Dissertations / Theses on the topic 'Diagrammes de bifurcation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 dissertations / theses for your research on the topic 'Diagrammes de bifurcation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dutour, Sikirić Mathieu. "Bifurcation vers l'état d'Abrikosov et diagramme de phase." Paris 11, 1999. http://www.theses.fr/1999PA112313.
Full textAssemat, Pauline. "Dynamique non-linéaire des écoulements confinés : application à l'instabilité de Marangoni-Bénard et aux écoulements entre surfaces texturées." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/1225/.
Full textThe work focuses on two different physical situations: the convective structures resulting from the Marangoni-Bénard instability and the flow between patterned surfaces. The two systems are spatially constrained and are analysed using dynamical systems theories. Marangoni-Bénard convection has been studied in cylindrical geometries with either a circular or a weakly elliptical cross-section. The comparison of the two situations is carried out in the non-linear regime and the corresponding bifurcation diagrams are analysed using bifurcation theory with symmetries. Two-dimensional Marangoni convection in binary mixtures with Soret effect has also been studied in large periodic domains. The results show the formation of steady convective structures localized in space called convectons and the onset of stable convectons embedded in a background of small amplitude standing waves. Finally, the transport properties of flows in between patterned surfaces under weak inertia influence is studied. The flow is induced by a constant applied pressure gradient and the velocity field is calculated using an extension of the lubrication approximation taking into account the first order inertial corrections. Trajectories of tracers are obtained by integrating numerically the quasi-analytic velocity field. The transport properties are analysed by the study of Poincaré sections and their invariants
Terrien, Soizic. "Instruments de la famille des flûtes : analyse des transitions entre régimes." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4756.
Full textVarious studies have highlighted the diversity of regimes in flute-like instruments : static, periodic or non periodic regimes. However, some aspects of their dynamics remain poorly understood. Both for flute players and makers, transitions between regimes are particularly important : on the one hand, they correspond to a change of the note played, and on the other hand, production of a given regime is determined by parameters related to making and to playing of the instrument. In this document, we are interested in caracteristics of regime change in flute-like instruments, in relation with making and playing issues.Different approches are considered. First, experimental methods, with measurement on both musician and an artificial mouth. On the other hand, a physical model of the instrument - a system of delay differential equations of neutral type - is studied, through time-domain integration, and using orthogonal collocation coupled to numerical continuation. This last approach provides access to bifurcation diagrams.Considering results of these different methods, it becomes possible to better understand different experimental phenomena, such as regime change and associated hysteresis, or production mechanisms of non periodic regimes. Influence of different parameters is further studied : the crucial importance of the channel geometry in recorders is highlighted, and the influence of the mouth pressure dynamics on regime change thresholds is analysed
Rihana, Sandy. "Modélisation de l'activité électrique utérine." Compiègne, 2008. http://www.theses.fr/2008COMP1742.
Full textIt is hypothesized that uterine electrical activity is efficiently correlated to the uterine contractions appearance. Once, forceful contractions appear, delivery is near. Therefore, the understanding of the genesis and of the propagation of the uterine electrical activity may provide an efficient tool to diagnosis preterm labour. Moreover, the control of uterine excitability seems to have important therapeutic consequences in controlling preterm labour. Modelling the electrical activity in uterine tissue is an important step for the understanding of physiological uterine contractile mechanisms. It would permit to reconstruct the uterine EMG. This work presents an electrophysiological model of the uterine cell that incorporates ion channel models at the cell level. The dynamical analysis of the uterine cell model allows a better apprehension of the main physiological effects on the cell's reponse. The cellular electrical activity will be integrated in a two dimension model, represented by the reaction diffusion equations, and will serve to the spatio-temporel integration at the uterine level for EMG reconstruction. This model validates some key physiological hypotheses considering uterine excitability and propagation
Mayol, Serra Catalina. "Dinàmica no lineal de sistemes làsers: potencials de Lyapunov i diagrames de bifurcacions." Doctoral thesis, Universitat de les Illes Balears, 2002. http://hdl.handle.net/10803/9430.
Full text1) Als làsers de classe A, la dinàmica determinista s'ha interpretat com el moviment damunt el potencial de Lyapunov. En la dinàmica estocàstica s'obté un flux sostingut per renou per a la fase del camp elèctric.
2) Per als làsers de classe A amb senyal injectat, s'ha descrit el conjunt de bifurcacions complet i s'ha determinat el conjunt d'amplituds i freqüències en el quals el làser respon
ajustant la seva freqüència a la del camp extern.
3) S'ha obtingut un potencial de Lyapunov pels làsers de classe B, només vàlid en el cas determinista, que inclou els termes de saturació de guany i d'emissió espontània.
4) S'ha realitzat un estudi del conjunt de bifurcacions parcial al voltant del règim tipus II de la singularitat Hopf--sella--node en un làser de classe B amb senyal injectat.
5) S'han identificat les respostes òptimes pels làsers de semiconductor sotmesos a modulació periòdica externa. S'han obtingut les corbes que donen la resposta màxima per cada tipus de resonància en el pla definit per l'amplitud relativa de modulació i la freqüència de modulació.
In this work we have studied the dynamics of both class A and class B lasers in terms of Lyapunov potentials. In the case of an injected signal or when some laser parameters are modulated, and more complex behaviour is expected, the bifurcation set is studied. The main results are the following:
1) For class A lasers, the deterministic dynamics has been interpreted as a movement on the potential landscape. In the stochastic dynamics we have found a noise sustained flow for the phase of the electric field.
2) For class A lasers with an injected signal, we have been able to describe the whole bifurcation set of this system and to determine the set of amplitudes frequencies for which the laser responds adjusting its frequency to that of the external field.
3) In the case of class B lasers, we have obtained a Lyapunov potential only valid in the deterministic case, including spontaneous emission and gain saturation terms. The fixed point corresponding to the laser in the on state has been interpreted as a minimum in this potential. Relaxation to this minimum is reached through damped oscillations.
4) We have performed a study of the partial bifurcation set around the type II regime of the Hopf-saddle-node singularity in a class B laser with injected signal.
5) We have identified the optimal responses of a semiconductor laser subjected to an external periodic modulation. The lines that give a maximum response for each type of resonance are obtained in the plane defined by the relative amplitude modulation and frequency modulation.
Bouktir, Yasser. "Étude des phénomènes d'instabilités, bifurcation et endommagement en mise en forme des matériaux." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0217/document.
Full textThe aim of the present work is to predict the occurrence of plastic instabilities (diffuse and localized necking) in thin sheet metals. The prediction of these plastic instabilities is undertaken using an elastic–plastic model coupled with ductile damage, which is then combined with various plastic instability criteria theory. The bifurcation-based criteria and the maximum force criterion used in this work are formulated within a general three-dimensional modeling framework, and then applied for the particular case of plane-stress conditions for sheet metals. Some theoretical relationships or links between the different investigated necking criteria are established, which allows a hierarchical classification in terms of their conservative character in predicting critical necking strains. The resulting numerical tool is implemented into the finite element code ABAQUS/Standard to predict forming limit diagrams, in both situations of a fully three-dimensional formulation and a plane-stress framework. This approach, that combines constitutive equations to necking criteria, serves as a useful tool in the design of new materials with improved ductility
Risler, Thomas. "Comportement critique d'oscillateurs couples ; Groupe de renormalisation et classe d'universalite." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004449.
Full textnotamment dues aux proprietes generiques des oscillateurs critiques
couples qui constituent le systeme. Cette these presente une etude
des proprietes critiques generiques des
systemes spatialement etendus d'oscillateurs stochastiques couples,
operant dans le voisinage d'une instabilite oscillante homogene ou
bifurcation de Hopf. Dans ce contexte, cette bifurcation constitue un
point critique dynamique hors equilibre, exhibant des proprietes
universelles qui sont canoniquement decrites par l'equation
Ginzburg-Landau complexe en presence de bruit. La formulation du probleme
en termes d'une theorie statistique dynamique des champs non hamiltonienne
nous permet d'etudier le comportement critique du systeme a l'aide des
techniques de la renormalisation dynamique perturbative.
Dans un cas particulier, une analogie exacte avec le modele O(2) dynamique
nous permet d'ecrire une relation generalisee de la relation
fluctuation-dissipation et de deduire le comportement critique du systeme
directement a partir des etudes anterieures. Dans le cas general,
nous etablissons la structure du groupe de renormalisation de la theorie
dans un espace de dimension
4-epsilon, en lui adaptant les schemas de renormalisation de Wilson et
de Callan-Symanzik. La presence d'une frequence caracteristique dans le
systeme - la frequence des oscillations spontanees a la transition -
impose d'associer aux transformations de renormalisation un changement de
referentiel oscillant dependant de l'echelle. Nous effectuons le
calcul a l'ordre de deux boucles en theorie des perturbations, et montrons
que la classe d'universalite du modele est decrite par le point fixe du
modele dynamique dissipatif
O(2) dans un referentiel oscillant bien choisi. Ainsi, bien que la
dynamique soit hautement hors equilibre et brise les relations de bilan
detaille, une relation fluctuation-dissipation generalisee est
asymptotiquement restauree a la transition. Cette relation prevoit
l'existence de fortes contraintes sur les principales observables
experimentales : la fonction de correlation a deux points et la fonction
de reponse lineaire a un stimulus sinusoidal.
Basak, Gancheva Inna. "Explicit integration of some integrable systems of classical mechanics." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/125114.
Full textEl objetivo principal de la tesis es el estudio analítico y geométrico de varios sistemas integrables dinámicos y finito-dimensionales de la mecánica clásica que están estrechamente vinculados, a saber: -La generalización clásica de Euler top: el sistema Zhukovski-Volterra (ZV) que describe el movimiento libre de un giróstato, es decir, un cuerpo rígido que lleva un rotor simétrico cuyo eje es fijo al cuerpo. - El caso del sistema integrable de Steklov-Lyapunov de las ecuaciones de Kirchhoff que describen el movimiento de un cuerpo rígido en un líquido incompresible ideal; - Una generalización no trivial del sistema integrable de Steklov-Lyapunov encontrado por V. Rubanovskii que describe el movimiento de un giróstato en un fluido ideal en presencia de una circulación distinta de cero. En nuestro estudio hemos obtenido una solución explícita de los sistemas de Zhukovski-Volterra [2] y de Steklov-Lyapunov en términos de funciones sigma- o theta y hemos realizado un análisis de la bifurcación de estos sistemas, así como de la generalización de Rubanovskii. Hay que señalar que la solución del sistema de ZV fue dado por primera vez por V. Volterra, que, sin embargo, presenta sólo su estructura, pero no las fórmulas explícitas. La tesis ofrece una nueva solución alternativa de este sistema mediante el uso de una parametrización algebraica del momento angular. Esto nos ha permitido encontrar polos y ceros del momento angular en forma algebraica. La parametrización también se utilizó para encontrar una solución explícita para el ángulo de precesión de Euler, y, en consecuencia, para resolver las ecuaciones de Poisson que describen el movimiento de un giróstato en el espacio. Del mismo modo, al dar una interpretación geométrica de las variables de separación, y utilizando las funciones de las raíces Weierstrass, hemos reconstruido la solución thetafunctional de los sistemas de Steklov-Lyapunov, que fue dado por primera vez por F. Kotter en 1899 sin una derivación ([3]). En el estudio de las bifurcaciones y las singularidades del sistema ZV hemos utilizado su estructura bi-Hamiltoniana ([1]). Según el nuevo método, la solución es crítica, si existe un parámetro de la familia correspondiente del paréntesis de Poisson, para que el rango de las paréntesis con este parámetro se disminuye. Aplicando las nuevas técnicas, basadas en la propiedad del sistema de ser bi-Hamiltoniana, construimos el diagrama de bifurcación del sistema ZV. También hemos encontrado los puntos de equilibrio del sistema, verificando la condición de no-degeneración de estos puntos, en el sentido de la teoría de singularidad de los sistemas hamiltonianos, determinando los tipos de puntos de equilibrio, y comprobando si son estables o no. También hemos descrito el tipo topológico de los niveles comunes de los primeros integrales del sistema de ZV. Problemas similares se han discutido en muchas obras, pero el objetivo de nuestro trabajo es estudiar el sistema y demostrar las técnicas anteriormente mencionadas. Es un hecho notable que el uso de la propiedad bi-Hamilton permite responder a todas las preguntas anteriores, prácticamente sin ningún cálculo difícil. El mismo método se aplica para construir el diagrama de bifurcación para el sistema de Steklov-Lyapunov, describir las zonas de movimiento real, y analizar la estabilidad de soluciones periódicas críticas. A continuación, el análisis de bifurcación se extiende a la generalización Rubanovskii. Aquí la principal dificultad consiste en que el número de diferentes tipos del diagrama de bifurcación es bastante alto, por lo que sólo se describen las propiedades generales de las curvas de bifurcación, y el análisis de estabilidad se hace para trayectorias cerradas, y equilibrios .
Casonatto, Catiana. "Invariantes do tipo Vassiliev de aplicações estáveis de 3-variedade em \'R POT. 4\'." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18082011-090351/.
Full textIn this work we obtain that the space of first order local Vassiliev type invariants of stable maps of oriented 3-manifolds in \'R POT. 4\' is 4-dimensional. We give a geometric interpretation for two of the four generators of this space, namely, \'I IND. Q\' the number of quadruple points and \'I IND. C / P\' the number of pairs of points of crosscap/plane type, of the image of a stable map. In the case of stable immersions, we obtain that the space of local invariants of stable immersions is 3-dimensional. The invariants that we obtain are: \'I IND. Q\' the number of pairs of quadruple points of the image of a stable immersion and the positive and negative linking invariants \'I IND. I`+ and I\'I IND., l\' introduced by V. Goryunov in [15]. As a beging of a study that we want to realise about the geometry of a m-manifold in \'R POT. m+1\' with singularities, we obtain the generic contacts of the suspension of crosscap (the only stable singularity from \'R POT. 3\' to \'R POT. 4\') with hyperplanes of \'R POT. 4\'
Balakireva, Irina. "Nonlinear dynamics of Kerr optical frequency combs." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2043.
Full textThis thesis is dedicated to the study of the Kerr optical frequency combs in whispering gallery moderesonators, where the light can be excited by the extern pump. Due to the Kerr effect existing in theseresonators, the quasi-equidistant lines in the spectral domain are generated around the excited mode,that is the frequency comb. This thesis is devided in three chapters. The first one is dedicated to theintroduction of the Kerr comb generation and their applications.The second one presents the analysisof the Lugiato-Lefever equation used for the analytical study of the system, leading to the constructionof two bifurcation diagrams for the normal and anomalous dispersions. They are plotted for twoparameters, which can be controlled during experiments once the resonator has been fabricated,which are the pump power of the laser and its frequency detuning. These diagrams show the areas ofthe parameters for which one, two, or three solutions exist and their stability. The additional numericalsimulations show the exact type of the solution in each area (such as the bright and dark solitons,the breathers, the primary and secondary Kerr combs and chaotical regimes), finally these diagramsshow the parameters of the laser needed to be choosen for the generation of the desired solution.The third chapter is dedicated to the secondary Kerr combs, which are the additional lines generatedbetween the lines of the primary comb. They appear in the anomalous dispersion regime, when thequantity of the pump photons crosses the second-order threshold, which has been found numerically
Mansouri, Lotfi zoher. "Analyse des instabilités plastiques dans les matériaux ductiles endommageables : application à la prédiction de la striction et de la formabilité des tôles métalliques." Thesis, Paris, ENSAM, 2014. http://www.theses.fr/2014ENAM0059/document.
Full textDiffuse and localized necking are precursors to ductile fracture, and represent one of the main causes of metal parts rejection during forming operations. The implementation of theoretical and computational tools to predict the occurrence of these defects turns out to be necessary for economic and environmental reasons. These tools require in part the introduction of an appropriate behavior model in order to reproduce the physical phenomena involved during forming operations. Such a behavior model is then coupled to a plastic instability indicator providing the ability to reliably predict diffuse and localized necking. In the present work, we considered a micromechanical damage models based on Gurson's approach, which were coupled to different plastic instabilities criteria, based on Bifurcation Analysis. The numerical implementation of these models was carried within the implicit finite element code Abaqus/Standard. With regard to the damage models, several integration schemes were tested to analyze their performance and robustness when the behavior exhibits softening effect. The approach combining the Gurson's damage model and necking criteria has been applied for the prediction of formability limits of several metallic materials. The obtained results allowed establishing a theoretical and numerical classification between the necking criteria used in this work
Coutu, Caroline. "Étude du diagramme de bifurcation d'un système prédateur-proie." Thèse, 2003. http://hdl.handle.net/1866/14612.
Full textLiu, Jong-Yi, and 劉仲益. "A complete classification of bifurcation diagrams of a p-Laplacian Dirichlet problem." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/21520490264449313521.
Full textWang, Feng-Lin, and 王鳳麟. "A complete classification of bifurcation diagrams of a p -Laplacian Dirichlet problem. II. Generalized nonlinearities." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/69750422902179025025.
Full textChuang, Chia-Hao, and 莊家豪. "On exact multiplicity and bifurcation diagrams of positive solutions of a one-dimensional prescribed mean curvature problem." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/74605573231792764241.
Full textΓάκη, Αλεξάνδρα. "Μελέτη της δυναμικής συμπεριφοράς αμιγούς και απλού συναγωνισμού δύο μικροβιακών πληθυσμών σε διάταξη δύο συζευγμένων χημοστατών." Thesis, 2006. http://nemertes.lis.upatras.gr/jspui/handle/10889/1471.
Full textThe dynamic behavior of pure and simple competition of two microbial populations growing in two interconnected bioreactors is investigated. Using Andrews inhibitory model and gradient in feed concentration, the use of bifurcation theory allows an in-depth analysis of the stability change mechanisms occurring in the system, when the operating parameters of the degree of coupling and the volume ratio change. Regions of species coexistence in all steady, periodic and quasi-periodic states are observed, while there is substantial indication of chaotic behavior. Under clean feed conditions coexistence is only possible in steady and periodic states.
Demers, Myriam. "Action de groupe, formes normales et systèmes quadratiques à foyer faible d'ordre trois." Thèse, 2015. http://hdl.handle.net/1866/13414.
Full textWe are interessed here in the action of the group of affine transformations and time homotheties on quadratic differential systems which have a weak focus of third order. These systems are important for Hilbert sixteenth problem. The bifurcation diagram was produced using Li's normal form in the articles of Andronova [2], and Artès and Llibre [4], without using the projective plane as parameter space, and without using global methods. In [7], Llibre and Schlomiuk used the projective plane as parameter space and global geometric methods (affine and topological invariants). This diagram contains 18 phase portraits and some of these portraits are repeated in distinct parts of the diagram. This led us to ask the following question : do there exist distinct differential systems, corresponding to distinct values of the parameter, which are on the same orbit of the group action? In this master's thesis, we prove an original result : the action of the group is not trivial on Li's normal form (theorem 3.1), neither is it trivial on Bautin's normal form (theorem 4.1). Using the second result, we construct the quotient topological space of these systems with a weak focus of third order, with respect to the group action.
Paquin-Lefebvre, Frédéric. "Sur un modèle d'érythropoïèse comportant un taux de mortalité dynamique." Thèse, 2015. http://hdl.handle.net/1866/11690.
Full textThis thesis addresses erythropoiesis mathematical modeling, which is the process of erythrocytes production and its regulation by erythropeitin. We propose an erythropoiesis model extension which includes aging of mature cells. First, we consider an age-structured model with moving boundary condition, whose dynamics are represented by advection equations. Biologically, the moving boundary condition means that the maximal lifespan varies to account for a constant degraded cells flux. Then, hypotheses are introduced to simplify and transform the model into a system of three delay differential equations for the total population, the hormone concentration and the maximal lifespan. An alternative model composed of two equations with two constant delays is obtained by supposing that the maximal lifespan is constant. Finally, a new model is introduced, which includes an exponential death rate depending on erythrocytes maturity level. A linear stability analysis allows to detect simple and double Hopf bifurcations emerging from variations of the gain in the feedback loop and from parameters associated to the survival function. Numerical simulations also suggest a loss of stability caused by interactions between two linear modes and the existence of a two dimensional torus in the phase space close to the stationary solution.