Academic literature on the topic 'Deviance information criterion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Deviance information criterion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Deviance information criterion"

1

Spiegelhalter, David J., Nicola G. Best, Bradley P. Carlin, and Angelika van der Linde. "The deviance information criterion: 12 years on." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76, no. 3 (April 8, 2014): 485–93. http://dx.doi.org/10.1111/rssb.12062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berg, Andreas, Renate Meyer, and Jun Yu. "Deviance Information Criterion for Comparing Stochastic Volatility Models." Journal of Business & Economic Statistics 22, no. 1 (January 2004): 107–20. http://dx.doi.org/10.1198/073500103288619430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kadhem, Safaa K., Paul Hewson, and Irene Kaimi. "Recursive Deviance Information Criterion for the Hidden Markov Model." International Journal of Statistics and Probability 5, no. 1 (December 22, 2015): 61. http://dx.doi.org/10.5539/ijsp.v5n1p61.

Full text
Abstract:
In Bayesian model selection, the deviance information criterion (DIC) has become a widely used criterion. It is however not defined for the hidden Markov models (HMMs). In particular, the main challenge of applying the DIC for HMMs is that the observed likelihood function of such models is not available in closed form. A closed form for the observed likelihood function can be obtained either by summing all possible hidden states of the complete likelihood using the so-called the forward recursion, or via integrating out the hidden states in the conditional likelihood. Hence, we propose two versions of the DIC to the model choice problem in HMMs context, namely, the recursive deviance-based DIC and the conditional likelihood-based DIC. In this paper, we compare several normal HMMs after they are estimated by Bayesian MCMC method. We conduct a simulation study based on synthetic data generated under two assumptions, namely diversity in the heterogeneity level and also the number of states. We show that the recursive deviance-based DIC performs well in selecting the correct model compared with the conditional likelihood-based DIC that prefers the more complicated models. A real application involving the waiting time of Old Faithful Geyser data was also used to check those criteria. All the simulations were conducted in Python v.2.7.10, available from first author on request.
APA, Harvard, Vancouver, ISO, and other styles
4

Quintero, Adrian, and Emmanuel Lesaffre. "Comparing hierarchical models via the marginalized deviance information criterion." Statistics in Medicine 37, no. 16 (March 26, 2018): 2440–54. http://dx.doi.org/10.1002/sim.7649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shriner, Daniel, and Nengjun Yi. "Deviance information criterion (DIC) in Bayesian multiple QTL mapping." Computational Statistics & Data Analysis 53, no. 5 (March 2009): 1850–60. http://dx.doi.org/10.1016/j.csda.2008.01.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Joshua C. C., and Angelia L. Grant. "On the Observed-Data Deviance Information Criterion for Volatility Modeling." Journal of Financial Econometrics 14, no. 4 (April 6, 2016): 772–802. http://dx.doi.org/10.1093/jjfinec/nbw002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fung, Thomas, Joanna J. J. Wang, and Eugene Seneta. "The Deviance Information Criterion in Comparison of Normal Mixing Models." International Statistical Review 82, no. 3 (August 22, 2014): 411–21. http://dx.doi.org/10.1111/insr.12063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Yong, Jun Yu, and Tao Zeng. "Deviance information criterion for latent variable models and misspecified models." Journal of Econometrics 216, no. 2 (June 2020): 450–93. http://dx.doi.org/10.1016/j.jeconom.2019.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Haiyan, Sarah Depaoli, and Lydia Marvin. "Understanding the Deviance Information Criterion for SEM: Cautions in Prior Specification." Structural Equation Modeling: A Multidisciplinary Journal 29, no. 2 (November 17, 2021): 278–94. http://dx.doi.org/10.1080/10705511.2021.1994407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pooley, C. M., and G. Marion. "Bayesian model evidence as a practical alternative to deviance information criterion." Royal Society Open Science 5, no. 3 (March 2018): 171519. http://dx.doi.org/10.1098/rsos.171519.

Full text
Abstract:
While model evidence is considered by Bayesian statisticians as a gold standard for model selection (the ratio in model evidence between two models giving the Bayes factor), its calculation is often viewed as too computationally demanding for many applications. By contrast, the widely used deviance information criterion (DIC), a different measure that balances model accuracy against complexity, is commonly considered a much faster alternative. However, recent advances in computational tools for efficient multi-temperature Markov chain Monte Carlo algorithms, such as steppingstone sampling (SS) and thermodynamic integration schemes, enable efficient calculation of the Bayesian model evidence. This paper compares both the capability (i.e. ability to select the true model) and speed (i.e. CPU time to achieve a given accuracy) of DIC with model evidence calculated using SS. Three important model classes are considered: linear regression models, mixed models and compartmental models widely used in epidemiology. While DIC was found to correctly identify the true model when applied to linear regression models, it led to incorrect model choice in the other two cases. On the other hand, model evidence led to correct model choice in all cases considered. Importantly, and perhaps surprisingly, DIC and model evidence were found to run at similar computational speeds, a result reinforced by analytically derived expressions.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Deviance information criterion"

1

Tran, Thu Trung. "Bayesian model estimation and comparison for longitudinal categorical data." Thesis, Queensland University of Technology, 2008. https://eprints.qut.edu.au/19240/1/Thu_Tran_Thesis.pdf.

Full text
Abstract:
In this thesis, we address issues of model estimation for longitudinal categorical data and of model selection for these data with missing covariates. Longitudinal survey data capture the responses of each subject repeatedly through time, allowing for the separation of variation in the measured variable of interest across time for one subject from the variation in that variable among all subjects. Questions concerning persistence, patterns of structure, interaction of events and stability of multivariate relationships can be answered through longitudinal data analysis. Longitudinal data require special statistical methods because they must take into account the correlation between observations recorded on one subject. A further complication in analysing longitudinal data is accounting for the non- response or drop-out process. Potentially, the missing values are correlated with variables under study and hence cannot be totally excluded. Firstly, we investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from the Longitudinal Survey of Immigrants to Australia. Data for each subject is observed on three separate occasions, or waves, of the survey. One of the features of the data set is that observations for some variables are missing for at least one wave. A model for the employment status of immigrants is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response and then subsequent terms are introduced to explain wave and subject effects. To estimate the model, we use the Gibbs sampler, which allows missing data for both the response and explanatory variables to be imputed at each iteration of the algorithm, given some appropriate prior distributions. After accounting for significant covariate effects in the model, results show that the relative probability of remaining unemployed diminished with time following arrival in Australia. Secondly, we examine the Bayesian model selection techniques of the Bayes factor and Deviance Information Criterion for our regression models with miss- ing covariates. Computing Bayes factors involve computing the often complex marginal likelihood p(y|model) and various authors have presented methods to estimate this quantity. Here, we take the approach of path sampling via power posteriors (Friel and Pettitt, 2006). The appeal of this method is that for hierarchical regression models with missing covariates, a common occurrence in longitudinal data analysis, it is straightforward to calculate and interpret since integration over all parameters, including the imputed missing covariates and the random effects, is carried out automatically with minimal added complexi- ties of modelling or computation. We apply this technique to compare models for the employment status of immigrants to Australia. Finally, we also develop a model choice criterion based on the Deviance In- formation Criterion (DIC), similar to Celeux et al. (2006), but which is suitable for use with generalized linear models (GLMs) when covariates are missing at random. We define three different DICs: the marginal, where the missing data are averaged out of the likelihood; the complete, where the joint likelihood for response and covariates is considered; and the naive, where the likelihood is found assuming the missing values are parameters. These three versions have different computational complexities. We investigate through simulation the performance of these three different DICs for GLMs consisting of normally, binomially and multinomially distributed data with missing covariates having a normal distribution. We find that the marginal DIC and the estimate of the effective number of parameters, pD, have desirable properties appropriately indicating the true model for the response under differing amounts of missingness of the covariates. We find that the complete DIC is inappropriate generally in this context as it is extremely sensitive to the degree of missingness of the covariate model. Our new methodology is illustrated by analysing the results of a community survey.
APA, Harvard, Vancouver, ISO, and other styles
2

Tran, Thu Trung. "Bayesian model estimation and comparison for longitudinal categorical data." Queensland University of Technology, 2008. http://eprints.qut.edu.au/19240/.

Full text
Abstract:
In this thesis, we address issues of model estimation for longitudinal categorical data and of model selection for these data with missing covariates. Longitudinal survey data capture the responses of each subject repeatedly through time, allowing for the separation of variation in the measured variable of interest across time for one subject from the variation in that variable among all subjects. Questions concerning persistence, patterns of structure, interaction of events and stability of multivariate relationships can be answered through longitudinal data analysis. Longitudinal data require special statistical methods because they must take into account the correlation between observations recorded on one subject. A further complication in analysing longitudinal data is accounting for the non- response or drop-out process. Potentially, the missing values are correlated with variables under study and hence cannot be totally excluded. Firstly, we investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from the Longitudinal Survey of Immigrants to Australia. Data for each subject is observed on three separate occasions, or waves, of the survey. One of the features of the data set is that observations for some variables are missing for at least one wave. A model for the employment status of immigrants is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response and then subsequent terms are introduced to explain wave and subject effects. To estimate the model, we use the Gibbs sampler, which allows missing data for both the response and explanatory variables to be imputed at each iteration of the algorithm, given some appropriate prior distributions. After accounting for significant covariate effects in the model, results show that the relative probability of remaining unemployed diminished with time following arrival in Australia. Secondly, we examine the Bayesian model selection techniques of the Bayes factor and Deviance Information Criterion for our regression models with miss- ing covariates. Computing Bayes factors involve computing the often complex marginal likelihood p(y|model) and various authors have presented methods to estimate this quantity. Here, we take the approach of path sampling via power posteriors (Friel and Pettitt, 2006). The appeal of this method is that for hierarchical regression models with missing covariates, a common occurrence in longitudinal data analysis, it is straightforward to calculate and interpret since integration over all parameters, including the imputed missing covariates and the random effects, is carried out automatically with minimal added complexi- ties of modelling or computation. We apply this technique to compare models for the employment status of immigrants to Australia. Finally, we also develop a model choice criterion based on the Deviance In- formation Criterion (DIC), similar to Celeux et al. (2006), but which is suitable for use with generalized linear models (GLMs) when covariates are missing at random. We define three different DICs: the marginal, where the missing data are averaged out of the likelihood; the complete, where the joint likelihood for response and covariates is considered; and the naive, where the likelihood is found assuming the missing values are parameters. These three versions have different computational complexities. We investigate through simulation the performance of these three different DICs for GLMs consisting of normally, binomially and multinomially distributed data with missing covariates having a normal distribution. We find that the marginal DIC and the estimate of the effective number of parameters, pD, have desirable properties appropriately indicating the true model for the response under differing amounts of missingness of the covariates. We find that the complete DIC is inappropriate generally in this context as it is extremely sensitive to the degree of missingness of the covariate model. Our new methodology is illustrated by analysing the results of a community survey.
APA, Harvard, Vancouver, ISO, and other styles
3

Sarini, Sarini. "Statistical methods for modelling falls and symptoms progression in patients with early stages of Parkinson's disease." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/116208/1/_Sarini_Thesis.pdf.

Full text
Abstract:
This thesis was a step forward in gaining insight into falls in people with early stages of Parkinson's disease (PD), and in monitoring the disease progression based on clinical assessments. This research contributes new knowledge by providing new insights into utilizing information provided by the clinically administered instruments used routinely for the assessment of PD severity. The novel approach to modelling the progression of PD symptoms using multi-variable clinical assessment measurements for longitudinal data provides a new perspective into disease progression.
APA, Harvard, Vancouver, ISO, and other styles
4

Shahtahmassebi, Golnaz. "Bayesian modelling of ultra high-frequency financial data." Thesis, University of Plymouth, 2011. http://hdl.handle.net/10026.1/894.

Full text
Abstract:
The availability of ultra high-frequency (UHF) data on transactions has revolutionised data processing and statistical modelling techniques in finance. The unique characteristics of such data, e.g. discrete structure of price change, unequally spaced time intervals and multiple transactions have introduced new theoretical and computational challenges. In this study, we develop a Bayesian framework for modelling integer-valued variables to capture the fundamental properties of price change. We propose the application of the zero inflated Poisson difference (ZPD) distribution for modelling UHF data and assess the effect of covariates on the behaviour of price change. For this purpose, we present two modelling schemes; the first one is based on the analysis of the data after the market closes for the day and is referred to as off-line data processing. In this case, the Bayesian interpretation and analysis are undertaken using Markov chain Monte Carlo methods. The second modelling scheme introduces the dynamic ZPD model which is implemented through Sequential Monte Carlo methods (also known as particle filters). This procedure enables us to update our inference from data as new transactions take place and is known as online data processing. We apply our models to a set of FTSE100 index changes. Based on the probability integral transform, modified for the case of integer-valued random variables, we show that our models are capable of explaining well the observed distribution of price change. We then apply the deviance information criterion and introduce its sequential version for the purpose of model comparison for off-line and online modelling, respectively. Moreover, in order to add more flexibility to the tails of the ZPD distribution, we introduce the zero inflated generalised Poisson difference distribution and outline its possible application for modelling UHF data.
APA, Harvard, Vancouver, ISO, and other styles
5

Grundler, Giulia. "Analisi ed estensione con criteri di preferenza di un algoritmo per process discovery di modelli dichiarativi." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
Questa tesi si colloca nell’ambito del process mining e in particolare delle tecniche di process discovery che si occupano di estrarre automaticamente modelli di processi reali, servendosi degli esempi di esecuzione contenuti nei log di eventi. L’utilizzo di queste tecniche è di notevole interesse per la comprensione dei processi, per l’identificazione di problemi e deviazioni nella loro esecuzione e per guidare decisioni volte all’ottimizzazione degli stessi. Il primo obiettivo di questa tesi è l’analisi di un algoritmo di process discovery che genera modelli dichiarativi, espressi in linguaggio Declare. L’approccio dell’algoritmo si basa sul duplice contenuto informativo delle istanze positive del processo, che producono esempi conformi alle caratteristiche e ai risultati attesi, e delle istanze che, deviando da tali caratteristiche, vengono classificate come negative. In secondo luogo, la tesi propone un’estensione della modalità di ottimizzazione dell’algoritmo, che consente di guidarne la risoluzione attraverso preferenze user-defined, tramite le quali è possibile definire le attività e i constraint che il modello deve preferibilmente contenere.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Carla Chia-Ming. "Bayesian methodology for genetics of complex diseases." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/43357/1/Carla_Chen_Thesis.pdf.

Full text
Abstract:
Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Xiaokun 1979. "Capturing patterns of spatial and temporal autocorrelation in ordered response data : a case study of land use and air quality changes in Austin, Texas." Thesis, 2007. http://hdl.handle.net/2152/29686.

Full text
Abstract:
Many databases involve ordered discrete responses in a temporal and spatial context, including, for example, land development intensity levels, vehicle ownership, and pavement conditions. An appreciation of such behaviors requires rigorous statistical methods, recognizing spatial effects and dynamic processes. This dissertation develops a dynamic spatial ordered probit (DSOP) model in order to capture patterns of spatial and temporal autocorrelation in ordered categorical response data. This model is estimated in a Bayesian framework using Gibbs sampling and data augmentation, in order to generate all autocorrelated latent variables. The specifications, methodologies, and applications undertaken here advance the field of spatial econometrics while enhancing our understanding of land use and air quality changes. The proposed DSOP model incorporates spatial effects in an ordered probit model by allowing for inter-regional spatial interactions and heteroskedasticity, along with random effects across regions (where "region" describes any cluster of observational units). The model assumes an autoregressive, AR(1), process across latent response values, thereby recognizing time-series dynamics in panel data sets. The model code and estimation approach is first tested on simulated data sets, in order to reproduce known parameter values and provide insights into estimation performance. Root mean squared errors (RMSE) are used to evaluate the accuracy of estimates, and the deviance information criterion (DIC) is used for model comparisons. It is found that the DSOP model yields much more accurate estimates than standard, non-spatial techniques. As for model selection, even considering the penalty for using more parameters, the DSOP model is clearly preferred to standard OP, dynamic OP and spatial OP models. The model and methods are then used to analyze both land use and air quality (ozone) dynamics in Austin, Texas. In analyzing Austin's land use intensity patterns over a 4-point panel, the observational units are 300 m × 300 m grid cells derived from satellite images (at 30 m resolution). The sample contains 2,771 such grid cells, spread among 57 clusters (zip code regions), covering about 10% of the overall study area. In this analysis, temporal and spatial autocorrelation effects are found to be significantly positive. In addition, increases in travel times to the region's central business district (CBD) are estimated to substantially reduce land development intensity. The observational units for the ozone variation analysis are 4 km × 4 km grid cells, and all 132 observations falling in the study area are used. While variations in ozone concentration levels are found to exhibit strong patterns of temporal autocorrelation, they appear strikingly random in a spatial context (after controlling for local land cover, transportation, and temperature conditions). While transportation and land cover conditions appear to influence ozone levels, their effects are not as instantaneous, nor as practically significant as the impact of temperature. The proposed and tested DSOP model is felt to be a significant contribution to the field of spatial econometrics, where binary applications (for discrete response data) have been seen as the cutting edge. The Bayesian framework and Gibbs sampling techniques used here permit such complexity, in world of two-dimensional autocorrelation.
text
APA, Harvard, Vancouver, ISO, and other styles
8

Mitsakakis, Nikolaos. "Bayesian Methods in Gaussian Graphical Models." Thesis, 2010. http://hdl.handle.net/1807/24831.

Full text
Abstract:
This thesis contributes to the field of Gaussian Graphical Models by exploring either numerically or theoretically various topics of Bayesian Methods in Gaussian Graphical Models and by providing a number of interesting results, the further exploration of which would be promising, pointing to numerous future research directions. Gaussian Graphical Models are statistical methods for the investigation and representation of interdependencies between components of continuous random vectors. This thesis aims to investigate some issues related to the application of Bayesian methods for Gaussian Graphical Models. We adopt the popular $G$-Wishart conjugate prior $W_G(\delta,D)$ for the precision matrix. We propose an efficient sampling method for the $G$-Wishart distribution based on the Metropolis Hastings algorithm and show its validity through a number of numerical experiments. We show that this method can be easily used to estimate the Deviance Information Criterion, providing a computationally inexpensive approach for model selection. In addition, we look at the marginal likelihood of a graphical model given a set of data. This is proportional to the ratio of the posterior over the prior normalizing constant. We explore methods for the estimation of this ratio, focusing primarily on applying the Monte Carlo simulation method of path sampling. We also explore numerically the effect of the completion of the incomplete matrix $D^{\mathcal{V}}$, hyperparameter of the $G$-Wishart distribution, for the estimation of the normalizing constant. We also derive a series of exact and approximate expressions for the Bayes Factor between two graphs that differ by one edge. A new theoretical result regarding the limit of the normalizing constant multiplied by the hyperparameter $\delta$ is given and its implications to the validity of an improper prior and of the subsequent Bayes Factor are discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Chekouo, Tekougang Thierry. "Modélisation des bi-grappes et sélection des variables pour des données de grande dimension : application aux données d’expression génétique." Thèse, 2012. http://hdl.handle.net/1866/8946.

Full text
Abstract:
Le regroupement des données est une méthode classique pour analyser les matrices d'expression génétiques. Lorsque le regroupement est appliqué sur les lignes (gènes), chaque colonne (conditions expérimentales) appartient à toutes les grappes obtenues. Cependant, il est souvent observé que des sous-groupes de gènes sont seulement co-régulés (i.e. avec les expressions similaires) sous un sous-groupe de conditions. Ainsi, les techniques de bi-regroupement ont été proposées pour révéler ces sous-matrices des gènes et conditions. Un bi-regroupement est donc un regroupement simultané des lignes et des colonnes d'une matrice de données. La plupart des algorithmes de bi-regroupement proposés dans la littérature n'ont pas de fondement statistique. Cependant, il est intéressant de porter une attention sur les modèles sous-jacents à ces algorithmes et de développer des modèles statistiques permettant d'obtenir des bi-grappes significatives. Dans cette thèse, nous faisons une revue de littérature sur les algorithmes qui semblent être les plus populaires. Nous groupons ces algorithmes en fonction du type d'homogénéité dans la bi-grappe et du type d'imbrication que l'on peut rencontrer. Nous mettons en lumière les modèles statistiques qui peuvent justifier ces algorithmes. Il s'avère que certaines techniques peuvent être justifiées dans un contexte bayésien. Nous développons une extension du modèle à carreaux (plaid) de bi-regroupement dans un cadre bayésien et nous proposons une mesure de la complexité du bi-regroupement. Le critère d'information de déviance (DIC) est utilisé pour choisir le nombre de bi-grappes. Les études sur les données d'expression génétiques et les données simulées ont produit des résultats satisfaisants. À notre connaissance, les algorithmes de bi-regroupement supposent que les gènes et les conditions expérimentales sont des entités indépendantes. Ces algorithmes n'incorporent pas de l'information biologique a priori que l'on peut avoir sur les gènes et les conditions. Nous introduisons un nouveau modèle bayésien à carreaux pour les données d'expression génétique qui intègre les connaissances biologiques et prend en compte l'interaction par paires entre les gènes et entre les conditions à travers un champ de Gibbs. La dépendance entre ces entités est faite à partir des graphes relationnels, l'un pour les gènes et l'autre pour les conditions. Le graphe des gènes et celui des conditions sont construits par les k-voisins les plus proches et permet de définir la distribution a priori des étiquettes comme des modèles auto-logistiques. Les similarités des gènes se calculent en utilisant l'ontologie des gènes (GO). L'estimation est faite par une procédure hybride qui mixe les MCMC avec une variante de l'algorithme de Wang-Landau. Les expériences sur les données simulées et réelles montrent la performance de notre approche. Il est à noter qu'il peut exister plusieurs variables de bruit dans les données à micro-puces, c'est-à-dire des variables qui ne sont pas capables de discriminer les groupes. Ces variables peuvent masquer la vraie structure du regroupement. Nous proposons un modèle inspiré de celui à carreaux qui, simultanément retrouve la vraie structure de regroupement et identifie les variables discriminantes. Ce problème est traité en utilisant un vecteur latent binaire, donc l'estimation est obtenue via l'algorithme EM de Monte Carlo. L'importance échantillonnale est utilisée pour réduire le coût computationnel de l'échantillonnage Monte Carlo à chaque étape de l'algorithme EM. Nous proposons un nouveau modèle pour résoudre le problème. Il suppose une superposition additive des grappes, c'est-à-dire qu'une observation peut être expliquée par plus d'une seule grappe. Les exemples numériques démontrent l'utilité de nos méthodes en terme de sélection de variables et de regroupement.
Clustering is a classical method to analyse gene expression data. When applied to the rows (e.g. genes), each column belongs to all clusters. However, it is often observed that the genes of a subset of genes are co-regulated and co-expressed in a subset of conditions, but behave almost independently under other conditions. For these reasons, biclustering techniques have been proposed to look for sub-matrices of a data matrix. Biclustering is a simultaneous clustering of rows and columns of a data matrix. Most of the biclustering algorithms proposed in the literature have no statistical foundation. It is interesting to pay attention to the underlying models of these algorithms and develop statistical models to obtain significant biclusters. In this thesis, we review some biclustering algorithms that seem to be most popular. We group these algorithms in accordance to the type of homogeneity in the bicluster and the type of overlapping that may be encountered. We shed light on statistical models that can justify these algorithms. It turns out that some techniques can be justified in a Bayesian framework. We develop an extension of the biclustering plaid model in a Bayesian framework and we propose a measure of complexity for biclustering. The deviance information criterion (DIC) is used to select the number of biclusters. Studies on gene expression data and simulated data give satisfactory results. To our knowledge, the biclustering algorithms assume that genes and experimental conditions are independent entities. These algorithms do not incorporate prior biological information that could be available on genes and conditions. We introduce a new Bayesian plaid model for gene expression data which integrates biological knowledge and takes into account the pairwise interactions between genes and between conditions via a Gibbs field. Dependence between these entities is made from relational graphs, one for genes and another for conditions. The graph of the genes and conditions is constructed by the k-nearest neighbors and allows to define a priori distribution of labels as auto-logistic models. The similarities of genes are calculated using gene ontology (GO). To estimate the parameters, we adopt a hybrid procedure that mixes MCMC with a variant of the Wang-Landau algorithm. Experiments on simulated and real data show the performance of our approach. It should be noted that there may be several variables of noise in microarray data. These variables may mask the true structure of the clustering. Inspired by the plaid model, we propose a model that simultaneously finds the true clustering structure and identifies discriminating variables. We propose a new model to solve the problem. It assumes that an observation can be explained by more than one cluster. This problem is addressed by using a binary latent vector, so the estimation is obtained via the Monte Carlo EM algorithm. Importance Sampling is used to reduce the computational cost of the Monte Carlo sampling at each step of the EM algorithm. Numerical examples demonstrate the usefulness of these methods in terms of variable selection and clustering.
Les simulations ont été implémentées avec le programme Java.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Deviance information criterion"

1

Wüthrich, Mario V., and Michael Merz. "Predictive Modeling and Forecast Evaluation." In Springer Actuarial, 75–110. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12409-9_4.

Full text
Abstract:
AbstractThis chapter is the core theoretical chapter on predictive modeling, forecast evaluation and model selection. The main problem in actuarial modeling is to forecast and price future claims. For this, we build predictive models, and this chapter deals with assessing and ranking these predictive models. We therefore introduce the mean squared error of prediction (MSEP) and, more generally, the expected generalization loss (GL) to assess predictive models. This chapter is complemented by a more decision-theoretic approach to forecast evaluation, it discusses deviance losses, proper scoring, elicitability, forecast dominance, cross-validation, Akaike’s information criterion (AIC) and we give an introduction to the bootstrap simulation method.
APA, Harvard, Vancouver, ISO, and other styles
2

Zeng, Tao, Yong Li, and Jun Yu. "Deviance Information Criterion for Comparing VAR Models." In Essays in Honor of Peter C. B. Phillips, 615–37. Emerald Group Publishing Limited, 2014. http://dx.doi.org/10.1108/s0731-905320140000033017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Donovan, Therese M., and Ruth M. Mickey. "The Survivor Problem Continued: Introduction to Bayesian Model Selection." In Bayesian Statistics for Beginners, 308–24. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198841296.003.0018.

Full text
Abstract:
This chapter provides a very brief introduction to Bayesian model selection. The “Survivor Problem” is expanded in this chapter, where the focus is now on comparing two models that predict how long a contestant will last in a game of Survivor: one model uses years of formal education as a predictor, and a second model uses grit as a predictor. Gibbs sampling is used for parameter estimation. Deviance Information Criterion (commonly abbreviated as DIC) is used as a guide for model selection. Details of how this measure is computed are described. The chapter also discusses model assessment (model fit) and Occam’s razor.
APA, Harvard, Vancouver, ISO, and other styles
4

Inchausti, Pablo. "Model Selection." In Statistical Modeling With R, 169–88. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192859013.003.0007.

Full text
Abstract:
Abstract The chapter discusses the problem and relevance of model selection in statistics based on parsimony. It thoroughly examines the conceptual basis of the various model selection criteria based on the theory of information: the Akaike, Bayesian, deviance, and Watanabe–Akaike information criteria. It discusses the use and abuse of model selection based on information criteria in the life sciences, and the main ideas behind model averaging in the frequentist and Bayesian frameworks using model weights. It introduces further tools for model validation in the Bayesian framework such as the posterior predictive distribution, posterior predictive checks, and methods based on cross validation.
APA, Harvard, Vancouver, ISO, and other styles
5

Anderson, Raymond A. "Stats & Maths & Unicorns." In Credit Intelligence & Modelling, 405–34. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844194.003.0011.

Full text
Abstract:
This chapter covers basic statistical concepts. Most statistics relate to hypothesis testing, and others to variable selection and model fitting. The name is because an exact match between a theoretical and empirical distribution is as rare as a unicorn. (1) Dispersion—measures of random variations—variance and its inflation factor, covariance and correlations {Pearson’s product-moment, Spearman’s rank order}, and the Mahalanobis distance. (2) Goodness-of-fit—do observations match expectations? This applies to both continuous dependent variables {R-squared and adjusted R2} and categorical {Pearson’s chi-square, Hosmer–Lemeshow statistic}. (3) Likelihood—assesses estimates’ goodness-of-fit to binary dependent variables {log-likelihood, deviance}, plus the Akaike and Bayesian information criteria used to penalize complexity. (4) The Holy Trinity of Statistics—i) Neyman–Pearson’s ‘likelihood ratio’—the basis for model comparisons; ii) Wald’s chi-square—for potential variable removal; iii) Rao’s score chi-square—for potential variable inclusion. These are all used in Logistic Regression.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Deviance information criterion"

1

Doong, Shing H., and Tean Q. Lee. "Causal driver detection with deviance information criterion." In 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5580778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography