Academic literature on the topic 'Diamagnetic materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Diamagnetic materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Diamagnetic materials"

1

Cahaya, Adam Badra. "Paramagnetic and Diamagnetic Susceptibility of Infinite Quantum Well." Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics 3, no. 2 (December 31, 2020): 61–67. http://dx.doi.org/10.15408/fiziya.v3i2.18119.

Full text
Abstract:
Paramagnetism and diamagnetism of a material characterized by its magnetic susceptibility. When a material is exposed to an external magnetic field, magnetic susceptibility is defined as the ratio of the induced magnetization and the magnetic field. A paramagnetic material has magnetic susceptibility with positive sign. On the other hand, a diamagnetic material has magnetic susceptibility with negative sign. Atomically, paramagnetic materials consist of atoms that has orbital with unpaired electrons. Theoretical study of paramagnetic susceptibility and diamagnetic susceptibility are well described by Pauli paramagnetism and Landau diamagnetism, respectively. Although paramagnetism and diamagnetism are among the simplest magnetic properties of material that are studied in basic physics, theoretical derivations of Pauli paramagnetic and Landau diamagnetic susceptibility require second quantization formalism of quantum mechanics. We aim to discuss the paramagnetic and diamagnetic susceptibilities for simple three-dimensional quantum well using first quantization formalism.
APA, Harvard, Vancouver, ISO, and other styles
2

Yamato, Masafumi, and Tsunehisa Kimura. "Magnetic Processing of Diamagnetic Materials." Polymers 12, no. 7 (July 3, 2020): 1491. http://dx.doi.org/10.3390/polym12071491.

Full text
Abstract:
Currently, materials scientists and nuclear magnetic resonance spectroscopists have easy access to high magnetic fields of approximately 10 T supplied by superconducting magnets. Neodymium magnets that generate magnetic fields of approximately 1 T are readily available for laboratory use and are widely used in daily life applications, such as mobile phones and electric vehicles. Such common access to magnetic fields—unexpected 30 years ago—has helped researchers discover new magnetic phenomena and use such phenomena to process diamagnetic materials. Although diamagnetism is well known, it is only during the last 30 years that researchers have applied magnetic processing to various classes of diamagnetic materials such as ceramics, biomaterials, and polymers. The magnetic effects that we report herein are largely attributable to the magnetic force, magnetic torque, and magnetic enthalpy that in turn, directly derive from the well-defined magnetic energy. An example of a more complex magnetic effect is orientation of crystalline polymers under an applied magnetic field; researchers do not yet fully understand the crystallization mechanism. Our review largely focuses on polymeric materials. Research topics such as magnetic effect on chiral recognition are interesting yet beyond our scope.
APA, Harvard, Vancouver, ISO, and other styles
3

Thompson, Frank. "Paramagnetic and diamagnetic materials." Physics Education 46, no. 3 (May 2011): 328–31. http://dx.doi.org/10.1088/0031-9120/46/3/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ausserlechner, U., W. Steiner, and P. Kasperkovitz. "Field distribution in granular, diamagnetic materials." IEEE Transactions on Magnetics 30, no. 2 (March 1994): 1072–74. http://dx.doi.org/10.1109/20.312498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reis, M. S. "Oscillating adiabatic temperature change of diamagnetic materials." Solid State Communications 152, no. 11 (June 2012): 921–23. http://dx.doi.org/10.1016/j.ssc.2012.03.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Safarik, I., J. Prochazkova, E. Baldikova, M. Timko, P. Kopcansky, M. Rajnak, N. Torma, and K. Pospiskova. "Modification of Diamagnetic Materials Using Magnetic Fluids." Ukrainian Journal of Physics 65, no. 9 (August 26, 2020): 751. http://dx.doi.org/10.15407/ujpe65.9.751.

Full text
Abstract:
Magnetic fluids (ferrofluids) have found many important applications in various areas of biosciences, biotechnology, medicine, and environmental technology. In this review, we have summarized the relevant information dealing with a magnetic modification of diamagnetic materials using different types of ferrofluids. Special attention is focused on a magnetic modification of plant-derived biomaterials, microbial and microalgal cells, eukaryotic cells, biopolymers, inorganic materials, and organic polymers. Derivatization is usually caused by the presence of magnetic iron oxide nanoparticles within the pores of treated materials, on the materials surface or within the polymer gels. The obtained smart materials exhibit several types of responses to an external magnetic field, especially the possibility of the selective magnetic separation from difficult-to-handle environments by means of a magnetic separator. The ferrofluid-modified materials have been especially used as adsorbents, carriers, composite nanozymes or whole-cell biocatalysts.
APA, Harvard, Vancouver, ISO, and other styles
7

Safarik, Ivo, Eva Baldikova, Kristyna Pospiskova, and Mirka Safarikova. "Magnetic modification of diamagnetic agglomerate forming powder materials." Particuology 29 (December 2016): 169–71. http://dx.doi.org/10.1016/j.partic.2016.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paixão, L. S., Z. Z. Alisultanov, and M. S. Reis. "Oscillating adiabatic temperature change of 2D diamagnetic materials." Journal of Magnetism and Magnetic Materials 368 (November 2014): 374–78. http://dx.doi.org/10.1016/j.jmmm.2014.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Korolev, A. F., S. S. Krotov, N. N. Sysoev, and P. V. Lebedev-Stepanov. "Interrelation between diamagnetic and thermodynamic properties of materials." Doklady Physics 46, no. 4 (April 2001): 223–26. http://dx.doi.org/10.1134/1.1371037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Palagummi, Sri Vikram, and Fuh-Gwo Yuan. "An enhanced performance of a horizontal diamagnetic levitation mechanism–based vibration energy harvester for low frequency applications." Journal of Intelligent Material Systems and Structures 28, no. 5 (July 28, 2016): 578–94. http://dx.doi.org/10.1177/1045389x16651152.

Full text
Abstract:
This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation mechanism–based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit. The horizontal diamagnetic levitation mechanism comprises three permanent magnets and two diamagnetic plates. Two of the magnets, lifting magnets, are placed co-axially at a distance such that each attracts a centrally located magnet, floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet, and the diamagnetic plate is parametrically studied to quantify their effects on the size, stability of the levitation mechanism, and the resonant frequency of the floating magnet. For vibration energy harvesting using the horizontal diamagnetic levitation mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a volume figure of merit of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at a frequency of 1.9 Hz.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Diamagnetic materials"

1

Sabihuddin, Siraj. "Investigation of diamagnetic bearings and electrical machine materials for flywheel energy storage applications." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28957.

Full text
Abstract:
Recent trends in energy production have led to a renewed interest in improving grid level energy storage solutions. Flywheel energy storage is an attractive option for grid level storage, however, it suffers from high parasitic loss. This study investigates the extent to which passive diamagnetic bearings, a form of electromagnetic bearing, can help reduce this parasitic loss. Such bearings require three main components: a weight compensation mechanism (lifter-floater), a stabilizing mechanism and an electrical machine. This study makes use of a new radial modification of an existing linear multi-plattered diamagnetic bearing. Here a prototype is built and analytical expressions derived for each of the three main components. These expressions provide a method of estimating displacements, fields, forces, energy and stiffness in the radial diamagnetic bearing. The built prototype solution is found to lift a 30 [g] mass using six diamagnetic platters for stabilization (between ring magnets) with a disc lifter and spherical floater for weight compensation. The relationship between mass and number of platters was found to be linear, suggesting that, up to a point, increases in mass are likely possible and indicating that significant potential exists for these bearings where high stiffness is not needed – for instance in flywheel energy storage. The study examines methods of reducing bearing (parasitic) losses and demonstrates that losses occur in three main forms during idling: air-friction losses, electrical machine losses, stabilizing machine losses. Low speed (158 [rpm]) air-friction losses are found to be the dominant loss at 0.1 [W/m3]. The focus of this study, however, is on loss contributions resulting from the bearing’s electrical machine and stabilizing machine. Stabilizing machine losses are found to be very low at: 1 × 10−6 [W/m3] – this leaves electrical machine losses as the dominant loss. Such electrical machine losses are analysed and divided into eddy current loss and hysteresis loss. Two components of hysteresis loss are remanent field related cogging loss and remagetization loss. Eddy current losses in silicon steel laminations in an electrical machine are quite high, especially at high speeds, with losses in the order of 1 × 105 [W/m3]. Noting the further high cost of producing single unit quantities of custom lamination-based electrical machine prototypes, this high loss prompts a look at potentially lower cost ferrite materials for building these machines. A commercial sample of soft magnetite ferrite is shown to have equivalent eddy current losses of roughly 1 × 10−13 [W/m3]. The study notes that micro-structured magnetite has significant hysteresis loss. Such loss is in the order of 1 × 10−3 [W/m3] when referring to both remanence related cogging and remagnetization. This study, thus, extends its examination of loss to nano-structured magnetite. Magnetite nano-particles have shown superparamagnetic (no hysteresis) behaviour that promises the elimination of hysteresis losses. A co-precipitation route to the synthesis of these nano-particles is examined. A detailed examination involving a series of 31 experiments is shown to demonstrate only two pathways providing close-to-superparamagnetic behaviour. After characterization by Scanning Electron Microscope (SEM), X-Ray Diffractometer (XRD), Superconducting Quantum Interference Device (SQUID) and crude colorimetry, the lowest coercivity and remanence found in any given sample falls at −0.17 [Oe] (below error) and 0.00165 [emu/g] respectively. These critical points can be used to estimate hysteresis related power loss, however, to produce bulk ferrite a method of sintering or bonding synthesized powder is needed. A microwave sintering solution promises to preserve nano-structure when taking synthesized powders to bulk material. A set of proof-of-concept experiments provide the ground work for proposing a future microwave sintering approach to such bulk material production. The study uses critical points measured by way of SEM, XRD, SQUID characterization (e.g. remanence and coercivity) to implement a modified Jiles-Atherton model for hysteresis curve fitting. The critical points and curve fitting model allow estimation of power loss resulting from remanent related cogging and remagnetization effects in nano-structured magnetite. Such nano-structured magnetite is shown to exhibit hysteresis losses in the order of 1 × 10−4 [W/m3] from remagnetization and 1 × 10−7[W/m3] from remanence related cogging drag. These losses are lower than those of micro-structured samples, suggesting that nano-structured materials have a significant positive effect in reducing electrical machine losses for the proposed radial multi-plattered diamagnetic bearing solution. The lower parasitic loss in these bearings suggests excellent compatibility with flywheel energy storage applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Azhar, Bilal. "Experimental validation of the predicted emergent magnetism in diamagnetic cadmium sulfide (Cds) doped with boron." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/132613.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, May, 2020
Cataloged from the official PDF version of thesis.
Includes bibliographical references (pages 41-42).
The large and persistent photoconductivity displayed by some semiconductors provides a way to control magnetism with light, through illumination-control of free carrier concentration and thereby magnetic interaction in dilute magnetic semiconductors. CdS is a wide band-gap semiconductor that displays large and persistent photoconductivity and is predicted to become magnetic when doped with certain dopants such as Boron[1]. In this work, we experimentally test the prediction of magnetic CdS:B, and lay groundwork for testing the hypothesis that magnetism can be controlled by photoconductivity. We make CdS:B nanoparticles by co-precipitation[2]. We use X-ray diffraction and plasma optical emission spectroscopy to quantify boron doping. We use magnetometry to confirm the presence of magnetic B.
by Bilal Azhar.
S.B.
S.B. Massachusetts Institute of Technology, Department of Materials Science and Engineering
APA, Harvard, Vancouver, ISO, and other styles
3

Filatre-Furcate, Agathe. "Conducteurs moléculaires neutres : complexes bis (dithiolène) d'or et de nickel." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S143.

Full text
Abstract:
Au cours de ce travail, nous nous sommes particulièrement intéressés à une classe de molécules électroactives précurseurs de matériaux moléculaires conducteurs à composant unique, les complexes bis(1,2-dithiolène) d'or et de nickel neutres. Nous avons tout d'abord développé une série originale de complexes radicalaires d'or [Au(R-thiazYdt)2] à partir de ligands dithiolène, riches en électron, les N-alkyl-1,3-thiazoline-2-chalcogénone-4,5-dithiolate (R-thiazYdt)2 avec Y = O, S, Se et R = Pr, iPr, cycloPr, NMe2. Le substituant R de l'hétérocycle joue un rôle majeur sur les propriétés des matériaux, résultant des interactions électroniques intermoléculaires entre ces complexes paramagnétiques. Les complexes de nickel diamagnétiques, [Ni(R-thiazSdt)2], des mêmes ligands dithiolène, présentent quant à eux une organisation à l'état solide très différente, conséquence de leur caractère à "couche fermée". Enfin, la réactivité originale des dérivés avec R = tBu conduit à des ligands dithiolène portés par un cycle aromatique 2-alkylthio-thiazole (RS-tzdt). Leurs complexes d'or neutres [Au(RS-tzdt)2] forment des empilements fortement dimérisés et semi-conducteurs
During this work, we particularly focused on one type of electroactive molecules, precursors of single component molecular conductors, the neutral gold and nickel bis(1,2-dithiolene) complexes. First we developed a series of radical gold complexes [Au(R-thiazYdt)2] derived from electron rich dithiolene ligands, the N-alkyl-1,3-thiazoline-2-chalcogenone-4,5-dithiolate (R-thiazYdt)2 with Y = O, S, Se and R = Pr, iPr, cycloPr, NMe2. The R substituent plays an important role on the properties of these materials resulting from the intermolecular electronic interactions between these paramagnetic complexes. Besides, diamagnetic nickel complexes, [Ni(R-thiazSdt)2], with the same dithiolene ligands exhibit a different organization in the solid state, a consequence of their closed shell nature. Finally, the original reactivity of the derivatives with R = tBu leads to dithiolene ligands with an aromatic 2-alkylthio-1,3-thiazole ring (RS-tzdt). Their neutral gold complexes [Au(RS-tzdt)2] form semi-conducting strongly dimerized stacks
APA, Harvard, Vancouver, ISO, and other styles
4

Jin, Hyungyu. "Development of Thermoelectric Materials for Cryogenic Cooling andStudy on Magnon and Phonon Heat Transport." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397746215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gottlieb, Ulrich. "Quelques propriétés physiques intrinsèques des siliciures métalliques et semiconducteurs." Grenoble INPG, 1994. http://www.theses.fr/1994INPG0008.

Full text
Abstract:
Dans la premiere partie nous decrivons la mise au point d'une experience de mesures de transport a basses temperatures. Nous avons construit un dispositif experimental qui permet de piloter la rotation de l'echantillon a basse temperature sous fort champ magnetique a partir de l'exterieur du cryostat. La deuxieme partie de la these est consacree a l'etude systematique des siliciures isostructuraux et isoelectroniques vsi#2, nbsi#2 et tasi#2. Les echantillons sont monocristallins. Les trois composes sont metalliques et leur resistivite a haute temperature est anisotrope. Des mesures de magnetoresistance nous ont permis d'explorer la surface de fermi de nbsi#2. Des mesures de chaleur specifique a tres basse temperature revelent que la densite d'etats electronique au niveau de fermi est deux fois plus elevee pour vsi#2 que pour les deux autres siliciures. Les temperatures de debye des trois composes varient en fonction de m##1#/#2 (m: masse molaire) indiquant que les forces interatomiques sont identiques. Nbsi#2 et tasi#2 sont supraconducteurs en dessous respectivement 130 mk et 353 mk. Des mesures de susceptibilite montrent que vsi#2 est paramagnetique, nbsi#2 et tasi#2 sont diamagnetiques. Les spectres de phonons obtenus par des mesures de spectroscopie de pointes sont en bon accord avec les temperatures de debye obtenues par les autres methodes. Des etudes sur les proprietes de transport des siliciures semiconducteurs crsi#2, resi#1#,#7#5 et ru#2si#3 sont decrites dans le troisieme chapitre. La preparation de monocristaux de ces materiaux est plus difficile que celle des siliciures metalliques. La resistivite des trois composes est anisotrope. Ru#2si#3 et resi#1#,#7#5 se comportent comme des semiconducteurs dopes en regime extrinseque. Crsi#2 montre plutot le comportement d'un mauvais metal. La magnetoresistance de ru#2si#3 a basse temperature peut s'interpreter dans un modele de localisation faible ou les interactions electron-electron sont dominantes
APA, Harvard, Vancouver, ISO, and other styles
6

Simonato, Jean-Pierre. "Chimie de coordination de la tétraméthylchiroporphyrine avec le fer(III), le cobalt(III) et le rhodium(III) : applications à l'analyse d'énantiomères d'amines, à la complexation énantiosélective d'aminoalcools, et à la catalyse d'aziridination asymétrique." Université Joseph Fourier (Grenoble), 1999. http://www.theses.fr/1999GRE10051.

Full text
Abstract:
Des complexes metalliques de la tetramethylchiroporphyrine, de symetrie et possedant des groupements meso derives du biocartol, ont ete synthetises, caracterises, et utilises dans quatre axes de recherches. _la caracterisation du complexe bis-ethanol de la tetramethylchiroporphyrine de fer(iii), en solution et en phase solide, revele que ce compose presente un etat de spin inhabituel : le spin intermediaire pur (s = 3/2). _l'insertion d'un metal diamagnetique, le cobalt(iii), coordonnant les amines au cur de la porphyrine, a permis l'analyse qualitative et quantitative de la composition de derives d'amines par resonance magnetique nucleaire du proton. Cette methode s'est averee precise, fiable, rapide et tres facile d'utilisation. _l'addition de -aminoalcools sur cette meme molecule resulte en la complexation preferentielle d'un enantiomere. Les aspects cinetiques et thermodynamiques ont ete abordes, et une explication quant a l'enantioselectivite observee est avancee sur la base de liaisons hydrogene intramoleculaires de type c-h___o. _parmi differentes complexes de la tetramethylchiroporphyrine, ceux de fer(iii) et de manganese(iii) ont donne les meilleurs resultats pour la catalyse d'aziridination asymetrique, avec des exces enantiomeriques allant jusqu'a 57% pour le styrene. Un point remarquable est l'induction asymetrique opposee de ces deux catalyseurs, chacun favorisant la formation majoritaire d'un enantiomere.
APA, Harvard, Vancouver, ISO, and other styles
7

Mettout, Bruno. "Interactions diamagnetiques et irradiation x d'un composite de microbilles d'etain en surchauffe supraconductrice." Paris 7, 1988. http://www.theses.fr/1988PA077118.

Full text
Abstract:
Etude du role des interactions diamagnetiques dans la largeur de transition et de l'amplitude du signal percu lors du passage a l'etat normal des microbilles. Le comportement du composite et des boucles de lecture supraconductrices sous irradiation x permet de discuter des etats hors equilibre des supraconducteurs
APA, Harvard, Vancouver, ISO, and other styles
8

Stowe, Ashley Clinton Dalal Naresh Van Tol Johan. "Characterization of high spin molecular magnets." 2004. http://etd.lib.fsu.edu/theses/available/etd-09172004-132435.

Full text
Abstract:
Thesis (Ph. D.)--Florida State University, 2004.
Advisors: Dr. Naresh Dalal, Dr. Johan van Tol, Florida State University, Arts and Sciences, Dept. of Chemistry and Biochemistry. Title and description from dissertation home page (viewed Jan. 18, 2005). Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Diamagnetic materials"

1

Gooch, Jan W. "Diamagnetic Materials." In Encyclopedic Dictionary of Polymers, 204. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Allen, J. B. "Q-State Monte Carlo Simulations of Magnetic Anisotropy Applied to Paramagnetic and Diamagnetic Materials." In Developments in Strategic Ceramic Materials II, 167–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119321811.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kumari, Sarita, and Sarbani Chakraborty. "Sensitivity Analysis of Various Diamagnetic and Paramagnetic Materials Based on Faraday Rotation Principle." In Lecture Notes in Electrical Engineering, 713–23. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8234-4_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Buschow, K. H. J., and F. R. de Boer. "Diamagnetism." In Physics of Magnetism and Magnetic Materials, 59–61. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/0-306-48408-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kozhevnikov, Vladimir. "Thermodynamics of Para- and Diamagnetics." In Thermodynamics of Magnetizing Materials and Superconductors, 51–82. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429266478-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Diamagnetic materials." In Encyclopedic Dictionary of Polymers, 274. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30160-0_3442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pollock, Daniel D. "Diamagnetic and Paramagnetic Effects." In Physical Properties of Materials for Engineers, 69–116. CRC Press, 2018. http://dx.doi.org/10.1201/9781351075619-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pollock, Daniel D. "Diamagnetic and Paramagnetic Effects." In PHYSICAL PROPERTIES of MATERIALS for ENGINEERS 2ND EDITION, 269–315. CRC Press, 2020. http://dx.doi.org/10.1201/9781003068082-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Features of Solid-State NMR: Diamagnetic Materials." In Solid-State NMR in Materials Science, 74–115. CRC Press, 2016. http://dx.doi.org/10.1201/b11301-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Strategies in Solid-State Multinuclear NMR: Studies of Diamagnetic Porous Materials." In Solid-State NMR in Materials Science, 182–207. CRC Press, 2016. http://dx.doi.org/10.1201/b11301-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Diamagnetic materials"

1

Ho, Joe Nhut, and Wei-Chih Wang. "A diamagnetic levitating generator system." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Tribikram Kundu. SPIE, 2009. http://dx.doi.org/10.1117/12.816541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MOGI, I., K. TAKAHASHI, S. AWAJI, K. WATANABE, and M. MOTOKAWA. "APPLICATION OF MAGNETIC LEVITATION TO PROCESSING OF DIAMAGNETIC MATERIALS." In Proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701800_0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Palagummi, S., and F. G. Yuan. "A vibration energy harvester using diamagnetic levitation." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Henry Sodano. SPIE, 2013. http://dx.doi.org/10.1117/12.2009657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alsaleh, Mona H., Raj K. Vinnakota, and Dentcho A. Genov. "Saturation of Diamagnetic Response at THz Frequencies for Parallel Slabs Metamaterials." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/noma.2017.nom2c.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kono, Yuta, Arata Masuda, and Fuh-Gwo Yuan. "A low-frequency vibration energy harvester based on diamagnetic levitation." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Gyuhae Park. SPIE, 2017. http://dx.doi.org/10.1117/12.2257877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zivieri, R. "Effective diamagnetic behavior of 2D periodic and binary magnetic systems." In 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2016. http://dx.doi.org/10.1109/metamaterials.2016.7746425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mollaee, Masoud, Xiushan Zhu, Pierre Lucas, Nick O'Brien, Michal L. Lukowski, Julien Ari, and Nasser N. Peyghambarian. "Magneto-optical properties of diamagnetic glasses and paramagnetic glasses in the 2um region (Conference Presentation)." In Optical Components and Materials XVII, edited by Michel J. Digonnet and Shibin Jiang. SPIE, 2020. http://dx.doi.org/10.1117/12.2544514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Palagummi, S., and F. G. Yuan. "An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Gyuhae Park. SPIE, 2016. http://dx.doi.org/10.1117/12.2218914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

OTSUKA, I., T. TAKAHASHI, Y. YAGUCHI, H. ABE, and S. OZEKI. "MAGNETIC FIELD CONTROL OF STRUCTURES AND PROPERTIES OF DIAMAGNETIC MOLECULAR ASSEMBLIES." In Proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701800_0035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khan, Dilshad Ahmad, Zafar Alam, and Sunil Jha. "Nanofinishing of Copper Using Ball End Magnetorheological Finishing (BEMRF) Process." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65974.

Full text
Abstract:
The ball end magnetorheological finishing (BEMRF) is an advanced nanofinishing process for flat, curved and freeform surfaces of ferromagnetic as well as diamagnetic materials. While finishing copper (diamagnetic material) by this process, a low finishing effect is obtained as its surface repels the externally applied magnetic field. In this work a magnetic simulation is carried out over both copper and ferromagnetic material. For the ferromagnetic material the simulation result shows a high flux density region below the tool tip. However in case of copper the magnetic flux density is too low for finishing. It is also observed through simulations that when copper workpiece is placed on a mild steel base the flux density improves marginally. This led to the idea of using a permanent magnet (in place of mild steel) as a base for finishing of copper using the BEMRF process. Using this technique copper was finished and the experimental results indicate that this method can realize ultra-precision finishing of copper.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography