To see the other types of publications on this topic, follow the link: Dexterous robot.

Dissertations / Theses on the topic 'Dexterous robot'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'Dexterous robot.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kappassov, Zhanat. "Touch driven dexterous robot arm control." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066085/document.

Full text
Abstract:
Les robots ont amélioré les industries, en particulier les systèmes d'assemblage basé sur des conveyors et ils ont le potentiel pour apporter plus de bénéfices: transports; exploration de zones dangereuses, mer profonde et même d'autres planètes; santé et dans la vie courante.Une barrière majeure pour leur évasion des environnements industriels avec des enceintes vers des environnements partagés avec les humains, c'est leur capacité réduite dans les tâches d’interaction physique, inclue la manipulation d'objets.Tandis que la dextérité de la manipulation n'est pas affectée par la cécité dans les humains, elle décroit énormément pour les robots: ils sont limités à des environnements statiques, mais le monde réel est très changeant. Dans cette thèse, nous proposons une approche différente qui considère le contrôle du contact pendant les interaction physiques entre un robot et l'environnement.Néanmoins, les approches actuelles pour l'interaction physique sont pauvres par rapport au numéro de tâches qu'elles peuvent exécuter. Pour permettre aux robots d'exécuter plus de tâches, nous dérivons des caractéristiques tactiles représentant les déformations de la surface molle d'un capteur tactile et nous incorporons ces caractéristiques dans le contrôleur d'un robot à travers des matrices de mapping tactile basées sur les informations tactiles et sur les tâches à développer.Dans notre première contribution, nous montrons comment les algorithmes de traitement d'images peuvent être utilisés pour découvrir la structure tridimensionnelle subjacente du repère de contact entre un objet et une matrice de capteurs de pression avec une surface molle attachée à l’effecteur d'un bras robotique qui interagit avec cet objet. Ces algorithmes obtiennent comme sorties les soi-disant caractéristiques tactiles. Dans notre deuxième contribution, nous avons conçu un contrôleur qui combine ces caractéristiques tactiles avec un contrôleur position-couple du bras robotique.Il permet à l'effecteur du bras déplacer le repère du contact d'une manière désirée à travers la régulation d'une erreur dans ces caractéristiques. Finalement, dans notre dernière contribution,avec l'addition d'une couche de description des tâches, nous avons étendu ce contrôleur pour adresser quatre problèmes communs dans la robotique: exploration, manipulation, reconnaissance et co-manipulation d'objets.Tout au long de cette thèse, nous avons mis l'accent sur le développement d'algorithmes qui marchent pas simplement avec des robots simulés mais aussi avec de robots réels. De cette manière, toutes ces contributions ont été évaluées avec des expériences faites avec au moins un robot réel. En général, ce travail a comme objectif de fournir à la communauté robotique un cadre unifié qui permet aux bras robotique d'être plus dextres et autonomes. Des travaux préliminaires ont été proposés pour étendre ce cadre au développement de tâches qui impliquent un contrôle multi-contact avec des mains robotiques multi-doigts<br>Robots have improved industry processes, most recognizably in conveyor-belt assemblysystems, and have the potential to bring even more benefits to our society in transportation,exploration of dangerous zones, deep sea or even other planets, health care and inour everyday life. A major barrier to their escape from fenced industrial areas to environmentsco-shared with humans is their poor skills in physical interaction tasks, includingmanipulation of objects. While the dexterity in manipulation is not affected by the blindnessin humans, it dramatically decreases in robots. With no visual perception, robotoperations are limited to static environments, whereas the real world is a highly variantenvironment.In this thesis, we propose a different approach that considers controlling contact betweena robot and the environment during physical interactions. However, current physicalinteraction control approaches are poor in terms of the range of tasks that can beperformed. To allow robots to perform more tasks, we derive tactile features representingdeformations of the mechanically compliant sensing surface of a tactile sensor andincorporate these features to a robot controller via touch-dependent and task-dependenttactile feature mapping matrices.As a first contribution, we show how image processing algorithms can be used todiscover the underlying three dimensional structure of a contact frame between an objectand an array of pressure sensing elements with a mechanically compliant surfaceattached onto a robot arm’s end-effector interacting with this object. These algorithmsobtain as outputs the so-called tactile features. As a second contribution, we design a tactileservoing controller that combines these tactile features with a position/torque controllerof the robot arm. It allows the end-effector of the arm to steer the contact frame ina desired manner by regulating errors in these features. Finally, as a last contribution, weextend this controller by adding a task description layer to address four common issuesin robotics: exploration, manipulation, recognition, and co-manipulation of objects.Throughout this thesis, we make emphasis on developing algorithms that work notonly with simulated robots but also with real ones. Thus, all these contributions havebeen evaluated in experiments conducted with at least one real robot. In general, thiswork aims to provide the robotics community with a unified framework to that will allowrobot arms to be more dexterous and autonomous. Preliminary works are proposedfor extending this framework to perform tasks that involve multicontact control withmultifingered robot hands
APA, Harvard, Vancouver, ISO, and other styles
2

Nguyen, Kien Cuong. "Control of an anthropomorphic arm-hand robot for grasping and dexterous manipulation." Paris 6, 2013. http://www.theses.fr/2013PA066703.

Full text
Abstract:
Cette thèse traite du contrôle d’un système bras-main anthropomorphique robotisé en se concentrant sur deux aspects : le contrôle en force en bout de doigts et la coordination entre bras et main. Le contrôle en force d’un doigt reste difficile à cause de sa petite taille, sa faible bande passante, ses encodeurs peu précis et un jeu important dans la transmission mécanique. Ces difficultés empêchent les approches classiques d’avoir de bonnes performances sur ce système. Une nouvelle approche de contrôle de l’effort en bout de doigts en ajustant le couple maximum des contrôleurs en position des articulations a montré de meilleures performances sur ce système. Non limitée au contrôle en effort pur, cette approche peut aussi être généralisée au contrôle hybride position/force et au contrôle indirect d’effort. Souvent négligé dans la littérature, la position et le mouvement du bras joue, en fait, un rôle important dans les tâches de manipulation fine. L’utilisation de celui-ci pour tourner un objet saisi dans la main sous l’effet inertiel et gravitationnel est un exemple typique. Le bras contribue aussi aux gestes naturels de saisie lors de l’approche. Dans cette thèse, le mouvement d'un objet saisi sous l'effet de pesanteur a été analysé et une stratégie de saisie a été élaborée. En plus, des contraintes mécaniques (effet ténodèse en particulier) contribuant aux gestes naturels de saisies ont été déchiffrées. Ces gestes naturels ont été reproduits sur un système bras-main anthropomorphique robotisé dans des situations de saisie avec redondance<br>This thesis deals with the control of an anthropomorphic arm-hand robot by focusing on two aspects: the control of the fingertip force and the coordination between the arm and the hand. The force control of a robotic finger remains difficult despite the advances in current state-of-art. This is due to the small size of the finger, its low communication bandwidth, the lack of precision of the position sensors and the significant backlash in the actuation systems. A new approach controlling the fingertip force by adjusting the joint torque saturation parameter shows better results. Not limited to pure force control, this control method is proved to also have good performance when applying to indirect and hybrid position/force control. Usually ignored in literature while considering dexterous manipulation, the position and movement of the arm play a very important role. Many in-hand manipulation tasks cannot be realized without a proper movement of the arm. One typical example is the rotation of the manipulated object relative to the palm without moving the fingers thanks to inertial and gravitational effects. Besides, arm movement is also an important factor contributing to the appearance of the grasping gestures. In this thesis, the movement of the grasped object under gravitational effect was analyzed and a grasping strategy was elaborated. In addition to this, some mechanical constraints (tenodesis effect in particular) contributing to the human natural gestures were deciphered and such natural gestures were reproduced on an anthropomorphic arm-hand robot in redundant grasping situations
APA, Harvard, Vancouver, ISO, and other styles
3

Price, Aaron David. "Biologically inspired dexterous robot hand actuated by smart material based artificial muscles." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27409.

Full text
Abstract:
Modern externally powered upper-body prostheses are conventionally actuated by electric servomotors. Although these motors achieve reasonable kinematic performance, they are voluminous and heavy. Deterring factors such as these lead to a substantial proportion of upper extremity amputees avoiding the use of their prostheses. Therefore, it is apparent that there exists a need for functional prosthetic devices that are compact and light-weight. The realization of such a device requires an alternative actuation technology, and biological inspiration suggests that tendon based systems are advantageous. Shape memory alloys are a type of smart material that exhibit an actuation mechanism resembling the biological equivalent. As such, shape memory alloy enabled devices promise to be of major importance in the future of dexterous robotics, and to prosthetics in particular. This thesis investigates the issues surrounding the practical application of shape memory alloys as artificial muscles in a three fingered robot hand. First the function of the human hand and the kinematic requirements for manipulation are reviewed. An overview of artificial hands is provided, followed by a discussion on shape memory alloys focused on the unique phenomena of the shape memory effect. Second, the forward and inverse kinematics of the artificial finger are established in order to relate the desired finger tip contact point to the required joint angles. This is followed by the design of the requisite instrumentation and control systems. Due to the highly nonlinear nature of both the SMA and the robot hand, alternative control approaches such as neural networks are reviewed. Finally, a large-strain SMA actuator is proposed and the concepts explored herein are applied to the design, manufacture, and evaluation of an SMA actuated robotic hand.
APA, Harvard, Vancouver, ISO, and other styles
4

Cerruti, Giulio. "Design and Control of a Dexterous Anthropomorphic Robotic Hand." Thesis, Ecole centrale de Nantes, 2016. http://www.theses.fr/2016ECDN0009/document.

Full text
Abstract:
Cette thèse présente la conception et la commande d’une main robotique légère et peu onéreuse pour un robot compagnon humanoïde. La main est conçue pour exprimer des émotions à travers des gestes et pour saisir de petits objets légers. Sa géométrie est définie à l’aide de données anthropométriques. Sa cinématique est simplifiée par rapport à la main humaine pour réduire le nombre d’actionneurs tout en respectant ses exigences fonctionnelles. La main préserve son anthropomorphisme grâce aux nombres et au placement de la base des doigts et à une bonne opposabilité du pouce. La mécatronique de la main repose sur un compromis entre des phalanges couplés, qui permettent de bien connaître la posture des doigts pendant les gestes, et des phalanges capable de s’adapter à la forme des objets pendant la saisie, réunis en une conception hybride unique. Ce compromis est rendu possible grâce à deux systèmes d’actionnement distincts placés en parallèle. Leur coexistence est garantie par une transmission compliante basée sur des barres en élastomère. La solution proposée réduit significativement le poids et la taille de la main en utilisant sept actionneurs de faible puissance pour les gestes et un seul moteur puissant pour la saisie. Le système est conçue pour être embarqué sur Romeo, un robot humanoïde de1.4 [m] produit par Aldebaran. Les systèmes d’actionnements sont dimensionnés pour ouvrir et fermer les doigts en moins de 1 [s] et pour saisir une canette pleine de soda. La main est réalisée et contrôlée pour garantir une interaction sûre avec l’homme mais aussi pour protéger l’intégrité de la mécanique. Un prototype (ALPHA) est réalisé pour valider la conception et ses capacités fonctionnelles<br>This thesis presents the design and control of a low-cost and lightweight robotic hand for a social humanoid robot. The hand is designed to perform expressive hand gestures and to grasp small and light objects. Its geometry follows anthropometric data. Its kinematics simplifies the human hand structure to reduce the number of actuators while ensuring functional requirements. The hand preserves anthropomorphism by properly placing five fingers on the palm and by ensuring an equilibrated thumb opposability. Its mechanical system results from the compromise between fully-coupled phalanges and self-adaptable fingers in a unique hybrid design. This answers the need for known finger postures while gesturing and for finger adaptation to different object shapes while grasping. The design is based on two distinct actuation systems embodied in parallel within the palm and the fingers. Their coexistence is ensured by a compliant transmission based on elastomer bars. The proposed solution significantly reduces the weightand the size of the hand by using seven low-power actuators for gesturing and a single high-power motor for grasping. The overall system is conceived to be embedded on Romeo, a humanoid robot 1.4 [m] tall produced by Aldebaran. Actuation systems are dimensioned to open and close the fingers in less than1 [s] and to grasp a full soda can. The hand is realized and controlled to ensure safe human-robot interaction and to preserve mechanical integrity. A prototype(ALPHA) is realized to validate the design feasibility and its functional capabilities
APA, Harvard, Vancouver, ISO, and other styles
5

Corrales, Ramón Juan Antonio. "Safe human-robot interaction based on multi-sensor fusion and dexterous manipulation planning." Doctoral thesis, Universidad de Alicante, 2011. http://hdl.handle.net/10045/22770.

Full text
Abstract:
This thesis presents several new techniques for developing safe and flexible human-robot interaction tasks where human operators cooperate with robotic manipulators. The contributions of this thesis are divided in two fields: the development of safety strategies which modify the normal behavior of the robotic manipulator when the human operator is near the robot and the development of dexterous manipulation tasks for in-hand manipulation of objects with a multi-fingered robotic hand installed at the end-effector of a robotic manipulator.<br>Valencian Government by the research project "Infraestructura 05/053". Spanish Ministry of Education and Science by the pre-doctoral grant AP2005-1458 and the research projects DPI2005-06222 and DPI2008-02647, which constitute the research framework of this thesis.
APA, Harvard, Vancouver, ISO, and other styles
6

Yussof, Hanafiah, and Masahiro Ohka. "Application of stiffness control algorithm for dexterous robot grasping using optical three-axis tactile sensor system." IEEE, 2009. http://hdl.handle.net/2237/13948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adibhatla, Gagan. "Design and implementation of a compliance controller for the PS10-7CE seven degree of freedom dexterous robot." Cincinnati, Ohio : University of Cincinnati, 2007. http://www.ohiolink.edu/etd/view.cgi?acc%5Fnum=ucin1195870314.

Full text
Abstract:
Thesis (M.S.)--University of Cincinnati, 2007.<br>Advisor: Albert Bosse. Title from electronic thesis title page (viewed Feb. 18, 2008). Includes abstract. Keywords: Compliance; controller; seven degree freedom; Spring mass damper; servo; robot; Mitsubishi; pa10; impedance. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
8

ADIBHATLA, GAGAN. "DESIGN AND IMPLEMENTATION OF A COMPLIANCE CONTROLLER FOR THE PA10-7CE SEVEN DEGREE OF FREEDOM DEXTEROUS ROBOT." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1195870314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laferrière, Pascal. "Instrumented Compliant Wrist System for Enhanced Robotic Interaction." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35502.

Full text
Abstract:
This thesis presents the development of an instrumented compliant wrist mechanism which serves as an interface between robotic platforms and their environments in order to detect surface positions and orientations. Although inspired by similar existing devices, additional features such as noncontact distance estimations, a simplified physical structure, and wireless operation were incorporated into the design. The primary role envisioned for this mechanism was for enabling robotic manipulators to perform surface following tasks prior to contact as this was one requirement of a larger project involving inspection of surfaces. The information produced by the compliant wrist system can be used to guide robotic devices in their workspace by providing real-time proximity detection and collision detection of objects. Compliance in robotic devices has attracted the attention of many researchers due to the multitude of benefits it offers. In the scope of this work, the main advantage of compliance is that it allows rigid structures to come into contact with possibly fragile objects. Combined with instrumentation for detecting the deflections produced by this compliance, closed-loop control can be achieved, increasing the number of viable applications for an initially open-loop system. Custom fabrication of a prototype device was completed to physically test operation of the designed system. The prototype incorporates a microcontroller to govern the internal operations of the device such as sensor data collection and processing. By performing many computation tasks directly on the device, robotic controllers are able to dedicate more of their time to more important tasks such as path planning and object avoidance by using the pre-conditioned compliant device data. Extensive work has also gone into the refinement of sensor signals coming from the key infrared distance measurement sensors used in the device. A calibration procedure was developed to decrease inter-sensor variability due to the method of manufacturing of these sensors. Noise reduction in the signals is achieved via a digital filtering process. The evaluation of the performance of the device is achieved through the collection of a large amount of sensor data for use in characterisation of the sensor and overall system behavior. This comes in the form of a statistical analysis of the sensor outputs to determine signal stability and accuracy. Additionally, the operation of the device is validated by its integration onto a manipulator robot and incorporating the data generated into the robot’s control loop.
APA, Harvard, Vancouver, ISO, and other styles
10

Haouas, Wissem. "Étude et développement de robots parallèles à plateformes configurables pour la micromanipulation dextre." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD048/document.

Full text
Abstract:
L’objectif de cette thèse est de développer de nouveaux robots qui combinent dextérité, compacité et précision afin de réaliser des tâches de micromanipulation complexes dans des environnements confinés. Ainsi, deux architectures robotiques parallèles ont été développées. La première est un poignet à 4 degrés de liberté (DDL) en rotation et la seconde est un robot redondant à 7 DDL. Les deux structures intègrent la fonction de préhension grâce à une plateforme configurable et un actionnement déporté. L’étude géométrique et cinématique des deux robots ainsi que des résultats expérimentaux validant les deux architectures sont présentés. Pour miniaturiser le robot à 7 DDL, les liaisons mécaniques (rotules) ont été remplacées par des liaisons en élastomère (PDMS). Cette solution permet, entre autres, d’éliminer les jeux mécaniques au niveau des articulations tout en gardant une grande plage de déplacement. Cependant, comme le comportement de telles articulations ne correspond pas parfaitement à des liaisons rotules, un modèle de robot prenant en compte le comportement élastique de ces articulations a été développé. Afin de réaliser la structure à l’échelle désirée (jambes et liaisons à 400 µm de côté), un nouveau processus de micro-fabrication en salle blanche a été développé. Contrairement aux méthodes existantes, le nouveau processus permet de réduire le nombre d’étapes de gravure et d’intégrer différents types d’élastomères à des microstructures robotiques en silicium. Enfin, le micro-robot a été réalisé et les capacités de déplacement dans les 6 DDL en plus de la préhension ont été validées. Les applications visées des robots développées dans cette thèse sont le micro/nano-assemblage, la manipulation de cellules biologiques et la chirurgie mini-invasive, notamment en neurochirurgie<br>The objective of this thesis is the development of new robots that combine dexterity, compactness and precision to perform complex micromanipulation tasks in confined environments. Thus, two parallel robotic structures have been developed. The first is a wrist that can insure 4 degrees of freedom (DOF) in rotation and the second is a redundant robot with 7 DOF. Both structures integrate the grasping function thanks to a configurable platform and a deported actuation. The kinematic study of the two robots and the experimental results validating the two architectures are presented. To miniaturize the 7 DOF robot, the mechanical joints (spherical) have been replaced by elastomeric articulations (PDMS). This solution allows, among others, to eliminate the mechanical backlash in the joints while keeping a large range of movements. However, as the behavior of such joints does not correspond perfectly to spherical joints, a model for the robot taking into account the elastic behavior of these joints has been developed. In order to made the structure on the desired scale (the cross sectional side of its legs and connections are 400 µm), a new microfabrication process in the clean room has been developed. Unlike the existing methods, the new process reduces the number of etching steps and allow the integration of different types of elastomers into silicon robotic microstructures. Finally, the micro-robot was realized and the displacement capacities in the 6 DOF with the grasping were validated. The targeted applications by the developed robots in this thesis are micro / nano-assembly, manipulation of biological cells and minimally invasive surgery, particularly in neurosurgery
APA, Harvard, Vancouver, ISO, and other styles
11

Qian, Yang. "Conception et Commande d’un Robot d’Assistance à la Personne." Thesis, Ecole centrale de Lille, 2013. http://www.theses.fr/2013ECLI0005/document.

Full text
Abstract:
Ce travail s’inscrit dans le cadre de la conception et réalisation d’un robot d’assistance à la personne. Dans cette thèse, nous nous intéressons particulièrement à la conception, à la modélisation et à la commande d’un robot manipulateur mobile. La conception mécanique couplée à un outil de simulation dynamique multi-corps nous a permis d’obtenir un modèle virtuel très réaliste. Le modèle cinématique du système a été obtenu en utilisant la méthode D-H modifiée. L’approche Bond graph et la méthode de Lagrange ont permis de construire le modèle dynamique. Un algorithme hybride qui combine la pseudoinverse du jacobien et la méthode RRT a été proposé pour la planification de mouvement d’un manipulateur redondant et rechercher de configurations continues, stables et sans collision. Un contrôleur basé sur les réseaux de neurones a été introduit pour la commande coordonnée d’un manipulateur mobile. Cette méthode ne nécessite pas un modèle précis du robot. Les paramètres inconnus sont identifiés et compensés en utilisant des réseaux de neurones RBF. Un algorithme de contrôle similaire est présenté pour la commande force/position d’un manipulateur mobile qui est soumis à des contraintes holonomes et nonholonomes. L’étude de la main robotique a été effectuée séparément avant d’être couplée au reste du système. Les modèles cinématique et dynamique du système main-objet ont été obtenus en utilisant les approches mathématiques et bond graph. Un algorithme est proposé afin d’assurer une prise ferme, éviter les dérapages et suivre les mouvements désirés. Les validations des modèles et des différentes lois de commande ont été effectuées grâce à la co-simulation Matlab/modèle virtuel<br>The purpose of this thesis is to design, model and control of a personal assistant robot used for domestic tasks. In order to make the robot’s design more efficient, a virtual simulation system is built using dynamic simulation software. The kinematic model is set up based on modified D-H principle. The dynamic model is built using the Lagrange theorem and elaborated in Matlab. We also employ an energy-based approach for modeling and its bond graph notation ensures encapsulation of functionality, extendibility and reusability of each element of the model. A hybrid algorithm of combining the Jacobian pseudoinverse algorithm with Rapidly-Exploring Random Tree method is presented for collision-free path planning of a redundant manipulator. An intelligent robust controller based on neural network is introduced for the coordinated control of a mobile manipulator. This method does not require an accurate model of the robot. Unknown dynamic parameters of the mobile platform and the manipulator are identified and compensated in closed-loop control using RBF neural network. A similar control algorithm is presented for coordinated force/motion control of a mobile manipulator suffering both holonomic and nonholonomic constraints. Kinematics and dynamics of a dexterous hand manipulating an object with known shape by rolling contacts are derived. A computed torque control algorithm is presented to ensure firm grip, avoid slippage and well track a given motion imposed to the object. The validation of models and different control laws were made by the co-simulation Matlab / virtual model
APA, Harvard, Vancouver, ISO, and other styles
12

Rojas, Quintero Juan Antonio. "Contribution à la manipulation dextre dynamique pour les aspects conceptuels et de commande en ligne optimale." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2284/document.

Full text
Abstract:
Nous nous intéressons à la conception des mains mécaniques anthropomorphes destinées à manipuler des objets dans un environnement humain. Via l'analyse du mouvement de sujets humains lors d'une tâche de manipulation de référence, nous proposons une méthode pour évaluer la capacité des mains robotiques à manipuler les objets. Nous montrons comment les rapports de couplage angulaires entre les articulations et les limites articulaires, influent sur l'aptitude à manipuler dynamiquement des objets. Nous montrons également l'impact du poignet sur les tâches de manipulation rapides. Nous proposons une stratégie pour calculer les forces de manipulation en bout de doigts et dimensionner les moteurs d'un tel préhenseur. La méthode proposée est dépendante de la tâche visée et s'adapte à tout type de mouvement dès lors qu'il peut être capturé et analysé. Dans une deuxième partie, consacrée aux robots manipulateurs, nous élaborons des algorithmes de commande optimale. En considérant l'énergie cinétique du robot comme une métrique, le modèle dynamique est formulé sous forme tensorielle dans le cadre de la géométrie Riemannienne. La discrétisation temporelle est basée sur les Éléments Finis d'Hermite. Nous intégrons les équations de Lagrange du mouvement par une méthode de perturbation. Des exemples de simulation illustrent la superconvergence de la technique d'Hermite. Le critère de contrôle est choisi indépendant des paramètres de configuration. Les équations de la commande associées aux équations du mouvement se révèlent covariantes. La méthode de commande optimale proposée consiste à minimiser la fonction objective correspondant au critère invariant sélectionné<br>We focus on the design of anthropomorphous mechanical hands destined to manipulate objects in a human environment. Via the motion analysis of a reference manipulation task performed by human subjects, we propose a method to evaluate a robotic hand manipulation capacities. We demonstrate how the angular coupling between the fingers joints and the angular limits affect the hands potential to manipulate objects. We also show the influence of the wrist motions on the manipulation task. We propose a strategy to calculate the fingertip manipulation forces and dimension the fingers motors. In a second part devoted to articulated robots, we elaborate optimal control algorithms. Regarding the kinetic energy of the robot as a metric, the dynamic model is formulated tensorially in the framework of Riemannian geometry. The time discretization is based on the Hermite Finite Elements.A time integration algorithm is designed by implementing a perturbation method of the Lagrange's motion equations. Simulation examples illustrate the superconvergence of the Hermite's technique. The control criterion is selected to be coordinate free. The control equations associated with the motion equations reveal to be covariant. The suggested control method consists in minimizing the objective function corresponding to the selected invariant criterion
APA, Harvard, Vancouver, ISO, and other styles
13

WU, CHIH EN, and 吳至恩. "Design and implementation of dexterous robot hand." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/05559203668771752104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

"A friendly teaching system for dexterous manipulation tasks of multi-fingered hands." 1998. http://library.cuhk.edu.hk/record=b5889664.

Full text
Abstract:
by Lam Pak Chio.<br>Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.<br>Includes bibliographical references (leaves 101-105).<br>Abstract also in Chinese.<br>Abstract --- p.ii<br>Acknowledgements --- p.v<br>Contents<br>Chapter 1 --- Introduction --- p.1<br>Chapter 1.1 --- Background --- p.1<br>Chapter 1.2 --- Problem Definition and Approach --- p.3<br>Chapter 1.3 --- Outline --- p.5<br>Chapter 2 --- Algorithm Outline --- p.7<br>Chapter 2.1 --- Introduction --- p.7<br>Chapter 2.2 --- Assumptions --- p.7<br>Chapter 2.3 --- Object Model --- p.8<br>Chapter 2.4 --- Hand Model --- p.9<br>Chapter 2.5 --- Measurement Data --- p.11<br>Chapter 2.6 --- Algorithm Outline --- p.12<br>Chapter 3 --- Calculation of Contact States --- p.14<br>Chapter 3.1 --- Introduction --- p.14<br>Chapter 3.2 --- Problem Analysis --- p.15<br>Chapter 3.3 --- Details of Algorithm --- p.17<br>Chapter 3.3.1 --- Calculation of Contact Points --- p.18<br>Chapter 3.3.2 --- Calculation of Object Position and Orientation --- p.26<br>Chapter 3.3.2.1 --- The Object Orientation --- p.26<br>Chapter 3.3.2.2 --- The Object Position --- p.28<br>Chapter 3.3.3 --- Contact Points on Other Fingers --- p.32<br>Chapter 4 --- Calculation of Contact Motion --- p.34<br>Chapter 4.1 --- Introduction --- p.34<br>Chapter 4.2 --- Search-tree --- p.34<br>Chapter 4.3 --- Cost Function --- p.36<br>Chapter 4.4 --- Details of Algorithm --- p.37<br>Chapter 4.4.1 --- Calculation of the Next Instant Contact States --- p.39<br>Chapter 4.4.1.1 --- Contact Region Estimation --- p.41<br>Chapter 4.4.1.2 --- Contact Point Calculation --- p.45<br>Chapter 4.4.1.3 --- Object Position and Orientation Calculation --- p.48<br>Chapter 4.4.1.4 --- Contact Motion Calculation --- p.50<br>Chapter 5 --- Implementation --- p.56<br>Chapter 5.1 --- Introduction --- p.56<br>Chapter 5.2 --- Architecture of Friendly Teaching System --- p.56<br>Chapter 5.2.1 --- CyberGlove --- p.57<br>Chapter 5.2.2 --- CyberGlove Interface Unit --- p.57<br>Chapter 5.2.3 --- Host Computer --- p.58<br>Chapter 5.2.4 --- Software --- p.58<br>Chapter 5.3 --- Algorithm Implementation --- p.59<br>Chapter 5.4 --- Examples for Calculation of Contact Configuration --- p.59<br>Chapter 5.5 --- Simulation --- p.68<br>Chapter 5.6 --- Experiments --- p.82<br>Chapter 5.6.1 --- Translation of an Object --- p.82<br>Chapter 5.6.2 --- Rotation of an Object --- p.90<br>Chapter 6 --- Conclusions --- p.98<br>References --- p.101<br>Appendix --- p.106
APA, Harvard, Vancouver, ISO, and other styles
15

Deegan, Patrick. "Whole-body strategies for mobility and manipulation." 2010. https://scholarworks.umass.edu/dissertations/AAI3409566.

Full text
Abstract:
The robotics community has succeeded in creating remarkable machines and task-level programming tools, but arguably has failed to apply sophisticated autonomous machines to sophisticated tasks. One reason is that this combination leads to prohibitive complexity. Biological systems provide many examples of integrated systems that combine high-performance and flexibility, with logically-organized low-level control. Sophisticated organisms have evolved that depend on physical dexterity to thrive in a particular ecological niche while mitigating computational and behavioral complexity. This dissertation investigates the potential for a new kind of hybrid robotic design process. A design for performance that combines mechanical dexterity with low-level embedded firmware that organizes behavior and facilitates programming at a higher level. I propose that dexterous machines can incorporate embedded firmware that express the “aptitudes” implicit in the design of the robot and hierarchically organize the behavior of the system for programming. This is a win-win situation where the quality of the embedded firmware determines how efficiently programmers (autonomous learning algorithms or human programmers) can construct control programs that are robust, flexible, and respond gracefully to unanticipated circumstances. This dissertation introduces the uBot-5—a mobile manipulator concept for human environments that provides dexterous modes for mobility and manipulation and control firmware that organizes these behavioral modes locally for use by applications code. Postural control underlies the uniform treatment of several mobility modes that engage different combinations of sensor and motor resources. The result is a platform for studying “whole-body” control strategies that can be applied jointly to simultaneous mobility and manipulation objectives. The thesis examines the specification and development of both: (1) a dexterous robot for unstructured environments, and (2) the embedded firmware that organizes dexterous behavior for mobility and manipulation tasks. Integrated solutions are proposed that control transitions between postural “modes” and provide a logically organized dexterous behavior hierarchy. Firmware programming can also be used to construct an efficient API for user programming and autonomous machine learning. My goal is to contribute technologies that can support new robotic applications in our culture that require fully integrated dexterous robots in unstructured environments. Personal robotics is an important emerging application that depends on seamlessly integrated and sophisticated machines, controllers, and adaptability. Logically organized representations for use in task-level application development are critical to pull this off. The impact of such technology could be significant—with applications that include healthcare and telemedicine, exploration, emergency response, logistics, and flexible manufacturing.
APA, Harvard, Vancouver, ISO, and other styles
16

Lucas, S. R. "Robot hand-arm co-operated motion planning." 1997. http://repository.unimelb.edu.au/10187/4294.

Full text
Abstract:
Research and development leading to the realisation of a fully autonomous and robust multi-fingered hand has been going on for three decades. Yet none can be found in an industrial application. This is largely because we do not fully understand the fundamental mechanics of multi-finger grasping.<br>This thesis is a study of the mechanics of multi-finger grasping, with particular attention being paid to applying the analysis to experimental co-operative motion tasks between a hand-arm system and grasped object.<br>Fine manipulation with multi-fingered robot hands is critically influenced by the capacity to achieve stable grasps. By exploring the fundamental mechanics involved, a method for establishing the stability of spatial four finger-contact grasps is obtained. This work examines both frictionless and frictional grasps in two and three dimensions and develops the stability requirements for grasping. The conditions for a stable grasp are expressed as simple equations relating the line coordinates of (i) transitory sliding actuator and (ii) the normal to the tangent plane at every contact location. This is achieved by using the principle of virtual work and a branch of statics known as astatics.<br>After specifying a grasp in terms of its contact locations and forces the object can be grasped. However, in general the configuration of the hand-arm combination will not be unique, as such a manipulator system has more than six degrees of freedom and is said to be super-abundant. The choice of appropriate shares taken by the arm and hand in delivering the manipulation task needs to be resolved. This can be done making use of a kinematic performance measure based on aligning the grip triangle with the hand line of symmetry and maximising the available manipulation range. The hand-arm combination can then be driven to this desired grasp enabling the manipulator to carry out the specified task effectively. A Salisbury hand and PUMA 760 robot arm are used to demonstrate these co-operative motion tasks.<br>All the experimental results are presented along with a detailed description of the implementation of a hierarchical robot controller system which incorporates force control of the PUMA 760.
APA, Harvard, Vancouver, ISO, and other styles
17

伊藤, 優司, and Yuji ITO. "A Study of Vision-based Tactile Sensors Based on Deformation Analysis of Elastic Bodies for Dexterous Handling of Robots." Thesis, 2014. http://hdl.handle.net/2237/20331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!