, Business and Education Technology (ICIBET-2013). Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/icibet.2013.273.
Full textZhang, Kai, Guanghua Xu, Xiaobi Chen, Sicong Zhang, Xiaowei Zheng, and Chengcheng Han. "symmetric Multifractal Detrended Cross-Correlation Analysis of EEG and sEMG in The Processes of Myodynamia Changes." In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019. http://dx.doi.org/10.1109/smc.2019.8914633.
Full textDas, Monidipa, and Soumya K. Ghosh. "Detection of climate zones using multifractal detrended cross-correlation analysis: A spatio-temporal data mining approach." In 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). IEEE, 2015. http://dx.doi.org/10.1109/icapr.2015.7050702.
Full textYi, Zejing. "Optimized Portfolio Strategy in Chinese Growth Enterprise Market: based on the Detrended Cross-Correlation Analysis Method." In 2020 2nd International Conference on Economic Management and Model Engineering (ICEMME). IEEE, 2020. http://dx.doi.org/10.1109/icemme51517.2020.00014.
Full textDias, Rui, and Hortense Santos. "THE IMPACT OF COVID-19 ON EXCHANGE RATE VOLATILITY: AN ECONOPHYSICS APPROACH." In Sixth International Scientific-Business Conference LIMEN Leadership, Innovation, Management and Economics: Integrated Politics of Research. Association of Economists and Managers of the Balkans, Belgrade, Serbia, 2020. http://dx.doi.org/10.31410/limen.2020.39.
Full textSeleznov, Ivan, Ivan Kotiuchyi, Anton Popov, Akio Nakata, Volodymyr Kharytonov, Miki Kaneko, and Ken Kiyono. "Multiscale detrended cross-correlation of EEG and RR intervals during focal epilepsy." In 2020 Signal Processing Workshop (SPW). IEEE, 2020. http://dx.doi.org/10.23919/spw49079.2020.9259132.
Full textReports on the topic "Detrended cross correlation analysis"
Pakko, Michael R. A Spectral Analysis of the Cross-Country Consumption Correlation Puzzle. Federal Reserve Bank of St. Louis, 2003. http://dx.doi.org/10.20955/wp.2003.023.
Full textHessler, J. P., and P. J. Ogren. Correlation analysis of optical absorption cross section and rate coefficient measurements in reacting systems. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/10159230.
Full text