Academic literature on the topic 'Diagrammes de bifurcation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diagrammes de bifurcation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Diagrammes de bifurcation"
WANG, HUAILEI, and HAIYAN HU. "BIFURCATION ANALYSIS OF A DELAYED DYNAMIC SYSTEM VIA METHOD OF MULTIPLE SCALES AND SHOOTING TECHNIQUE." International Journal of Bifurcation and Chaos 15, no. 02 (February 2005): 425–50. http://dx.doi.org/10.1142/s0218127405012326.
Full textWANG, HUAILEI, HAIYAN HU, and ZAIHUA WANG. "GLOBAL DYNAMICS OF A DUFFING OSCILLATOR WITH DELAYED DISPLACEMENT FEEDBACK." International Journal of Bifurcation and Chaos 14, no. 08 (August 2004): 2753–75. http://dx.doi.org/10.1142/s0218127404010990.
Full textXUEJUN, GAO. "BIFURCATION BEHAVIORS OF THE TWO-STATE VARIABLE FRICTION LAW OF A ROCK MASS SYSTEM." International Journal of Bifurcation and Chaos 23, no. 11 (November 2013): 1350184. http://dx.doi.org/10.1142/s0218127413501848.
Full textFan, Li, and Sanyi Tang. "Global Bifurcation Analysis of a Population Model with Stage Structure and Beverton–Holt Saturation Function." International Journal of Bifurcation and Chaos 25, no. 12 (November 2015): 1550170. http://dx.doi.org/10.1142/s0218127415501709.
Full textEskandari, Zohreh, Javad Alidousti, and Reza Khoshsiar Ghaziani. "Codimension-One and -Two Bifurcations of a Three-Dimensional Discrete Game Model." International Journal of Bifurcation and Chaos 31, no. 02 (February 2021): 2150023. http://dx.doi.org/10.1142/s0218127421500231.
Full textSALAS, F., F. GORDILLO, J. ARACIL, and R. REGINATTO. "CODIMENSION-TWO BIFURCATIONS IN INDIRECT FIELD ORIENTED CONTROL OF INDUCTION MOTOR DRIVES." International Journal of Bifurcation and Chaos 18, no. 03 (March 2008): 779–92. http://dx.doi.org/10.1142/s0218127408020641.
Full textWEI, HSIU-CHUAN. "NUMERICAL REVISIT TO A CLASS OF ONE-PREDATOR, TWO-PREY MODELS." International Journal of Bifurcation and Chaos 20, no. 08 (August 2010): 2521–36. http://dx.doi.org/10.1142/s0218127410027143.
Full textROCŞOREANU, CARMEN, NICOLAIE GIURGIŢEANU, and ADELINA GEORGESCU. "CONNECTIONS BETWEEN SADDLES FOR THE FITZHUGH–NAGUMO SYSTEM." International Journal of Bifurcation and Chaos 11, no. 02 (February 2001): 533–40. http://dx.doi.org/10.1142/s0218127401002213.
Full textMOIOLA, JORGE LUIS. "ON THE COMPUTATION OF LOCAL BIFURCATION DIAGRAMS NEAR DEGENERATE HOPF BIFURCATIONS OF CERTAIN TYPES." International Journal of Bifurcation and Chaos 03, no. 05 (October 1993): 1103–22. http://dx.doi.org/10.1142/s0218127493000921.
Full textAGLIARI, ANNA, GIAN-ITALO BISCHI, ROBERTO DIECI, and LAURA GARDINI. "GLOBAL BIFURCATIONS OF CLOSED INVARIANT CURVES IN TWO-DIMENSIONAL MAPS: A COMPUTER ASSISTED STUDY." International Journal of Bifurcation and Chaos 15, no. 04 (April 2005): 1285–328. http://dx.doi.org/10.1142/s0218127405012685.
Full textDissertations / Theses on the topic "Diagrammes de bifurcation"
Dutour, Sikirić Mathieu. "Bifurcation vers l'état d'Abrikosov et diagramme de phase." Paris 11, 1999. http://www.theses.fr/1999PA112313.
Full textAssemat, Pauline. "Dynamique non-linéaire des écoulements confinés : application à l'instabilité de Marangoni-Bénard et aux écoulements entre surfaces texturées." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/1225/.
Full textThe work focuses on two different physical situations: the convective structures resulting from the Marangoni-Bénard instability and the flow between patterned surfaces. The two systems are spatially constrained and are analysed using dynamical systems theories. Marangoni-Bénard convection has been studied in cylindrical geometries with either a circular or a weakly elliptical cross-section. The comparison of the two situations is carried out in the non-linear regime and the corresponding bifurcation diagrams are analysed using bifurcation theory with symmetries. Two-dimensional Marangoni convection in binary mixtures with Soret effect has also been studied in large periodic domains. The results show the formation of steady convective structures localized in space called convectons and the onset of stable convectons embedded in a background of small amplitude standing waves. Finally, the transport properties of flows in between patterned surfaces under weak inertia influence is studied. The flow is induced by a constant applied pressure gradient and the velocity field is calculated using an extension of the lubrication approximation taking into account the first order inertial corrections. Trajectories of tracers are obtained by integrating numerically the quasi-analytic velocity field. The transport properties are analysed by the study of Poincaré sections and their invariants
Terrien, Soizic. "Instruments de la famille des flûtes : analyse des transitions entre régimes." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4756.
Full textVarious studies have highlighted the diversity of regimes in flute-like instruments : static, periodic or non periodic regimes. However, some aspects of their dynamics remain poorly understood. Both for flute players and makers, transitions between regimes are particularly important : on the one hand, they correspond to a change of the note played, and on the other hand, production of a given regime is determined by parameters related to making and to playing of the instrument. In this document, we are interested in caracteristics of regime change in flute-like instruments, in relation with making and playing issues.Different approches are considered. First, experimental methods, with measurement on both musician and an artificial mouth. On the other hand, a physical model of the instrument - a system of delay differential equations of neutral type - is studied, through time-domain integration, and using orthogonal collocation coupled to numerical continuation. This last approach provides access to bifurcation diagrams.Considering results of these different methods, it becomes possible to better understand different experimental phenomena, such as regime change and associated hysteresis, or production mechanisms of non periodic regimes. Influence of different parameters is further studied : the crucial importance of the channel geometry in recorders is highlighted, and the influence of the mouth pressure dynamics on regime change thresholds is analysed
Rihana, Sandy. "Modélisation de l'activité électrique utérine." Compiègne, 2008. http://www.theses.fr/2008COMP1742.
Full textIt is hypothesized that uterine electrical activity is efficiently correlated to the uterine contractions appearance. Once, forceful contractions appear, delivery is near. Therefore, the understanding of the genesis and of the propagation of the uterine electrical activity may provide an efficient tool to diagnosis preterm labour. Moreover, the control of uterine excitability seems to have important therapeutic consequences in controlling preterm labour. Modelling the electrical activity in uterine tissue is an important step for the understanding of physiological uterine contractile mechanisms. It would permit to reconstruct the uterine EMG. This work presents an electrophysiological model of the uterine cell that incorporates ion channel models at the cell level. The dynamical analysis of the uterine cell model allows a better apprehension of the main physiological effects on the cell's reponse. The cellular electrical activity will be integrated in a two dimension model, represented by the reaction diffusion equations, and will serve to the spatio-temporel integration at the uterine level for EMG reconstruction. This model validates some key physiological hypotheses considering uterine excitability and propagation
Mayol, Serra Catalina. "Dinàmica no lineal de sistemes làsers: potencials de Lyapunov i diagrames de bifurcacions." Doctoral thesis, Universitat de les Illes Balears, 2002. http://hdl.handle.net/10803/9430.
Full text1) Als làsers de classe A, la dinàmica determinista s'ha interpretat com el moviment damunt el potencial de Lyapunov. En la dinàmica estocàstica s'obté un flux sostingut per renou per a la fase del camp elèctric.
2) Per als làsers de classe A amb senyal injectat, s'ha descrit el conjunt de bifurcacions complet i s'ha determinat el conjunt d'amplituds i freqüències en el quals el làser respon
ajustant la seva freqüència a la del camp extern.
3) S'ha obtingut un potencial de Lyapunov pels làsers de classe B, només vàlid en el cas determinista, que inclou els termes de saturació de guany i d'emissió espontània.
4) S'ha realitzat un estudi del conjunt de bifurcacions parcial al voltant del règim tipus II de la singularitat Hopf--sella--node en un làser de classe B amb senyal injectat.
5) S'han identificat les respostes òptimes pels làsers de semiconductor sotmesos a modulació periòdica externa. S'han obtingut les corbes que donen la resposta màxima per cada tipus de resonància en el pla definit per l'amplitud relativa de modulació i la freqüència de modulació.
In this work we have studied the dynamics of both class A and class B lasers in terms of Lyapunov potentials. In the case of an injected signal or when some laser parameters are modulated, and more complex behaviour is expected, the bifurcation set is studied. The main results are the following:
1) For class A lasers, the deterministic dynamics has been interpreted as a movement on the potential landscape. In the stochastic dynamics we have found a noise sustained flow for the phase of the electric field.
2) For class A lasers with an injected signal, we have been able to describe the whole bifurcation set of this system and to determine the set of amplitudes frequencies for which the laser responds adjusting its frequency to that of the external field.
3) In the case of class B lasers, we have obtained a Lyapunov potential only valid in the deterministic case, including spontaneous emission and gain saturation terms. The fixed point corresponding to the laser in the on state has been interpreted as a minimum in this potential. Relaxation to this minimum is reached through damped oscillations.
4) We have performed a study of the partial bifurcation set around the type II regime of the Hopf-saddle-node singularity in a class B laser with injected signal.
5) We have identified the optimal responses of a semiconductor laser subjected to an external periodic modulation. The lines that give a maximum response for each type of resonance are obtained in the plane defined by the relative amplitude modulation and frequency modulation.
Bouktir, Yasser. "Étude des phénomènes d'instabilités, bifurcation et endommagement en mise en forme des matériaux." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0217/document.
Full textThe aim of the present work is to predict the occurrence of plastic instabilities (diffuse and localized necking) in thin sheet metals. The prediction of these plastic instabilities is undertaken using an elastic–plastic model coupled with ductile damage, which is then combined with various plastic instability criteria theory. The bifurcation-based criteria and the maximum force criterion used in this work are formulated within a general three-dimensional modeling framework, and then applied for the particular case of plane-stress conditions for sheet metals. Some theoretical relationships or links between the different investigated necking criteria are established, which allows a hierarchical classification in terms of their conservative character in predicting critical necking strains. The resulting numerical tool is implemented into the finite element code ABAQUS/Standard to predict forming limit diagrams, in both situations of a fully three-dimensional formulation and a plane-stress framework. This approach, that combines constitutive equations to necking criteria, serves as a useful tool in the design of new materials with improved ductility
Risler, Thomas. "Comportement critique d'oscillateurs couples ; Groupe de renormalisation et classe d'universalite." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004449.
Full textnotamment dues aux proprietes generiques des oscillateurs critiques
couples qui constituent le systeme. Cette these presente une etude
des proprietes critiques generiques des
systemes spatialement etendus d'oscillateurs stochastiques couples,
operant dans le voisinage d'une instabilite oscillante homogene ou
bifurcation de Hopf. Dans ce contexte, cette bifurcation constitue un
point critique dynamique hors equilibre, exhibant des proprietes
universelles qui sont canoniquement decrites par l'equation
Ginzburg-Landau complexe en presence de bruit. La formulation du probleme
en termes d'une theorie statistique dynamique des champs non hamiltonienne
nous permet d'etudier le comportement critique du systeme a l'aide des
techniques de la renormalisation dynamique perturbative.
Dans un cas particulier, une analogie exacte avec le modele O(2) dynamique
nous permet d'ecrire une relation generalisee de la relation
fluctuation-dissipation et de deduire le comportement critique du systeme
directement a partir des etudes anterieures. Dans le cas general,
nous etablissons la structure du groupe de renormalisation de la theorie
dans un espace de dimension
4-epsilon, en lui adaptant les schemas de renormalisation de Wilson et
de Callan-Symanzik. La presence d'une frequence caracteristique dans le
systeme - la frequence des oscillations spontanees a la transition -
impose d'associer aux transformations de renormalisation un changement de
referentiel oscillant dependant de l'echelle. Nous effectuons le
calcul a l'ordre de deux boucles en theorie des perturbations, et montrons
que la classe d'universalite du modele est decrite par le point fixe du
modele dynamique dissipatif
O(2) dans un referentiel oscillant bien choisi. Ainsi, bien que la
dynamique soit hautement hors equilibre et brise les relations de bilan
detaille, une relation fluctuation-dissipation generalisee est
asymptotiquement restauree a la transition. Cette relation prevoit
l'existence de fortes contraintes sur les principales observables
experimentales : la fonction de correlation a deux points et la fonction
de reponse lineaire a un stimulus sinusoidal.
Basak, Gancheva Inna. "Explicit integration of some integrable systems of classical mechanics." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/125114.
Full textEl objetivo principal de la tesis es el estudio analítico y geométrico de varios sistemas integrables dinámicos y finito-dimensionales de la mecánica clásica que están estrechamente vinculados, a saber: -La generalización clásica de Euler top: el sistema Zhukovski-Volterra (ZV) que describe el movimiento libre de un giróstato, es decir, un cuerpo rígido que lleva un rotor simétrico cuyo eje es fijo al cuerpo. - El caso del sistema integrable de Steklov-Lyapunov de las ecuaciones de Kirchhoff que describen el movimiento de un cuerpo rígido en un líquido incompresible ideal; - Una generalización no trivial del sistema integrable de Steklov-Lyapunov encontrado por V. Rubanovskii que describe el movimiento de un giróstato en un fluido ideal en presencia de una circulación distinta de cero. En nuestro estudio hemos obtenido una solución explícita de los sistemas de Zhukovski-Volterra [2] y de Steklov-Lyapunov en términos de funciones sigma- o theta y hemos realizado un análisis de la bifurcación de estos sistemas, así como de la generalización de Rubanovskii. Hay que señalar que la solución del sistema de ZV fue dado por primera vez por V. Volterra, que, sin embargo, presenta sólo su estructura, pero no las fórmulas explícitas. La tesis ofrece una nueva solución alternativa de este sistema mediante el uso de una parametrización algebraica del momento angular. Esto nos ha permitido encontrar polos y ceros del momento angular en forma algebraica. La parametrización también se utilizó para encontrar una solución explícita para el ángulo de precesión de Euler, y, en consecuencia, para resolver las ecuaciones de Poisson que describen el movimiento de un giróstato en el espacio. Del mismo modo, al dar una interpretación geométrica de las variables de separación, y utilizando las funciones de las raíces Weierstrass, hemos reconstruido la solución thetafunctional de los sistemas de Steklov-Lyapunov, que fue dado por primera vez por F. Kotter en 1899 sin una derivación ([3]). En el estudio de las bifurcaciones y las singularidades del sistema ZV hemos utilizado su estructura bi-Hamiltoniana ([1]). Según el nuevo método, la solución es crítica, si existe un parámetro de la familia correspondiente del paréntesis de Poisson, para que el rango de las paréntesis con este parámetro se disminuye. Aplicando las nuevas técnicas, basadas en la propiedad del sistema de ser bi-Hamiltoniana, construimos el diagrama de bifurcación del sistema ZV. También hemos encontrado los puntos de equilibrio del sistema, verificando la condición de no-degeneración de estos puntos, en el sentido de la teoría de singularidad de los sistemas hamiltonianos, determinando los tipos de puntos de equilibrio, y comprobando si son estables o no. También hemos descrito el tipo topológico de los niveles comunes de los primeros integrales del sistema de ZV. Problemas similares se han discutido en muchas obras, pero el objetivo de nuestro trabajo es estudiar el sistema y demostrar las técnicas anteriormente mencionadas. Es un hecho notable que el uso de la propiedad bi-Hamilton permite responder a todas las preguntas anteriores, prácticamente sin ningún cálculo difícil. El mismo método se aplica para construir el diagrama de bifurcación para el sistema de Steklov-Lyapunov, describir las zonas de movimiento real, y analizar la estabilidad de soluciones periódicas críticas. A continuación, el análisis de bifurcación se extiende a la generalización Rubanovskii. Aquí la principal dificultad consiste en que el número de diferentes tipos del diagrama de bifurcación es bastante alto, por lo que sólo se describen las propiedades generales de las curvas de bifurcación, y el análisis de estabilidad se hace para trayectorias cerradas, y equilibrios .
Casonatto, Catiana. "Invariantes do tipo Vassiliev de aplicações estáveis de 3-variedade em \'R POT. 4\'." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18082011-090351/.
Full textIn this work we obtain that the space of first order local Vassiliev type invariants of stable maps of oriented 3-manifolds in \'R POT. 4\' is 4-dimensional. We give a geometric interpretation for two of the four generators of this space, namely, \'I IND. Q\' the number of quadruple points and \'I IND. C / P\' the number of pairs of points of crosscap/plane type, of the image of a stable map. In the case of stable immersions, we obtain that the space of local invariants of stable immersions is 3-dimensional. The invariants that we obtain are: \'I IND. Q\' the number of pairs of quadruple points of the image of a stable immersion and the positive and negative linking invariants \'I IND. I`+ and I\'I IND., l\' introduced by V. Goryunov in [15]. As a beging of a study that we want to realise about the geometry of a m-manifold in \'R POT. m+1\' with singularities, we obtain the generic contacts of the suspension of crosscap (the only stable singularity from \'R POT. 3\' to \'R POT. 4\') with hyperplanes of \'R POT. 4\'
Balakireva, Irina. "Nonlinear dynamics of Kerr optical frequency combs." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2043.
Full textThis thesis is dedicated to the study of the Kerr optical frequency combs in whispering gallery moderesonators, where the light can be excited by the extern pump. Due to the Kerr effect existing in theseresonators, the quasi-equidistant lines in the spectral domain are generated around the excited mode,that is the frequency comb. This thesis is devided in three chapters. The first one is dedicated to theintroduction of the Kerr comb generation and their applications.The second one presents the analysisof the Lugiato-Lefever equation used for the analytical study of the system, leading to the constructionof two bifurcation diagrams for the normal and anomalous dispersions. They are plotted for twoparameters, which can be controlled during experiments once the resonator has been fabricated,which are the pump power of the laser and its frequency detuning. These diagrams show the areas ofthe parameters for which one, two, or three solutions exist and their stability. The additional numericalsimulations show the exact type of the solution in each area (such as the bright and dark solitons,the breathers, the primary and secondary Kerr combs and chaotical regimes), finally these diagramsshow the parameters of the laser needed to be choosen for the generation of the desired solution.The third chapter is dedicated to the secondary Kerr combs, which are the additional lines generatedbetween the lines of the primary comb. They appear in the anomalous dispersion regime, when thequantity of the pump photons crosses the second-order threshold, which has been found numerically
Books on the topic "Diagrammes de bifurcation"
A, Kuznet͡s︡ov I͡U︡, and Khibnik A. I, eds. Bifurkat͡s︡ionnye diagrammy dinamicheskikh sistem na ploskosti. Pushchino: Nauch. t͡s︡entr biologicheskikh issledovaniĭ AN SSSR v Pushchine, 1985.
Find full textBook chapters on the topic "Diagrammes de bifurcation"
Nusse, Helena E., James A. Yorke, and Eric J. Kostelich. "Bifurcation Diagrams." In Dynamics: Numerical Explorations, 229–68. New York, NY: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4684-0231-5_6.
Full textNusse, Helena E., James A. Yorke, Brian R. Hunt, and Eric J. Kostelich. "Bifurcation Diagrams." In Dynamics: Numerical Explorations, 267–312. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0219-6_6.
Full textParker, Thomas S., and Leon O. Chua. "Bifurcation Diagrams." In Practical Numerical Algorithms for Chaotic Systems, 201–35. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3486-9_8.
Full textIkeda, Kiyohiro, and Kazuo Murota. "Experimentally Observed Bifurcation Diagrams." In Imperfect Bifurcation in Structures and Materials, 122–49. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-3697-7_6.
Full textIkeda, Kiyohiro, and Kazuo Murota. "Experimentally Observed Bifurcation Diagrams." In Imperfect Bifurcation in Structures and Materials, 125–48. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7296-5_6.
Full textIkeda, Kiyohiro, and Kazuo Murota. "Experimentally Observed Bifurcation Diagrams." In Imperfect Bifurcation in Structures and Materials, 141–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21473-9_6.
Full textMorcillo, Daniel, Daniel Burbano, Fabiola Angulo, and Gerard Olivar. "Using Bifurcation Diagrams for Controlling Chaos." In Springer Proceedings in Mathematics & Statistics, 77–84. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08266-0_6.
Full textJarausch, Helmut, and Wolfgang Mackens. "Computing Bifurcation Diagrams for Large Nonlinear Variational Problems." In Large Scale Scientific Computing, 114–37. Boston, MA: Birkhäuser Boston, 1987. http://dx.doi.org/10.1007/978-1-4684-6754-3_8.
Full textOwen, Livia, and Eric Harjanto. "A Basic Manual for AUTO-07p in Computing Bifurcation Diagrams of a Predator-Prey Model." In Dynamical Systems, Bifurcation Analysis and Applications, 205–24. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9832-3_11.
Full textEilbeck, J. C., and J. E. Furter. "Understanding Steady-State Bifurcation Diagrams for a Model Reaction-Diffusion System." In Continuation and Bifurcations: Numerical Techniques and Applications, 25–41. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0659-4_3.
Full textConference papers on the topic "Diagrammes de bifurcation"
Elgohary, Tarek A., and Tamás Kalmár-Nagy. "Nonlinear Analysis of a 2-DOF Piecewise Linear Aeroelastic System." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70038.
Full textStiefs, Dirk, Thilo Gross, Ezio Venturino, and Ulrike Feudel. "Computing 3D Bifurcation Diagrams." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991095.
Full textWang, Dong-Mei, Wei Zhang, Mu-Rong Li, and Qian Wang. "Application of HDQM for the Analysis of Two-Dimensional Nonlinear Dynamics of Axially Accelerating Beam." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34139.
Full textLelkes, János, and Tamás Kalmár-Nagy. "Effect of Structural Nonlinearity on a Piecewise Linear Aeroelastic System." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98208.
Full textWang, Yuefang, Yong Li, Yong Zhang, and Xiaoyan Wang. "Nonlinear Vibration and Bifurcation Analysis for Rotor-Seal-Bearing Systems of Centrifugal Compressors." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34549.
Full textCorea-Araujo, J. A., F. Gonzalez-Molina, J. A. Martinez, J. A. Barrado-Rodrigo, and L. Guasch-Pesquer. "Ferroresonance analysis using 3D bifurcation diagrams." In 2013 IEEE Power & Energy Society General Meeting. IEEE, 2013. http://dx.doi.org/10.1109/pesmg.2013.6672183.
Full textBejar, Jose Ortiz, Juan J. Flores Romero, and Garibaldi Pineda Garcia. "Qualitative simulation over two-parameter bifurcation diagrams." In 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE, 2014. http://dx.doi.org/10.1109/ropec.2014.7036332.
Full textVörös, Illés, and Dénes Takács. "Bifurcation Analysis of a Lane Keeping Controller With Feedback Delay." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22387.
Full textOestreich, M., N. Hinrichs, K. Popp, and C. J. Budd. "Analytical and Experimental Investigation of an Impact Oscillator." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-3907.
Full textMustafa, G., and A. Ertas. "Nonlinear Interaction of a Parametrically-Excited Coupled Column-Pendulum Oscillator." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0134.
Full text